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This masters thesis deals with updating the Linux® emulation layer
	(the so called Linuxulator).  The task was to update the layer to match
	the functionality of Linux® 2.6. As a reference implementation, the
	Linux® 2.6.16 kernel was chosen.  The concept is loosely based on
	the NetBSD implementation.  Most of the work was done in the summer
	of 2006 as a part of the Google Summer of Code students program.
	The focus was on bringing the NPTL (new POSIX®
	thread library) support	into the emulation layer, including
	TLS (thread local storage),
	futexes (fast user space mutexes),
	PID mangling, and some other minor
	things.  Many small problems were identified and fixed in the
	process.  My work was integrated into the main FreeBSD source
	repository and will be shipped in the upcoming 7.0R release.  We,
	the emulation development team, are working on making the
	Linux® 2.6 emulation the default emulation layer in FreeBSD.
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    1. Introduction
In the last few years the open source UNIX® based operating systems
      started to be widely deployed on server and client machines.  Among
      these operating systems I would like to point out two: FreeBSD, for its BSD
      heritage, time proven code base and many interesting features and
      Linux® for its wide user base, enthusiastic open developer community
      and support from large companies.  FreeBSD tends to be used on server
      class machines serving heavy duty networking tasks with less usage on
      desktop class machines for ordinary users.  While Linux® has the same
      usage on servers, but it is used much more by home based users.  This
      leads to a situation where there are many binary only programs available
      for Linux® that lack support for FreeBSD.
Naturally, a need for the ability to run Linux® binaries on a FreeBSD
      system arises and this is what this thesis deals with: the emulation of
      the Linux® kernel in the FreeBSD operating system.
During the Summer of 2006 Google Inc. sponsored a project which
      focused on extending the Linux® emulation layer (the so called Linuxulator)
      in FreeBSD to include Linux® 2.6 facilities.  This thesis is written as a
      part of this project.
2. A look inside…
In this section we are going to describe every operating system in
      question.  How they deal with syscalls, trapframes etc., all the low-level
      stuff. We also describe the way they understand common UNIX®
      primitives like what a PID is, what a thread is, etc.  In the third
      subsection we talk about how UNIX® on UNIX® emulation could be done
      in general.
2.1. What is UNIX®
UNIX® is an operating system with a long history that has
	influenced almost every other operating system currently in use.
	Starting in the 1960s, its development continues to this day (although
	in different projects).  UNIX® development soon forked into two main
	ways: the BSDs and System III/V families.  They mutually influenced
	themselves by growing a common UNIX® standard.  Among the
	contributions originated in BSD we can name virtual memory, TCP/IP
	networking, FFS, and many others.  The System V branch contributed to
	SysV interprocess communication primitives, copy-on-write, etc. UNIX®
	itself does not exist any more but its ideas have been used by many
	other operating systems world wide thus forming the so called UNIX®-like
	operating systems.  These days the most influential ones are Linux®,
	Solaris, and possibly (to some extent) FreeBSD.  There are in-company
	UNIX® derivatives (AIX, HP-UX etc.), but these have been more and
	more migrated to the aforementioned systems.  Let us summarize typical
	UNIX® characteristics.
2.2. Technical details
Every running program constitutes a process that represents a state
	of the computation.  Running process is divided between kernel-space
	and user-space.  Some operations can be done only from kernel space
	(dealing with hardware etc.), but the process should spend most of its
	lifetime in the user space.  The kernel is where the management of the
	processes, hardware, and low-level details take place.  The kernel
	provides a standard unified UNIX® API to the user space.  The most
	important ones are covered below.
2.2.1. Communication between kernel and user space process
Common UNIX® API defines a syscall as a way to issue commands
	  from a user space process to the kernel.  The most common
	  implementation is either by using an interrupt or specialized
	  instruction (think of
	  SYSENTER/SYSCALL instructions
	  for ia32).  Syscalls are defined by a number.  For example in FreeBSD,
	  the syscall number 85 is the swapon(2) syscall and the
	  syscall number 132 is mkfifo(2).  Some syscalls need
	  parameters, which are passed from the user-space to the kernel-space
	  in various ways (implementation dependant).  Syscalls are
	  synchronous.
Another possible way to communicate is by using a
	  trap.  Traps occur asynchronously after
	  some event occurs (division by zero, page fault etc.).  A trap
	  can be transparent for a process (page fault) or can result in
	  a reaction like sending a signal
	  (division by zero).
2.2.2. Communication between processes
There are other APIs (System V IPC, shared memory etc.) but the
	  single most important API is signal.  Signals are sent by processes
	  or by the kernel and received by processes.  Some signals
	  can be ignored or handled by a user supplied routine, some result
	  in a predefined action that cannot be altered or ignored.
2.2.3. Process management
Kernel instances are processed first in the system (so called
	  init).  Every running process can create its identical copy using
	  the fork(2) syscall.  Some slightly modified versions of this
	  syscall were introduced but the basic semantic is the same.  Every
	  running process can morph into some other process using the
	  exec(3) syscall.  Some modifications of this syscall were
	  introduced but all serve the same basic purpose.  Processes end
	  their lives by calling the exit(2) syscall.  Every process is
	  identified by a unique number called PID.  Every process has a
	  defined parent (identified by its PID).
2.2.4. Thread management
Traditional UNIX® does not define any API nor implementation
	  for threading, while  POSIX® defines its threading API but the
	  implementation is undefined.  Traditionally there were two ways of
	  implementing threads.  Handling them as separate processes (1:1
	  threading) or envelope the whole thread group in one process and
	  managing the threading in userspace (1:N threading).  Comparing
	  main features of each approach:
1:1 threading
	- heavyweight threads

	- the scheduling cannot be altered by the user
	      (slightly mitigated by the POSIX® API)

	+ no syscall wrapping necessary

	+ can utilize multiple CPUs



1:N threading
	+ lightweight threads

	+ scheduling can be easily altered by the user

	- syscalls must be wrapped 

	- cannot utilize more than one CPU



2.3. What is FreeBSD?
The FreeBSD project is one of the oldest open source operating
	systems currently available for daily use.  It is a direct descendant
	of the genuine UNIX® so it could be claimed that it is a true UNIX®
	although licensing issues do not permit that.  The start of the project
	dates back to the early 1990's when a crew of fellow BSD users patched
	the 386BSD operating system.  Based on this patchkit a new operating
	system arose named FreeBSD for its liberal license.  Another group created
	the NetBSD operating system with different goals in mind.  We will
	focus on FreeBSD.
FreeBSD is a modern UNIX®-based operating system with all the
	features of UNIX®.  Preemptive multitasking, multiuser facilities,
	TCP/IP networking, memory protection, symmetric multiprocessing
	support, virtual memory with merged VM and buffer cache, they are all
	there.  One of the interesting and extremely useful features is the
	ability to emulate other UNIX®-like operating systems.  As of
	December 2006 and 7-CURRENT development, the following
	emulation functionalities are supported:
	FreeBSD/i386 emulation on FreeBSD/amd64

	FreeBSD/i386 emulation on FreeBSD/ia64

	Linux®-emulation of Linux® operating system on FreeBSD

	NDIS-emulation of Windows networking drivers interface

	NetBSD-emulation of NetBSD operating system

	PECoff-support for PECoff FreeBSD executables

	SVR4-emulation of System V revision 4 UNIX®



Actively developed emulations are the Linux® layer and various
	FreeBSD-on-FreeBSD layers.  Others are not supposed to work properly nor
	be usable these days.
FreeBSD development happens in a central CVS repository where only
	a selected team of so called committers can write.  This repository
	possesses several branches; the most interesting are the HEAD branch,
	in FreeBSD	nomenclature called -CURRENT, and RELENG_X branches, where X
	stands for a number indicating a major version of FreeBSD.  As of
	December 2006, there are development branches for 6.X development
	(RELENG_6) and for the 5.X development (RELENG_5).  Other branches are
	closed and not actively maintained or only fed with security patches
	by the Security Officer of the FreeBSD project.
Historically the active development was done in the HEAD branch so
	it was considered extremely unstable and supposed to happen to break
	at any time.  This is not true any more as the
	Perforce (commercial	version control system)
	repository was introduced so that active development happen there.
	There are many branches in Perforce where
	development of certain parts of the system happens and these branches
	are from time to time merged back to the main CVS repository thus
	effectively putting the given feature to the FreeBSD operating system.
	The same happened with the rdivacky_linuxolator
	branch where development of this thesis code was going on.
More info about the FreeBSD operating system can be found
	at [2].
2.3.1. Technical details
FreeBSD is traditional flavor of UNIX® in the sense of dividing the
	  run of processes into two halves: kernel space and user space run.
	  There are two types of process entry to the kernel: a syscall and a
	  trap.  There is only one way to return.  In the subsequent sections
	  we will describe the three gates to/from the kernel.  The whole
	  description applies to the i386 architecture as the Linuxulator
	  only exists there but the concept is similar on other architectures.
	  The information was taken from [1] and the source code.
2.3.1.1. System entries
FreeBSD has an abstraction called an execution class loader,
	    which is a wedge into the execve(2) syscall.  This employs a
	    structure sysentvec, which describes an
	    executable ABI.  It contains things like errno translation table,
	    signal translation table, various functions to serve syscall needs
	    (stack fixup, coredumping, etc.).  Every ABI the FreeBSD kernel wants
	    to support must define this structure, as it is used later in the
	    syscall processing code and at some other places.  System entries
	    are handled by trap handlers, where we can access both the
	    kernel-space and the user-space at once.
2.3.1.2. Syscalls
Syscalls on FreeBSD are issued by executing interrupt
	    0x80 with register %eax set
	    to a desired syscall number with arguments passed on the stack.
When a process issues an interrupt 0x80, the
	    int0x80 syscall trap handler is issued (defined
	    in sys/i386/i386/exception.s), which prepares
	    arguments (i.e. copies them on to the stack) for a
	    call to a C function syscall(2) (defined in
	    sys/i386/i386/trap.c), which processes the
	    passed in trapframe.  The processing consists of preparing the
	    syscall (depending on the sysvec entry),
	    determining if the syscall is 32-bit or 64-bit one (changes size
	    of the parameters), then the parameters are copied, including the
	    syscall.  Next, the actual syscall function is executed with
	    processing of the return code (special cases for
	    ERESTART and EJUSTRETURN
	    errors).  Finally an userret() is scheduled,
	    switching the process back to the users-pace.  The parameters to
	    the actual syscall handler are passed in the form of
	    struct thread *td,
	    struct syscall args * arguments where the second
	    parameter is a pointer to the copied in structure of
	    parameters.
2.3.1.3. Traps
Handling of traps in FreeBSD is similar to the handling of
	    syscalls.  Whenever a trap occurs, an assembler handler is called.
	    It is chosen between alltraps, alltraps with regs pushed or
	    calltrap depending on the type of the trap.  This handler prepares
	    arguments for a call to a C function trap()
	    (defined in sys/i386/i386/trap.c), which then
	    processes the occurred trap.  After the processing it might send a
	    signal to the process and/or exit to userland using
	    userret().
2.3.1.4. Exits
Exits from kernel to userspace happen using the assembler
	    routine doreti regardless of whether the kernel
	    was entered via a trap or via a syscall.  This restores the program
	    status from the stack and returns to the userspace.
2.3.1.5. UNIX® primitives
FreeBSD operating system adheres to the traditional UNIX® scheme,
	    where every process has a unique identification number, the so
	    called PID (Process ID).  PID numbers are
	    allocated either linearly or randomly ranging from
	    0 to PID_MAX.  The allocation
	    of PID numbers is done using linear searching of PID space.  Every
	    thread in a process receives the same PID number as result of the
	    getpid(2) call.
There are currently two ways to implement threading in FreeBSD.
	    The first way is M:N threading followed by the 1:1 threading model.
	    The default library used is M:N threading
	    (libpthread) and you can switch at runtime to
	    1:1 threading (libthr).  The plan is to switch
	    to 1:1 library by default soon.  Although those two libraries use
	    the same kernel primitives, they are accessed through different
	    API(es).  The M:N library uses the kse_* family
	    of syscalls while the 1:1 library uses the thr_*
	    family of syscalls.  Because of this, there is no general concept
	    of thread ID shared between kernel and userspace.  Of course, both
	    threading libraries implement the pthread thread ID API.  Every
	    kernel thread (as described by struct thread)
	    has td tid identifier but this is not directly accessible
	    from userland and solely serves the kernel's needs.  It is also
	    used for 1:1 threading library as pthread's thread ID but handling
	    of this is internal to the library and cannot be relied on.
As stated previously there are two implementations of threading
	    in FreeBSD.  The M:N library divides the work between kernel space and
	    userspace.  Thread is an entity that gets scheduled in the kernel
	    but it can represent various number of userspace threads.
	    M userspace threads get mapped to N kernel threads thus saving
	    resources while keeping the ability to exploit multiprocessor
	    parallelism.  Further information about the implementation can be
	    obtained from the man page or [1].  The 1:1 library directly maps a
	    userland thread to a kernel thread thus greatly simplifying the
	    scheme.  None of these designs implement a fairness mechanism (such
	    a mechanism was implemented but it was removed recently because it
	    caused serious slowdown and made the code more difficult to deal
	    with).
2.4. What is Linux®
Linux® is a UNIX®-like kernel originally developed by Linus
	Torvalds, and now being contributed to by a massive crowd of
	programmers all around the world.  From its mere beginnings to today,
	with wide support from companies such as IBM or Google, Linux® is
	being associated with its fast development pace, full hardware support
	and benevolent dictator model of organization.
Linux® development started in 1991 as a hobbyist project at
	University of Helsinki in Finland.  Since then it has obtained all the
	features of a modern UNIX®-like OS: multiprocessing, multiuser
	support, virtual memory, networking, basically everything is there.
	There are also highly advanced features like virtualization etc.
As of 2006 Linux® seems to be the most widely used open source
	operating system with support from independent software vendors like
	Oracle, RealNetworks, Adobe, etc.  Most of the commercial software
	distributed for Linux® can only be obtained in a binary form so
	recompilation for other operating systems is impossible.
Most of the Linux® development happens in a
	Git version control system.
	Git is a distributed system so there is
	no central source of the Linux® code, but some branches are considered
	prominent and official.  The version number scheme implemented by
	Linux® consists of four numbers A.B.C.D.  Currently development
	happens in 2.6.C.D, where C represents major version, where new
	features are added or changed while D is a minor version for bugfixes
	only.
More information can be obtained from [4].
2.4.1. Technical details
Linux® follows the traditional UNIX® scheme of dividing the run
	of a process in two halves: the kernel and user space.  The kernel can
	be entered in two ways: via a trap or via a syscall.  The return is
	handled only in one way.  The further description applies to
	Linux® 2.6 on the i386™ architecture.  This information was
	taken from [3].
2.4.1.1. Syscalls
Syscalls in Linux® are performed (in userspace) using
	    syscallX macros where X substitutes a number
	    representing the number of parameters of the given syscall.  This
	    macro translates to a code that loads %eax
	    register with a number of the syscall and executes interrupt
	    0x80.  After this syscall return is called,
	    which translates negative return values to positive
	    errno values and sets res to
	    -1 in case of an error.  Whenever the interrupt
	    0x80 is called the process enters the kernel in
	    system call trap handler.  This routine saves all registers on the
	    stack and calls the selected syscall entry.  Note that the Linux®
	    calling convention expects parameters to the syscall to be passed
	    via registers as shown here:
	parameter -> %ebx

	parameter -> %ecx

	parameter -> %edx

	parameter -> %esi

	parameter -> %edi

	parameter -> %ebp



There are some exceptions to this, where Linux® uses different
	    calling convention (most notably the clone
	    syscall).
2.4.1.2. Traps
The trap handlers are introduced in
	    arch/i386/kernel/traps.c and most of these
	    handlers live in arch/i386/kernel/entry.S,
	    where handling of the traps happens.
2.4.1.3. Exits
Return from the syscall is managed by syscall exit(3),
	    which checks for the process having unfinished work, then checks
	    whether we used user-supplied selectors.  If this happens stack
	    fixing is applied and finally the registers are restored from the
	    stack and the process returns to the userspace.
2.4.1.4. UNIX® primitives
In the 2.6 version, the Linux® operating system redefined some
	    of the traditional UNIX® primitives, notably PID, TID and thread.
	    PID is defined not to be unique for every process, so for some
	    processes (threads) getppid(2) returns the same value.  Unique
	    identification of process is provided by TID.  This is because
	    NPTL (New POSIX® Thread Library) defines
	    threads to be normal processes (so called 1:1 threading).  Spawning
	     a new process in Linux® 2.6 happens using the
	    clone syscall (fork variants are reimplemented using
	    it).  This clone syscall defines a set of flags that affect
	    behavior of the cloning process regarding thread implementation.
	    The semantic is a bit fuzzy as there is no single flag telling the
	    syscall to create a thread.
Implemented clone flags are:
	CLONE_VM - processes share their memory
		space

	CLONE_FS - share umask, cwd and
		namespace

	CLONE_FILES - share open
		files

	CLONE_SIGHAND - share signal handlers
		and blocked signals

	CLONE_PARENT - share parent

	CLONE_THREAD - be thread (further
		explanation below)

	CLONE_NEWNS - new namespace

	CLONE_SYSVSEM - share SysV undo
		structures

	CLONE_SETTLS - setup TLS at supplied
		address

	CLONE_PARENT_SETTID - set TID in the
		parent

	CLONE_CHILD_CLEARTID - clear TID in the
		child

	CLONE_CHILD_SETTID - set TID in the
		child



CLONE_PARENT sets the real parent to the
	    parent of the caller.  This is useful for threads because if thread
	    A creates thread B we want thread B to be parented to the parent of
	    the whole thread group.  CLONE_THREAD does
	    exactly the same thing as CLONE_PARENT,
	    CLONE_VM and CLONE_SIGHAND,
	    rewrites PID to be the same as PID of the caller, sets exit signal
	    to be none and enters the thread group.
	    CLONE_SETTLS sets up GDT entries for TLS
	    handling.  The CLONE_*_*TID set of flags
	    sets/clears user supplied address to TID or 0.
As you can see the CLONE_THREAD does most
	    of the work and does not seem to fit the scheme very well.  The
	    original intention is unclear (even for authors, according to
	    comments in the code) but I think originally there was one
	    threading flag, which was then parcelled among many other flags
	    but this separation was never fully finished.  It is also unclear
	    what this partition is good for as glibc does not use that so only
	    hand-written use of the clone permits a programmer to access this
	    features.
For non-threaded programs the PID and TID are the same.  For
	    threaded programs the first thread PID and TID are the same and
	    every created thread shares the same PID and gets assigned a
	    unique TID (because CLONE_THREAD is passed in)
	    also parent is shared for all processes forming this threaded
	    program.
The code that implements pthread_create(3) in NPTL defines
	    the clone flags like this:
int clone_flags = (CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGNAL

 | CLONE_SETTLS | CLONE_PARENT_SETTID

| CLONE_CHILD_CLEARTID | CLONE_SYSVSEM
#if __ASSUME_NO_CLONE_DETACHED == 0

| CLONE_DETACHED
#endif

| 0);
The CLONE_SIGNAL is defined like
#define CLONE_SIGNAL (CLONE_SIGHAND | CLONE_THREAD)
the last 0 means no signal is sent when any of the threads
	    exits.
2.5. What is emulation
According to a dictionary definition, emulation is the ability of
	a program or device to imitate another program or device.  This is
	achieved by providing the same reaction to a given stimulus as the
	emulated object.  In practice, the software world mostly sees three
	types of emulation - a program used to emulate a machine (QEMU, various
	game console emulators etc.), software emulation of a hardware facility
	(OpenGL emulators, floating point units emulation etc.) and operating
	system emulation (either in kernel of the operating system or as a
	userspace program).
Emulation is usually used in a place, where using the original
	component is not feasible nor possible at all.  For example someone
	might want to use a program developed for a different operating
	system than they use.  Then emulation comes in handy.  Sometimes
	there is no other way but to use emulation - e.g. when the hardware
	device you try to use does not exist (yet/anymore) then there is no
	other way but emulation.  This happens often when porting an operating
	system to a new (non-existent) platform.  Sometimes it is just
	cheaper to emulate.
Looking from an implementation point of view, there are two main
	approaches to the implementation of emulation.  You can either emulate
	the whole thing - accepting possible inputs of the original object,
	maintaining inner state and emitting correct output based on the state
	and/or input.  This kind of emulation does not require any special
	conditions and basically can be implemented anywhere for any
	device/program.  The drawback is that implementing such emulation is
	quite difficult, time-consuming and error-prone.  In some cases we can
	use a simpler approach.  Imagine you want to emulate a printer that
	prints from left to right on a printer that prints from right to left.
	It is obvious that there is no need for a complex emulation layer but
	simply reversing of the printed text is sufficient.  Sometimes the
	emulating environment is very similar to the emulated one so just a
	thin layer of some translation is necessary to provide fully working
	emulation!  As you can see this is much less demanding to implement,
	so less time-consuming and error-prone than the previous approach.  But
	the necessary condition is that the two environments must be similar
	enough.  The third approach combines the two previous.  Most of the
	time the objects do not provide the same capabilities so in a case of
	emulating the more powerful one on the less powerful we have to emulate
	the missing features with full emulation described above.
This master thesis deals with emulation of UNIX® on UNIX®, which
	is exactly the case, where only a thin layer of translation is
	sufficient to provide full emulation.  The UNIX® API consists of a set
	of syscalls, which are usually self contained and do not affect some
	global kernel state.
There are a few syscalls that affect inner state but this can be
	dealt with by providing some structures that maintain the extra
	state.
No emulation is perfect and emulations tend to lack some parts but
	this usually does not cause any serious drawbacks.  Imagine a game
	console emulator that emulates everything but music output.  No doubt
	that the games are playable and one can use the emulator.  It might
	not be that comfortable as the original game console but its an
	acceptable compromise between price and comfort.
The same goes with the UNIX® API.  Most programs can live with a
	very limited set of syscalls working.  Those syscalls tend to be the
	oldest ones (read(2)/write(2), fork(2) family,
	signal(3) handling, exit(3), socket(2) API) hence it is
	easy to emulate because their semantics is shared among all
	UNIX®es, which exist todays.
3. Emulation
3.1. How emulation works in FreeBSD
As stated earlier, FreeBSD supports running binaries from several
	other UNIX®es.  This works because FreeBSD has an abstraction called the
	execution class loader.  This wedges into the execve(2) syscall,
	so when execve(2) is about to execute a binary it examines its
	type.
There are basically two types of binaries in FreeBSD.  Shell-like text
	scripts which are identified by #! as their first
	two characters and normal (typically ELF)
	binaries, which are a representation of a compiled executable object.
	The vast majority (one could say all of them) of binaries in FreeBSD are
	from type ELF.  ELF files contain a header, which specifies the OS ABI
	for this ELF file.  By reading this information, the operating system
	can accurately determine what type of binary the given file is.
Every OS ABI must be registered in the FreeBSD kernel.  This applies
	to the FreeBSD native OS ABI, as well.  So when execve(2) executes a
	binary it iterates through the list of registered APIs and when it
	finds the right one it starts to use the information contained in the
	OS ABI description (its syscall table, errno
	translation table, etc.).  So every time the process calls a syscall,
	it uses its own set of syscalls instead of some global one.  This
	effectively provides a very elegant and easy way of supporting
	execution of various binary formats.
The nature of emulation of different OSes (and also some other
	subsystems) led developers to invite a handler event mechanism.  There
	are various places in the kernel, where a list of event handlers are
	called.  Every subsystem can register an event handler and they are
	called accordingly.  For example, when a process exits there is a
	handler called that possibly cleans up whatever the subsystem needs
	to be cleaned.
Those simple facilities provide basically everything that is needed
	for the emulation infrastructure and in fact these are basically the
	only things necessary to implement the Linux® emulation layer.
3.2. Common primitives in the FreeBSD kernel
Emulation layers need some support from the operating system.  I am
	going to describe some of the supported primitives in the FreeBSD
	operating system.
3.2.1. Locking primitives
Contributed by: Attilio Rao <attilio@FreeBSD.org>
The FreeBSD synchronization primitive set is based on the idea to
	  supply a rather huge number of different primitives in a way that
	  the better one can be used for every particular, appropriate
	  situation.
To a high level point of view you can consider three kinds of
	  synchronization primitives in the FreeBSD kernel:
	atomic operations and memory barriers

	locks

	scheduling barriers



Below there are descriptions for the 3 families.  For every lock,
	  you should really check the linked manpage (where possible) for
	  more detailed explanations.
3.2.1.1. Atomic operations and memory barriers
Atomic operations are implemented through a set of functions
	    performing simple arithmetics on memory operands in an atomic way
	    with respect to external events (interrupts, preemption, etc.).
	    Atomic operations can guarantee atomicity just on small data types
	    (in the magnitude order of the .long.
	    architecture C data type), so should be rarely used directly in the
	    end-level code, if not only for very simple operations (like flag
	    setting in a bitmap, for example).  In fact, it is rather simple
	    and common to write down a wrong semantic based on just atomic
	    operations (usually referred as lock-less).  The FreeBSD kernel offers
	    a way to perform atomic operations in conjunction with a memory
	    barrier.  The memory barriers will guarantee that an atomic
	    operation will happen following some specified ordering with
	    respect to other memory accesses.  For example, if we need that an
	    atomic operation happen just after all other pending writes (in
	    terms of instructions reordering buffers activities) are completed,
	    we need to explicitly use a memory barrier in conjunction to this
	    atomic operation.  So it is simple to understand why memory
	    barriers play a key role for higher-level locks building (just
	    as refcounts, mutexes, etc.).  For a detailed explanatory on atomic
	    operations, please refer to atomic(9).  It is far, however,
	    noting that atomic operations (and memory barriers as well) should
	    ideally only be used for building front-ending locks (as
	    mutexes).
3.2.1.2. Refcounts
Refcounts are interfaces for handling reference counters.
	    They are implemented through atomic operations and are intended to
	    be used just for cases, where the reference counter is the only
	    one thing to be protected, so even something like a spin-mutex is
	    deprecated.  Using the refcount interface for structures, where
	    a mutex is already used is often wrong since we should probably
	    close the reference counter in some already protected paths.  A
	    manpage discussing refcount does not exist currently, just check
	    sys/refcount.h for an overview of the
	    existing API.
3.2.1.3. Locks
FreeBSD kernel has huge classes of locks.  Every lock is defined
	    by some peculiar properties, but probably the most important is the
	    event linked to contesting holders (or in other terms, the
	    behavior of threads unable to acquire the lock).  FreeBSD's locking
	    scheme presents three different behaviors for contenders:
	spinning

	blocking

	sleeping



Note: 
numbers are not casual

3.2.1.4. Spinning locks
Spin locks let waiters to spin until they cannot acquire the
	    lock.  An important matter do deal with is when a thread contests
	    on a spin lock if it is not descheduled.  Since the FreeBSD kernel
	    is preemptive, this exposes spin lock at the risk of deadlocks
	    that can be solved just disabling interrupts while they are
	    acquired.  For this and other reasons (like lack of priority
	    propagation support, poorness in load balancing schemes between
	    CPUs, etc.), spin locks are intended to protect very small paths
	    of code, or ideally not to be used at all if not explicitly
	    requested (explained later).
3.2.1.5. Blocking
Block locks let waiters to be descheduled and blocked until
	    the lock owner does not drop it and wakes up one or more
	    contenders.  In order to avoid starvation issues, blocking locks
	    do priority propagation from the waiters to the owner.  Block
	    locks must be implemented through the turnstile interface and are
	    intended to be the most used kind of locks in the kernel, if no
	    particular conditions are met.
3.2.1.6. Sleeping
Sleep locks let waiters to be descheduled and fall asleep
	    until the lock holder does not drop it and wakes up one or more
	    waiters.  Since sleep locks are intended to protect large paths
	    of code and to cater asynchronous events, they do not do any form
	    of priority propagation.  They must be implemented through the
	    sleepqueue(9) interface.
The order used to acquire locks is very important, not only for
	    the possibility to deadlock due at lock order reversals, but even
	    because lock acquisition should follow specific rules linked to
	    locks natures.  If you give a look at the table above, the
	    practical rule is that if a thread holds a lock of level n (where
	    the level is the number listed close to the kind of lock) it is not
	    allowed to acquire a lock of superior levels, since this would
	    break the specified semantic for a path.  For example, if a thread
	    holds a block lock (level 2), it is allowed to acquire a spin lock
	    (level 1) but not a sleep lock (level 3), since block locks are
	    intended to protect smaller paths than sleep lock (these rules are
	    not about atomic operations or scheduling barriers,
	    however).
This is a list of lock with their respective behaviors:
	spin mutex - spinning - mutex(9)

	sleep mutex - blocking - mutex(9)

	pool mutex - blocking - mtx_pool(9)

	sleep family - sleeping - sleep(9) pause tsleep
		msleep msleep spin msleep rw msleep sx

	condvar - sleeping - condvar(9)

	rwlock - blocking - rwlock(9)

	sxlock - sleeping - sx(9)

	lockmgr - sleeping - lockmgr(9)

	semaphores - sleeping - sema(9)



Among these locks only mutexes, sxlocks, rwlocks and lockmgrs
	    are intended to handle recursion, but currently recursion is only
	    supported by mutexes and lockmgrs.
3.2.1.7. Scheduling barriers
Scheduling barriers are intended to be used in order to drive
	    scheduling of threading.  They consist mainly of three
	    different stubs:
	critical sections (and preemption)

	sched_bind

	sched_pin



Generally, these should be used only in a particular context
	    and even if they can often replace locks, they should be avoided
	    because they do not let the diagnose of simple eventual problems
	    with locking debugging tools (as witness(4)).
3.2.1.8. Critical sections
The FreeBSD kernel has been made preemptive basically to deal with
	    interrupt threads.  In fact, in order to avoid high interrupt
	    latency, time-sharing priority threads can be preempted by
	    interrupt threads (in this way, they do not need to wait to be
	    scheduled as the normal path previews).  Preemption, however,
	    introduces new racing points that need to be handled, as well.
	    Often, in order to deal with preemption, the simplest thing to do
	    is to completely disable it.  A critical section defines a piece of
	    code (borderlined by the pair of functions critical_enter(9)
	    and critical_exit(9), where preemption is guaranteed to not
	    happen (until the protected code is fully executed).  This can
	    often replace a lock effectively but should be used carefully in
	    order to not lose the whole advantage that preemption
	    brings.
3.2.1.9. sched_pin/sched_unpin
Another way to deal with preemption is the
	    sched_pin() interface.  If a piece of code
	    is closed in the sched_pin()  and
	    sched_unpin() pair of functions it is
	    guaranteed that the respective thread, even if it can be preempted,
	    it will always be executed on the same CPU.  Pinning is very
	    effective in the particular case when we have to access at
	    per-cpu datas and we assume other threads will not change those
	    data.  The latter condition will determine a critical section
	    as a too strong condition for our code.
3.2.1.10. sched_bind/sched_unbind
sched_bind is an API used in order to bind
	    a thread to a particular CPU for all the time it executes the code,
	    until a sched_unbind function call does not
	    unbind it.  This feature has a key role in situations where you
	    cannot trust the current state of CPUs (for example, at very early
	    stages of boot), as you want to avoid your thread to migrate on
	    inactive CPUs.  Since sched_bind and
	    sched_unbind manipulate internal scheduler
	    structures, they need to be enclosed in
	    sched_lock acquisition/releasing when
	    used.
3.2.2. Proc structure
Various emulation layers sometimes require some additional
	  per-process data.  It can manage separate structures (a list, a tree
	  etc.) containing these data for every process but this tends to be
	  slow and memory consuming.  To solve this problem the FreeBSD
	  proc structure contains
	  p_emuldata, which is a void pointer to some
	  emulation layer specific data.  This proc entry
	  is protected by the proc mutex.
The FreeBSD proc structure contains a
	  p_sysent entry that identifies, which ABI this
	   process is running.  In fact, it is a pointer to the
	  sysentvec described above.  So by comparing this
	  pointer to the address where the sysentvec
	  structure for the given ABI is stored we can effectively determine
	  whether the process belongs to our emulation layer.  The code
	  typically looks like:
if (__predict_true(p->p_sysent != &elf_Linux®_sysvec))
	  return;
As you can see, we effectively use the
	  __predict_true modifier to collapse the most
	  common case (FreeBSD process) to a simple return operation thus
	  preserving high performance.  This code should be turned into a
	  macro because currently it is not very flexible, i.e. we do not
	  support Linux®64 emulation nor A.OUT Linux® processes
	  on i386.
3.2.3. VFS
The FreeBSD VFS subsystem is very complex but the Linux® emulation
	  layer uses just a small subset via a well defined API.  It can either
	  operate on vnodes or file handlers.  Vnode represents a virtual
	  vnode, i.e. representation of a node in VFS.  Another representation
	  is a file handler, which represents an opened file from the
	  perspective of a process.  A file handler can represent a socket or
	  an ordinary file.  A file handler contains a pointer to its vnode.
	  More then one file handler can point to the same vnode.
3.2.3.1. namei
The namei(9) routine is a central entry point to pathname
	    lookup and translation.  It traverses the path point by point from
	    the starting point to the end point using lookup function, which is
	    internal to VFS.  The namei(9) syscall can cope with symlinks,
	    absolute and relative paths.  When a path is looked up using
	    namei(9) it is inputed to the name cache.  This behavior can
	    be suppressed.  This routine is used all over the kernel and its
	    performance is very critical.
3.2.3.2. vn_fullpath
The vn_fullpath(9) function takes the best effort to
	   traverse VFS name cache and returns a path for a given (locked)
	   vnode.  This process is unreliable but works just fine for the most
	   common cases.  The unreliability is because it relies on VFS cache
	   (it does not traverse the on medium structures), it does not work
	   with hardlinks, etc.  This routine is used in several places in the
	   Linuxulator.
3.2.3.3. Vnode operations
	fgetvp - given a thread and a file
		descriptor number it returns the associated vnode

	vn_lock(9) - locks a vnode

	vn_unlock - unlocks a vnode

	VOP_READDIR(9) - reads a directory referenced by
		a vnode

	VOP_GETATTR(9) - gets attributes of a file or a
		directory referenced by a vnode

	VOP_LOOKUP(9) - looks up a path to a given
		directory

	VOP_OPEN(9) - opens a file referenced by a
		vnode

	VOP_CLOSE(9) - closes a file referenced by a
		vnode

	vput(9) - decrements the use count for a vnode and
		unlocks it

	vrele(9) - decrements the use count for a vnode

	vref(9) - increments the use count for a vnode



3.2.3.4. File handler operations
	fget - given a thread and a file
		descriptor number it returns associated file handler and
		references it

	fdrop - drops a reference to a file
		handler

	fhold - references a file
		handler



4. Linux® emulation layer -MD part
This section deals with implementation of Linux® emulation layer in
      FreeBSD operating system.  It first describes the machine dependent part
      talking about how and where interaction between userland and kernel is
      implemented.  It talks about syscalls, signals, ptrace, traps, stack
      fixup.  This part discusses i386 but it is written generally so other
      architectures should not differ very much.  The next part is the machine
      independent part of the Linuxulator.  This section only covers i386 and ELF
      handling.  A.OUT is obsolete and untested.
4.1. Syscall handling
Syscall handling is mostly written in
	linux_sysvec.c, which covers most of the routines
	pointed out in the sysentvec structure.  When a
	Linux® process running on FreeBSD issues a syscall, the general syscall
	routine calls linux prepsyscall routine for the Linux® ABI.
4.1.1. Linux® prepsyscall
Linux® passes arguments to syscalls via registers (that is why
	  it is limited to 6 parameters on i386) while FreeBSD uses the stack.
	  The Linux® prepsyscall routine must copy parameters from registers
	  to the stack.  The order of the registers is:
	  %ebx, %ecx,
	  %edx, %esi,
	  %edi, %ebp.  The catch is that
	  this is true for only most of the syscalls.
	  Some (most notably clone) uses a different
	  order but it is luckily easy to fix by inserting a dummy parameter
	  in the linux_clone prototype.
4.1.2. Syscall writing
Every syscall implemented in the Linuxulator must have its
	  prototype with various flags in syscalls.master.
	  The form of the file is:
...
	AUE_FORK STD		{ int linux_fork(void); }
...
	AUE_CLOSE NOPROTO	{ int close(int fd); }
...
The first column represents the syscall number.  The second
	  column is for auditing support.  The third column represents the
	  syscall type.  It is either STD,
	  OBSOL, NOPROTO and
	  UNIMPL.  STD is a standard
	  syscall with full prototype and implementation.
	  OBSOL is obsolete and defines just the prototype.
	  NOPROTO means that the syscall is implemented
	  elsewhere so do not prepend ABI prefix, etc.
	  UNIMPL means that the syscall will be
	  substituted with the nosys syscall
	  (a syscall just printing out a message about the syscall not being
	  implemented and returning ENOSYS).
From syscalls.master a script generates
	  three files: linux_syscall.h,
	  linux_proto.h and
	  linux_sysent.c.  The
	  linux_syscall.h contains definitions of syscall
	  names and their numerical value, e.g.:
...
#define LINUX_SYS_linux_fork 2
...
#define LINUX_SYS_close 6
...
The linux_proto.h contains structure
	  definitions of arguments to every syscall, e.g.:
struct linux_fork_args {
  register_t dummy;
};
And finally, linux_sysent.c contains
	  structure describing the system entry table, used to actually
	  dispatch a syscall, e.g.:
{ 0, (sy_call_t *)linux_fork, AUE_FORK, NULL, 0, 0 }, /* 2 = linux_fork */
{ AS(close_args), (sy_call_t *)close, AUE_CLOSE, NULL, 0, 0 }, /* 6 = close */
As you can see linux_fork is implemented
	  in Linuxulator itself so the definition is of STD
	  type and has no argument, which is exhibited by the dummy argument
	  structure.  On the other hand close is just an
	  alias for real FreeBSD close(2) so it has no linux arguments
	  structure associated and in the system entry table it is not prefixed
	  with linux as it calls the real close(2) in the kernel.
4.1.3. Dummy syscalls
The Linux® emulation layer is not complete, as some syscalls are
	  not implemented properly and some are not implemented at all.  The
	  emulation layer employs a facility to mark unimplemented syscalls
	  with the DUMMY macro.  These dummy definitions
	  reside in linux_dummy.c in a form of
	  DUMMY(syscall);, which is then translated to
	  various syscall auxiliary files and the implementation consists
	  of printing a message saying that this syscall is not implemented.
	  The UNIMPL prototype is not used because we want
	  to be able to identify the name of the syscall that was called in
	  order to know what syscalls are more important to implement.
4.2. Signal handling
Signal handling is done generally in the FreeBSD kernel for all
	binary compatibilities with a call to a compat-dependent layer.
	Linux® compatibility layer defines
	linux_sendsig routine for this purpose.
4.2.1. Linux® sendsig
This routine first checks whether the signal has been installed
	  with a SA_SIGINFO in which case it calls
	  linux_rt_sendsig routine instead.  Furthermore,
	   it allocates (or reuses an already existing) signal handle context,
	  then it builds a list of arguments for the signal handler.  It
	  translates the signal number based on the signal translation table,
	  assigns a handler, translates sigset.  Then it saves context for the
	  sigreturn routine (various registers, translated
	  trap number and signal mask).  Finally, it copies out the signal
	  context to the userspace and prepares context for the actual
	  signal handler to run.
4.2.2. linux_rt_sendsig
This routine is similar to linux_sendsig
	  just the signal context preparation is different.  It adds
	  siginfo, ucontext, and some
	  POSIX® parts.  It might be worth considering whether those two
	  functions could not be merged with a benefit of less code duplication
	  and possibly even faster execution.
4.2.3. linux_sigreturn
This syscall is used for return from the signal handler.  It does
	  some security checks and restores the original process context.  It
	  also unmasks the signal in process signal mask.
4.3. Ptrace
Many UNIX® derivates implement the ptrace(2) syscall in order
	to allow various tracking and debugging features.  This facility
	enables the tracing process to obtain various information about the
	traced process, like register dumps, any memory from the process
	address space, etc. and also to trace the process like in stepping an
	instruction or between system entries (syscalls and traps).
	ptrace(2) also lets you set various information in the traced
	process (registers etc.).  ptrace(2) is a UNIX®-wide standard
	implemented in most UNIX®es around the world.
Linux® emulation in FreeBSD implements the ptrace(2) facility
	in linux_ptrace.c.  The routines for converting
	registers between Linux® and FreeBSD and the actual ptrace(2)
	syscall emulation syscall.  The syscall is a long switch block that
	implements its counterpart in FreeBSD for every ptrace(2) command.
	The ptrace(2) commands are mostly equal between Linux® and FreeBSD
	so usually just a small modification is needed.  For example,
	PT_GETREGS in Linux® operates on direct data while
	FreeBSD uses a pointer to the data so after performing a (native)
	ptrace(2) syscall, a copyout must be done to preserve Linux®
	semantics.
The ptrace(2) implementation in Linuxulator has some known
	weaknesses.  There have been panics seen when using
	strace (which is a ptrace(2) consumer) in the
	Linuxulator environment.  Also PT_SYSCALL is not
	implemented.
4.4. Traps
Whenever a Linux® process running in the emulation layer traps
	the trap itself is handled transparently with the only exception of
	the trap translation.  Linux® and FreeBSD differs in opinion on what a
	trap is so this is dealt with here. The code is actually very
	short:
static int
translate_traps(int signal, int trap_code)
{

  if (signal != SIGBUS)
    return signal;

  switch (trap_code) {

    case T_PROTFLT:
    case T_TSSFLT:
    case T_DOUBLEFLT:
    case T_PAGEFLT:
      return SIGSEGV;

    default:
      return signal;
  }
}
4.5. Stack fixup
The RTLD run-time link-editor expects so called AUX tags on stack
	during an execve so a fixup must be done to ensure
	this.  Of course, every RTLD system is different so the emulation layer
	must provide its own stack fixup routine to do this.  So does
	Linuxulator.  The elf_linux_fixup simply copies
	out AUX tags to the stack and adjusts the stack of the user space
	process to point right after those tags.  So RTLD works in a
	smart way.
4.6. A.OUT support
The Linux® emulation layer on i386 also supports Linux® A.OUT
	binaries.  Pretty much everything described in the previous sections
	must be implemented for A.OUT support (beside traps translation and
	signals sending).  The support for A.OUT binaries is no longer
	maintained, especially the 2.6 emulation does not work with it but
	this does not cause any problem, as the linux-base in ports probably
	do not support A.OUT binaries at all.  This support will probably be
	removed in future.  Most of the stuff necessary for loading Linux®
	A.OUT binaries is in imgact_linux.c file.
5. Linux® emulation layer -MI part
This section talks about machine independent part of the
      Linuxulator.  It covers the emulation infrastructure needed for Linux®
      2.6 emulation, the thread local storage (TLS) implementation (on i386)
      and futexes.  Then we talk briefly about some syscalls.
5.1. Description of NPTL
One of the major areas of progress in development of Linux® 2.6
	was threading.  Prior to 2.6, the Linux® threading support was
	implemented in the linuxthreads library.
	The library was a partial implementation of POSIX® threading.  The
	threading was implemented using separate processes for each thread
	using the clone syscall to let them share the
	address space (and other things).  The main weaknesses of this
	approach was that every thread had a different PID, signal handling
	was broken (from the pthreads perspective), etc.  Also the performance
	was not very good (use of SIGUSR signals for
	threads synchronization, kernel resource consumption, etc.) so to
	overcome these problems a new threading system was developed and
	named NPTL.
The NPTL library focused on two things but a third thing came
	along so it is usually considered a part of NPTL.  Those two things
	were embedding of threads into a process structure and futexes.  The
	additional third thing was TLS, which is not directly required by NPTL
	but the whole NPTL userland library depends on it.  Those improvements
	yielded in much improved performance and standards conformance.  NPTL
	is a standard threading library in Linux® systems these days.
The FreeBSD Linuxulator implementation approaches the NPTL in three
	main areas.  The TLS, futexes and PID mangling, which is meant to
	simulate the Linux® threads.  Further sections describe each of these
	areas.
5.2. Linux® 2.6 emulation infrastructure
These sections deal with the way Linux® threads are managed and
	how we simulate that in FreeBSD.
5.2.1. Runtime determining of 2.6 emulation
The Linux® emulation layer in FreeBSD supports runtime setting of
	  the emulated version.  This is done via sysctl(8), namely
	  compat.linux.osrelease, which is set to 2.4.2 by
	  default (as of April 2007) and with all Linux® versions up to 2.6
	  it just determined what uname(1) outputs.  It is different with
	  2.6 emulation where setting this sysctl(8) affects runtime
	  behavior of the emulation layer.  When set to 2.6.x it sets the
	  value of linux_use_linux26 while setting to
	  something else keeps it unset.  This variable (plus per-prison
	  variables of the very same kind) determines whether 2.6
	  infrastructure (mainly PID mangling) is used in the code or not.
	  The version setting is done system-wide and this affects all Linux®
	  processes.  The sysctl(8) should not be changed when running any
	  Linux® binary as it might harm things.
5.2.2. Linux® processes and thread identifiers
The semantics of Linux® threading are a little confusing and
	  uses entirely different nomenclature to FreeBSD.  A process in
	  Linux® consists of a struct task embedding two
	  identifier fields - PID and TGID.  PID is not
	  a process ID but it is a thread ID.  The TGID identifies a thread
	  group in other words a process.  For single-threaded process the
	  PID equals the TGID.
The thread in NPTL is just an ordinary process that happens to
	  have TGID not equal to PID and have a group leader not equal to
	  itself (and shared VM etc. of course).  Everything else happens in
	  the same way as to an ordinary process.  There is no separation of
	  a shared status to some external structure like in FreeBSD.  This
	  creates some duplication of information and possible data
	  inconsistency.  The Linux® kernel seems to use task -> group
	  information in some places and task information elsewhere and it is
	  really not very consistent and looks error-prone.
Every NPTL thread is created by a call to the
	  clone syscall with a specific set of flags
	  (more in the next subsection).  The NPTL implements strict
	  1:1 threading.
In FreeBSD we emulate NPTL threads with ordinary FreeBSD processes that
	  share VM space, etc. and the PID gymnastic is just mimicked in the
	  emulation specific structure attached to the process.  The
	  structure attached to the process looks like:
struct linux_emuldata {
  pid_t pid;

  int *child_set_tid; /* in clone(): Child.s TID to set on clone */
  int *child_clear_tid;/* in clone(): Child.s TID to clear on exit */

  struct linux_emuldata_shared *shared;

  int pdeath_signal; /* parent death signal */

  LIST_ENTRY(linux_emuldata) threads; /* list of linux threads */
};
The PID is used to identify the FreeBSD process that attaches this
	  structure.  The child_se_tid and
	  child_clear_tid are used for TID address
	  copyout when a process exits and is created.  The
	  shared pointer points to a structure shared
	  among threads.  The pdeath_signal variable
	  identifies the parent death signal  and the
	  threads pointer is used to link this structure
	  to the list of threads.  The linux_emuldata_shared
	  structure looks like:
struct linux_emuldata_shared {

  int refs;

  pid_t group_pid;

  LIST_HEAD(, linux_emuldata) threads; /* head of list of linux threads */
};
The refs is a reference counter being used
	  to determine when we can free the structure to avoid memory leaks.
	  The group_pid is to identify PID ( = TGID) of the
	  whole process ( = thread group).  The threads
	  pointer is the head of the list of threads in the process.
The linux_emuldata structure can be obtained
	  from the process using em_find.  The prototype
	  of the function is:
struct linux_emuldata *em_find(struct proc *, int locked);
Here, proc is the process we want the emuldata
	  structure from and the locked parameter determines whether we want to
	  lock or not.  The accepted values are EMUL_DOLOCK
	  and EMUL_DOUNLOCK.  More about locking
	  later.
5.2.3. PID mangling
Because of the described different view knowing what a process
	  ID and thread ID is between FreeBSD and Linux® we have to translate
	  the view somehow.  We do it by PID mangling.  This means that we
	  fake what a PID (=TGID) and TID (=PID) is between kernel and
	  userland.  The rule of thumb is that in kernel (in Linuxulator)
	  PID = PID and TGID = shared -> group pid and to userland we
	  present PID = shared -> group_pid and
	  TID = proc -> p_pid.
	  The PID member of linux_emuldata structure is
	  a FreeBSD PID.
The above affects mainly getpid, getppid, gettid syscalls.  Where
	  we use PID/TGID respectively.  In copyout of TIDs in
	  child_clear_tid and
	  child_set_tid we copy out FreeBSD PID.
5.2.4. Clone syscall
The clone syscall is the way threads are
	  created in Linux®.  The syscall prototype looks like this:
int linux_clone(l_int flags, void *stack, void *parent_tidptr, int dummy,
void * child_tidptr);
The flags parameter tells the syscall how
	  exactly the processes should be cloned.  As described above, Linux®
	  can create processes sharing various things independently, for
	  example two processes can share file descriptors but not VM, etc.
	  Last byte of the flags parameter is the exit
	  signal of the newly created process.  The stack
	  parameter if non-NULL tells, where the thread
	  stack is and if it is NULL we are supposed to
	  copy-on-write the calling process stack (i.e. do what normal
	  fork(2) routine does).  The parent_tidptr
	  parameter is used as an address for copying out process PID (i.e.
	  thread id) once the process is sufficiently instantiated but is
	  not runnable yet.  The dummy parameter is here
	  because of the very strange calling convention of this syscall on
	  i386.  It uses the registers directly and does not let the compiler
	  do it what results in the need of a dummy syscall.  The
	  child_tidptr parameter is used as an address
	  for copying out PID once the process has finished forking and when
	  the process exits.
The syscall itself proceeds by setting corresponding flags
	  depending on the flags passed in.  For example,
	  CLONE_VM maps to RFMEM (sharing of VM), etc.
	  The only nit here is CLONE_FS and
	  CLONE_FILES because FreeBSD does not allow setting
	  this separately so we fake it by not setting RFFDG (copying of fd
	  table and other fs information) if either of these is defined.  This
	  does not cause any problems, because those flags are always set
	  together.  After setting the flags the process is forked using
	  the internal fork1 routine, the process is
	  instrumented not to be put on a run queue, i.e. not to be set
	  runnable.  After the forking is done we possibly reparent the newly
	  created process to emulate CLONE_PARENT semantics.
	  Next part is creating the emulation data.  Threads in Linux® does
	  not signal their parents so we set exit signal to be 0 to disable
	  this.  After that setting of child_set_tid and
	  child_clear_tid is performed enabling the
	  functionality later in the code.  At this point we copy out the PID
	  to the address specified by parent_tidptr.  The
	  setting of process stack is done by simply rewriting thread frame
	  %esp register (%rsp on amd64).
	  Next part is setting up TLS for the newly created process.  After
	  this vfork(2) semantics might be emulated and finally the newly
	  created process is put on a run queue and copying out its PID to the
	  parent process via clone return value is
	  done.
The clone syscall is able and in fact is
	  used for emulating classic fork(2) and vfork(2) syscalls.
	  Newer glibc in a case of 2.6 kernel uses clone
	  to implement fork(2) and vfork(2) syscalls.
5.2.5. Locking
The locking is implemented to be per-subsystem because we do not
	  expect a lot of contention on these.  There are two locks:
	  emul_lock used to protect manipulating of
	  linux_emuldata and
	  emul_shared_lock used to manipulate
	  linux_emuldata_shared.  The
	  emul_lock is a nonsleepable blocking mutex while
	  emul_shared_lock is a sleepable blocking
	  sx_lock.  Because of the per-subsystem locking we
	  can coalesce some locks and that is why the em find offers the
	  non-locking access.
5.3. TLS
This section deals with TLS also known as thread local
	storage.
5.3.1. Introduction to threading
Threads in computer science are entities within a process that
	  can be scheduled independently from each other.  The threads in the
	  process share process wide data (file descriptors, etc.) but also
	  have their own stack for their own data.  Sometimes there is a need
	  for process-wide data specific to a given thread.  Imagine a name of
	  the thread in execution or something like that.  The traditional
	  UNIX® threading API, pthreads provides
	  a way to do it via pthread_key_create(3),
	  pthread_setspecific(3) and pthread_getspecific(3) where a
	  thread can create a key to the thread local data and using
	  pthread_getspecific(3) or pthread_getspecific(3) to
	  manipulate those data.  You can easily see that this is not the most
	  comfortable way this could be accomplished.  So various producers of
	  C/C++ compilers introduced a better way.  They defined a new modifier
	  keyword thread that specifies that a variable is thread specific.  A
	  new method of accessing such variables was developed as well (at
	  least on i386).  The pthreads method tends
	  to be implemented in userspace as a trivial lookup table.  The
	  performance of such a solution is not very good.  So the new method
	  uses (on i386) segment registers to address a segment, where TLS area
	  is stored so the actual accessing of a thread variable is just
	  appending the segment register to the address thus addressing via it.
	  The segment registers are usually %gs and
	  %fs acting like segment selectors.  Every thread
	  has its own area where the thread local data are stored and the
	  segment must be loaded on every context switch.  This method is very
	  fast and used almost exclusively in the whole i386 UNIX® world.
	  Both FreeBSD and Linux® implement this approach and it yields very good
	  results.  The only drawback is the need to reload the segment on
	  every context switch which can slowdown context switches.  FreeBSD tries
	  to avoid this overhead by using only 1 segment descriptor for this
	  while Linux® uses 3.  Interesting thing is that almost nothing uses
	  more than 1 descriptor (only Wine seems to
	  use 2) so Linux® pays this unnecessary price for context
	  switches.
5.3.2. Segments on i386
The i386 architecture implements the so called segments.  A
	  segment is a description of an area of memory.  The base address
	  (bottom) of the memory area, the end of it (ceiling), type,
	  protection, etc.  The memory described by a segment can be accessed
	  using segment selector registers (%cs,
	  %ds, %ss,
	  %es, %fs,
	  %gs).  For example let us suppose we have a
	  segment which base address is 0x1234 and length and this code:
mov %edx,%gs:0x10
This will load the content of the %edx
	  register into memory location 0x1244.  Some segment registers have
	  a special use, for example %cs is used for code
	  segment and %ss is used for stack segment but
	  %fs and %gs are generally
	  unused.  Segments are either stored in a global GDT table or in a
	  local LDT table.  LDT is accessed via an entry in the GDT.  The
	  LDT can store more types of segments.  LDT can be per process.
	  Both tables define up to 8191 entries.
5.3.3. Implementation on Linux® i386
There are two main ways of setting up TLS in Linux®.  It can be
	  set when cloning a process using the clone
	  syscall or it can call set_thread_area.  When a
	  process passes CLONE_SETTLS flag to
	  clone, the kernel expects the memory pointed to
	  by the %esi register a Linux® user space
	  representation of a segment, which gets translated to the machine
	  representation of a segment and loaded into a GDT slot.  The
	  GDT slot can be specified with a number or -1 can be used meaning
	  that the system itself should choose the first free slot.  In
	  practice, the vast majority of programs use only one TLS entry and
	  does not care about the number of the entry.  We exploit this in the
	  emulation and in fact depend on it.
5.3.4. Emulation of Linux® TLS
5.3.4.1. i386
Loading of TLS for the current thread happens by calling
	    set_thread_area while loading TLS for a
	    second process in clone is done in the
	    separate block in clone.  Those two functions
	    are very similar.  The only difference being the actual loading of
	    the GDT segment, which happens on the next context switch for the
	    newly created process while set_thread_area
	    must load this directly.  The code basically does this.  It copies
	    the Linux® form segment descriptor from the userland.  The code
	    checks for the number of the descriptor but because this differs
	    between FreeBSD and Linux® we fake it a little.  We only support
	    indexes of 6, 3 and -1.  The 6 is genuine Linux® number, 3 is
	    genuine FreeBSD one and -1 means autoselection.  Then we set the
	    descriptor number to constant 3 and copy out this to the
	    userspace.  We rely on the userspace process using the number from
	    the descriptor but this works most of the time (have never seen a
	    case where this did not work) as the userspace process typically
	    passes in 1.  Then we convert the descriptor from the Linux® form
	    to a machine dependant form (i.e. operating system independent
	    form) and copy this to the FreeBSD defined segment descriptor.
	    Finally we can load it.  We assign the descriptor to threads PCB
	    (process control block) and load the %gs
	    segment using load_gs.  This loading must be
	    done in a critical section so that nothing can interrupt us.
	    The CLONE_SETTLS case works exactly like this
	    just the loading using load_gs is not
	    performed.  The segment used for this (segment number 3) is
	    shared for this use between FreeBSD processes and Linux® processes
	    so the Linux® emulation layer does not add any overhead over
	    plain FreeBSD.
5.3.4.2. amd64
The amd64 implementation is similar to the i386 one but there
	    was initially no 32bit segment descriptor used for this purpose
	    (hence not even native 32bit TLS users worked) so we had to add
	    such a segment and implement its loading on every context switch
	    (when a flag signaling use of 32bit is set).  Apart from this the
	    TLS loading is exactly the same just the segment numbers are
	    different and the descriptor format and the loading differs
	    slightly.
5.4. Futexes
5.4.1. Introduction to synchronization
Threads need some kind of synchronization and POSIX® provides
	  some of them: mutexes for mutual exclusion, read-write locks for
	  mutual exclusion with biased ratio of reads and writes and condition
	  variables for signaling a status change.  It is interesting to note
	  that POSIX® threading API lacks support for semaphores.  Those
	  synchronization routines implementations are heavily dependant on
	  the type threading support we have.  In pure 1:M (userspace) model
	  the implementation can be solely done in userspace and thus be very
	  fast (the condition variables will probably end up being implemented
	  using signals, i.e. not fast) and simple.  In 1:1 model, the
	  situation is also quite clear - the threads must be synchronized
	  using kernel facilities (which is very slow because a syscall must be
	  performed).  The mixed M:N scenario just combines the first and
	  second approach or rely solely on kernel.  Threads synchronization is
	  a vital part of thread-enabled programming and its performance can
	  affect resulting program a lot.  Recent benchmarks on FreeBSD operating
	  system showed that an improved sx_lock implementation yielded 40%
	  speedup in ZFS (a heavy sx user), this
	  is in-kernel stuff but it shows clearly how important the performance
	  of synchronization primitives is.
Threaded programs should be written with as little contention on
	  locks as possible.  Otherwise, instead of doing useful work the
	  thread just waits on a lock.  Because of this, the most well written
	  threaded programs show little locks contention.
5.4.2. Futexes introduction
Linux® implements 1:1 threading, i.e. it has to use in-kernel
	  synchronization primitives.  As stated earlier, well written threaded
	  programs have little lock contention.  So a typical sequence
	  could be performed as two atomic increase/decrease mutex reference
	  counter, which is very fast, as presented by the following
	  example:
pthread_mutex_lock(&mutex);
....
pthread_mutex_unlock(&mutex);
1:1 threading forces us to perform two syscalls for those mutex
	  calls, which is very slow.
The solution Linux® 2.6 implements is called futexes.
	  Futexes implement the check for contention in userspace and call
	  kernel primitives only in a case of contention.  Thus the typical
	  case takes place without any kernel intervention.  This yields
	  reasonably fast and flexible synchronization primitives
	  implementation.
5.4.3. Futex API
The futex syscall looks like this:
int futex(void *uaddr, int op, int val, struct timespec *timeout, void *uaddr2, int val3);
In this example uaddr is an address of the
	  mutex in userspace, op is an operation we are
	  about to perform and the other parameters have per-operation
	  meaning.
Futexes implement the following operations:
	FUTEX_WAIT

	FUTEX_WAKE

	FUTEX_FD

	FUTEX_REQUEUE

	FUTEX_CMP_REQUEUE

	FUTEX_WAKE_OP



5.4.3.1. FUTEX_WAIT
This operation verifies that on address
	    uaddr the value val
	    is written.  If not, EWOULDBLOCK is
	    returned, otherwise the thread is queued on the futex and gets
	    suspended.  If the argument timeout is
	    non-zero it specifies the maximum time for the sleeping,
	    otherwise the sleeping is infinite.
5.4.3.2. FUTEX_WAKE
This operation takes a futex at uaddr
	    and wakes up val first futexes queued
	    on this futex.
5.4.3.3. FUTEX_FD
This operations associates a file descriptor with a given
	    futex.
5.4.3.4. FUTEX_REQUEUE
This operation takes val threads
	    queued on futex at uaddr, wakes them up,
	    and takes val2 next threads and requeues them
	    on futex at uaddr2.
5.4.3.5. FUTEX_CMP_REQUEUE
This operation does the same as
	    FUTEX_REQUEUE but it checks that
	    val3 equals to val
	    first.
5.4.3.6. FUTEX_WAKE_OP
This operation performs an atomic operation on
	    val3 (which contains coded some other value)
	    and uaddr.  Then it wakes up
	    val threads on futex at
	    uaddr and if the atomic operation returned a
	    positive number it wakes up val2 threads on
	    futex at uaddr2.
The operations implemented in
	    FUTEX_WAKE_OP:
	FUTEX_OP_SET

	FUTEX_OP_ADD

	FUTEX_OP_OR

	FUTEX_OP_AND

	FUTEX_OP_XOR



Note: 
There is no val2 parameter in the
	      futex prototype.  The val2 is taken from the
	      struct timespec *timeout parameter
	      for operations FUTEX_REQUEUE,
	      FUTEX_CMP_REQUEUE and
	      FUTEX_WAKE_OP.

5.4.4. Futex emulation in FreeBSD
The futex emulation in FreeBSD is taken from NetBSD and further
	  extended by us.  It is placed in linux_futex.c
	  and linux_futex.h files.  The
	  futex structure looks like:
struct futex {
  void *f_uaddr;
  int f_refcount;

  LIST_ENTRY(futex) f_list;

  TAILQ_HEAD(lf_waiting_paroc, waiting_proc) f_waiting_proc;
};
And the structure waiting_proc is:
struct waiting_proc {

  struct thread *wp_t;

  struct futex *wp_new_futex;

  TAILQ_ENTRY(waiting_proc) wp_list;
};
5.4.4.1. futex_get / futex_put
A futex is obtained using the futex_get
	    function, which searches a linear list of futexes and returns the
	    found one or creates a new futex.  When releasing a futex from the
	    use we call the futex_put function, which
	    decreases a reference counter of the futex and if the refcount
	    reaches zero it is released.
5.4.4.2. futex_sleep
When a futex queues a thread for sleeping it creates a
	    working_proc structure and puts this structure
	    to the list inside the futex structure then it just performs a
	    tsleep(9) to suspend the thread.  The sleep can be timed out.
	    After tsleep(9) returns (the thread was woken up or it timed
	    out) the working_proc structure is removed
	    from the list and is destroyed.  All this is done in the
	    futex_sleep function.  If we got woken up
	    from futex_wake we have
	    wp_new_futex set so we sleep on it.  This way
	    the actual requeueing is done in this function.
5.4.4.3. futex_wake
Waking up a thread sleeping on a futex is performed in the
	    futex_wake function.  First in this function
	    we mimic the strange Linux® behavior, where it wakes up N threads
	    for all operations, the only exception is that the REQUEUE
	    operations are performed on N+1 threads.  But this usually does not
	    make any difference as we are waking up all threads.  Next in the
	    function in the loop we wake up n threads, after this we check if
	    there is a new futex for requeueing.  If so, we requeue up to n2
	    threads on the new futex.  This cooperates with
	    futex_sleep.
5.4.4.4. futex_wake_op
The FUTEX_WAKE_OP operation is quite
	    complicated.  First we obtain two futexes at addresses
	    uaddr and uaddr2 then we
	    perform the atomic operation using val3 and
	    uaddr2.  Then val waiters
	    on the first futex is woken up and if the atomic operation
	    condition holds we wake up val2 (i.e.
	    timeout) waiter on the second futex.
5.4.4.5. futex atomic operation
The atomic operation takes two parameters
	    encoded_op and uaddr.
	    The encoded operation encodes the operation itself,
	    comparing value, operation argument, and comparing argument.
	    The pseudocode for the operation is like this one:
oldval = *uaddr2
*uaddr2 = oldval OP oparg
And this is done atomically.  First a copying in of the number
	    at uaddr is performed and the operation is
	    done.  The code handles page faults and if no page fault occurs
	    oldval is compared to
	    cmparg argument with cmp comparator.
5.4.4.6. Futex locking
Futex implementation uses two lock lists protecting
	    sx_lock and global locks (either Giant
	    or another sx_lock).  Every operation is
	    performed locked from the start to the very end.
5.5. Various syscalls implementation
In this section I am going to describe some smaller syscalls that
	are worth mentioning because their implementation is not obvious or
	those syscalls are interesting from other point of view.
5.5.1. *at family of syscalls
During development of Linux® 2.6.16 kernel, the *at syscalls
	  were added.  Those syscalls (openat for example)
	  work exactly like their at-less counterparts with the slight
	  exception of the dirfd parameter.  This
	  parameter changes where the given file, on which the syscall is to be
	  performed, is.  When the filename parameter is
	  absolute dirfd is ignored but when the path to
	  the file is relative, it comes to the play.  The
	  dirfd parameter is a directory relative to which
	  the relative pathname is checked.  The dirfd
	  parameter is a file descriptor of some directory or
	  AT_FDCWD.  So for example the
	  openat syscall can be like this:
file descriptor 123 = /tmp/foo/, current working directory = /tmp/

openat(123, /tmp/bah\, flags, mode)	/* opens /tmp/bah */
openat(123, bah\, flags, mode)		/* opens /tmp/foo/bah */
openat(AT_FDWCWD, bah\, flags, mode)	/* opens /tmp/bah */
openat(stdio, bah\, flags, mode)	/* returns error because stdio is not a directory */
This infrastructure is necessary to avoid races when opening
	  files outside the working directory.  Imagine that a process consists
	  of two threads, thread A and thread B.  Thread A
	  issues open(./tmp/foo/bah., flags, mode) and
	  before returning it gets preempted and thread B runs.
	  Thread B does not care about the needs of thread A and
	  renames or removes /tmp/foo/.  We got a race.
	  To avoid this we can open /tmp/foo and use it
	  as dirfd for openat
	  syscall.  This also enables user to implement per-thread
	  working directories.
Linux® family of *at syscalls contains:
	  linux_openat,
	  linux_mkdirat,
	  linux_mknodat,
	  linux_fchownat,
	  linux_futimesat,
	  linux_fstatat64,
	  linux_unlinkat,
	  linux_renameat,
	  linux_linkat,
	  linux_symlinkat,
	  linux_readlinkat,
	  linux_fchmodat and
	  linux_faccessat.  All these are implemented
	  using the modified namei(9) routine and simple
	  wrapping layer.
5.5.1.1. Implementation
The implementation is done by altering the
	     namei(9) routine (described above) to take
	     additional parameter dirfd in its
	     nameidata structure, which specifies the
	     starting point of the pathname lookup instead of using the
	     current working directory every time.  The resolution of
	     dirfd from file descriptor number to a
	     vnode is done in native *at syscalls.  When
	     dirfd is AT_FDCWD the
	     dvp entry in nameidata
	     structure is NULL but when
	     dirfd is a different number we obtain a
	     file for this file descriptor, check whether this file
	     is valid and if there is vnode attached to it then we get a vnode.
	     Then we check this vnode for being a directory.  In the actual
	     namei(9) routine we simply substitute the
	     dvp vnode for dp variable
	     in the namei(9) function, which determines the
	     starting point.  The namei(9) is not used
	     directly but via a trace of different functions on various
	     levels.  For example the openat goes like
	     this:
openat() --> kern_openat() --> vn_open() -> namei()
For this reason kern_open and
	    vn_open must be altered to incorporate
	    the additional dirfd parameter.  No compat
	    layer is created for those because there are not many users of
	    this and the users can be easily converted.  This general
	    implementation enables FreeBSD to implement their own *at syscalls.
	    This is being discussed right now.
5.5.2. Ioctl
The ioctl interface is quite fragile due to its generality.
	  We have to bear in mind that devices differ between Linux® and FreeBSD
	  so some care must be applied to do ioctl emulation work right.  The
	  ioctl handling is implemented in linux_ioctl.c,
	  where linux_ioctl function is defined.  This
	  function simply iterates over sets of ioctl handlers to find a
	  handler that implements a given command.  The ioctl syscall has three
	  parameters, the file descriptor, command and an argument.  The
	  command is a 16-bit number, which in theory is divided into high
	  8 bits determining class of the ioctl command and low
	  8 bits, which are the actual command within the given set.
	  The emulation takes advantage of this division.  We implement
	  handlers for each set, like sound_handler
	  or disk_handler.  Each handler has a maximum
	  command and a minimum command defined, which is used for determining
	  what handler is used.  There are slight problems with this approach
	  because Linux® does not use the set division consistently so
	  sometimes ioctls for a different set are inside a set they should
	  not belong to (SCSI generic ioctls inside cdrom set, etc.).  FreeBSD
	  currently does not implement many Linux® ioctls (compared to
	  NetBSD, for example) but the plan is to port those from NetBSD.
	  The trend is to use Linux® ioctls even in the native FreeBSD drivers
	  because of the easy porting of applications.
5.5.3. Debugging
Every syscall should be debuggable.  For this purpose we
	  introduce a small infrastructure.  We have the ldebug facility, which
	  tells whether a given syscall should be debugged (settable via a
	  sysctl).  For printing we have LMSG and ARGS macros.  Those are used
	  for altering a printable string for uniform debugging messages.
6. Conclusion
6.1. Results
As of April 2007 the Linux® emulation layer is capable of
	emulating the Linux® 2.6.16 kernel quite well.  The remaining
	problems concern futexes, unfinished *at family of syscalls,
	problematic signals delivery, missing epoll and
	inotify and probably some bugs we have not
	discovered yet.  Despite this we are capable of running basically all
	the Linux® programs included in FreeBSD Ports Collection with
	Fedora Core 4 at 2.6.16 and there are some rudimentary
	reports of success with Fedora Core 6 at 2.6.16.  The
	Fedora Core 6	linux_base was recently committed enabling
	some further testing of the emulation layer and giving us some more
	hints where we should put our effort in implementing missing
	stuff.
We are able to run the most used applications like
	www/linux-firefox,
	www/linux-opera,
	net-im/skype and some games from
	the Ports Collection.  Some of the programs exhibit bad behavior
	under 2.6 emulation but this is currently under investigation and
	hopefully will be fixed soon.  The only big application that is
	known not to work is the Linux® Java™ Development Kit and this is
	because of the requirement of epoll
	facility which is not directly related to the Linux®
	kernel 2.6.
We hope to enable 2.6.16 emulation by default some time after
	FreeBSD 7.0 is released at least to expose the 2.6 emulation parts for
	some wider testing.  Once this is done we can switch to
	Fedora Core 6 linux_base, which is the ultimate plan.
6.2. Future work
Future work should focus on fixing the remaining issues with
	futexes, implement the rest of the *at family of syscalls, fix the
	signal delivery and possibly implement the epoll
	and inotify facilities.
We hope to be able to run the most important programs flawlessly
	soon, so we will be able to switch to the 2.6 emulation by default and
	make the Fedora Core 6 the default linux_base because our
	currently used Fedora Core 4 is not supported any
	more.
The other possible goal is to share our code with NetBSD and
	DragonflyBSD.  NetBSD has some support for 2.6 emulation but its far
	from finished and not really tested.  DragonflyBSD has expressed some
	interest in porting the 2.6 improvements.
Generally, as Linux® develops we would like to keep up with their
	development, implementing newly added syscalls.  Splice comes to mind
	first.  Some already implemented syscalls are also heavily crippled,
	for example mremap and others.  Some performance
	improvements can also be made, finer grained locking and others.
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