
Practical rc.d scripting in BSD
Yar Tikhiy <yar@FreeBSD.org>

Revision: 44709

Copyright © 2005, 2006, 2012 The FreeBSD Project

FreeBSD is a registered trademark of the FreeBSD Foundation.

NetBSD is a registered trademark of the NetBSD Foundation.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this document, and the FreeBSD
Project was aware of the trademark claim, the designations have been followed by the “™” or
the “®” symbol.

2014-04-29 21:39:27 by wblock.

Abstract
Beginners may nd it difficult to relate the facts from the formal documentation on the BSD
rc.d framework with the practical tasks of rc.d scripting. In this article, we consider a few
typical cases of increasing complexity, show rc.d features suited for each case, and discuss
how they work. Such an examination should provide reference points for further study of the
design and efficient application of rc.d.

Table of Contents
1. Introduction . 1
2. Outlining the task . 2
3. A dummy script . 2
4. A configurable dummy script . 5
5. Startup and shutdown of a simple daemon . 6
6. Startup and shutdown of an advanced daemon . 7
7. Connecting a script to the rc.d framework . 11
8. Giving more flexibility to an rc.d script . 14
9. Further reading . 15

1. Introduction
The historical BSD had a monolithic startup script, /etc/rc . It was invoked by init(8) at system boot time and
performed all userland tasks required for multi-user operation: checking and mounting le systems, setting up the
network, starting daemons, and so on. The precise list of tasks was not the same in every system; admins needed
to customize it. With few exceptions, /etc/rc had to be modified, and true hackers liked it.

The real problem with the monolithic approach was that it provided no control over the individual components
started from /etc/rc . For instance, /etc/rc could not restart a single daemon. The system admin had to nd the
daemon process by hand, kill it, wait until it actually exited, then browse through /etc/rc for the ags, and finally
type the full command line to start the daemon again. The task would become even more difficult and prone to
errors if the service to restart consisted of more than one daemon or demanded additional actions. In a few words,
the single script failed to fulfil what scripts are for: to make the system admin's life easier.

Later there was an attempt to split out some parts of /etc/rc for the sake of starting the most important subsys-
tems separately. The notorious example was /etc/netstart to bring up networking. It did allow for accessing
the network from single-user mode, but it did not integrate well into the automatic startup process because parts
of its code needed to interleave with actions essentially unrelated to networking. That was why /etc/netstart

mailto:yar@FreeBSD.org
https://svnweb.freebsd.org/changeset/doc/44709
https://www.FreeBSD.org/cgi/man.cgi?query=init&sektion=8&manpath=freebsd-release-ports

Outlining the task

mutated into /etc/rc.network . The latter was no longer an ordinary script; it comprised of large, tangled sh(1)
functions called from /etc/rc at different stages of system startup. However, as the startup tasks grew diverse and
sophisticated, the “quasi-modular” approach became even more of a drag than the monolithic /etc/rc had been.

Without a clean and well-designed framework, the startup scripts had to bend over backwards to satisfy the needs
of rapidly developing BSD-based operating systems. It became obvious at last that more steps are necessary on
the way to a ne-grained and extensible rc system. Thus BSD rc.d was born. Its acknowledged fathers were Luke
Mewburn and the NetBSD community. Later it was imported into FreeBSD. Its name refers to the location of system
scripts for individual services, which is in /etc/rc.d . Soon we will learn about more components of the rc.d
system and see how the individual scripts are invoked.

The basic ideas behind BSD rc.d are ne modularity and code reuse. Fine modularity means that each basic “service”
such as a system daemon or primitive startup task gets its own sh(1) script able to start the service, stop it, reload
it, check its status. A particular action is chosen by the command-line argument to the script. The /etc/rc script
still drives system startup, but now it merely invokes the smaller scripts one by one with the start argument. It is
easy to perform shutdown tasks as well by running the same set of scripts with the stop argument, which is done
by /etc/rc.shutdown . Note how closely this follows the Unix way of having a set of small specialized tools, each
fulfilling its task as well as possible. Code reuse means that common operations are implemented as sh(1) functions
and collected in /etc/rc.subr . Now a typical script can be just a few lines' worth of sh(1) code. Finally, an impor-
tant part of the rc.d framework is rcorder(8), which helps /etc/rc to run the small scripts orderly with respect
to dependencies between them. It can help /etc/rc.shutdown , too, because the proper order for the shutdown
sequence is opposite to that of startup.

The BSD rc.d design is described in the original article by Luke Mewburn, and the rc.d components are docu-
mented in great detail in the respective manual pages. However, it might not appear obvious to an rc.d newbie
how to tie the numerous bits and pieces together in order to create a well-styled script for a particular task. There-
fore this article will try a different approach to describe rc.d. It will show which features should be used in a
number of typical cases, and why. Note that this is not a how-to document because our aim is not at giving ready-
made recipes, but at showing a few easy entrances into the rc.d realm. Neither is this article a replacement for
the relevant manual pages. Do not hesitate to refer to them for more formal and complete documentation while
reading this article.

There are prerequisites to understanding this article. First of all, you should be familiar with the sh(1) scripting
language in order to master rc.d. In addition, you should know how the system performs userland startup and
shutdown tasks, which is described in rc(8).

This article focuses on the FreeBSD branch of rc.d. Nevertheless, it may be useful to NetBSD developers, too,
because the two branches of BSD rc.d not only share the same design but also stay similar in their aspects visible
to script authors.

2. Outlining the task
A little consideration before starting $EDITOR will not hurt. In order to write a well-tempered rc.d script for a
system service, we should be able to answer the following questions rst:

• Is the service mandatory or optional?

• Will the script serve a single program, e.g., a daemon, or perform more complex actions?

• Which other services will our service depend on, and vice versa?

From the examples that follow we will see why it is important to know the answers to these questions.

3. A dummy script
The following script just emits a message each time the system boots up:

2

https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rcorder&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc&sektion=8&manpath=freebsd-release-ports

Practical rc.d scripting in BSD

#!/bin/sh

. /etc/rc.subr

name="dummy"
start_cmd="${name}_start"
stop_cmd=":"

dummy_start()
{
 echo "Nothing started."
}

load_rc_config $name
run_rc_command "$1"

Things to note are:

An interpreted script should begin with the magic “shebang” line. That line specifies the interpreter program
for the script. Due to the shebang line, the script can be invoked exactly like a binary program provided that
it has the execute bit set. (See chmod(1).) For example, a system admin can run our script manually, from
the command line:

/etc/rc.d/dummy start

Note

In order to be properly managed by the rc.d framework, its scripts need to be written
in the sh(1) language. If you have a service or port that uses a binary control utility
or a startup routine written in another language, install that element in /usr/sbin
(for the system) or /usr/local/sbin (for ports) and call it from a sh(1) script in the
appropriate rc.d directory.

Tip

If you would like to learn the details of why rc.d scripts must be written in the sh(1)
language, see how /etc/rc invokes them by means of run_rc_script, then study the
implementation of run_rc_script in /etc/rc.subr .

In /etc/rc.subr , a number of sh(1) functions are defined for an rc.d script to use. The functions are docu-
mented in rc.subr(8). While it is theoretically possible to write an rc.d script without ever using rc.subr(8),
its functions prove extremely handy and make the job an order of magnitude easier. So it is no surprise that
everybody resorts to rc.subr(8) in rc.d scripts. We are not going to be an exception.

An rc.d script must “source” /etc/rc.subr (include it using “.”) before it calls rc.subr(8) functions so that
sh(1) has an opportunity to learn the functions. The preferred style is to source /etc/rc.subr rst of all.

3

https://www.FreeBSD.org/cgi/man.cgi?query=chmod&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports

A dummy script

Note

Some useful functions related to networking are provided by another include le, /
etc/network.subr .

The mandatory variable name specifies the name of our script. It is required by rc.subr(8). That is, each rc.d
script must set name before it calls rc.subr(8) functions.

Now it is the right time to choose a unique name for our script once and for all. We will use it in a number of
places while developing the script. For a start, let us give the same name to the script le, too.

Note

The current style of rc.d scripting is to enclose values assigned to variables in double
quotes. Keep in mind that it is just a style issue that may not always be applicable.
You can safely omit quotes from around simple words without sh(1) metacharacters in
them, while in certain cases you will need single quotes to prevent any interpretation
of the value by sh(1). A programmer should be able to tell the language syntax from
style conventions and use both of them wisely.

The main idea behind rc.subr(8) is that an rc.d script provides handlers, or methods, for rc.subr(8) to invoke.
In particular, start , stop, and other arguments to an rc.d script are handled this way. A method is a sh(1)
expression stored in a variable named argument_cmd, where argument corresponds to what can be specified
on the script's command line. We will see later how rc.subr(8) provides default methods for the standard
arguments.

Note

To make the code in rc.d more uniform, it is common to use ${name} wherever appro-
priate. Thus a number of lines can be just copied from one script to another.

We should keep in mind that rc.subr(8) provides default methods for the standard arguments. Consequently,
we must override a standard method with a no-op sh(1) expression if we want it to do nothing.
The body of a sophisticated method can be implemented as a function. It is a good idea to make the function
name meaningful.

Important

It is strongly recommended to add the prefix ${name} to the names of all functions
defined in our script so they never clash with the functions from rc.subr(8) or another
common include le.

This call to rc.subr(8) loads rc.conf(5) variables. Our script makes no use of them yet, but it still is recom-
mended to load rc.conf(5) because there can be rc.conf(5) variables controlling rc.subr(8) itself.

4

https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports

Practical rc.d scripting in BSD

Usually this is the last command in an rc.d script. It invokes the rc.subr(8) machinery to perform the re-
quested action using the variables and methods our script has provided.

4. A configurable dummy script
Now let us add some controls to our dummy script. As you may know, rc.d scripts are controlled with rc.conf(5).
Fortunately, rc.subr(8) hides all the complications from us. The following script uses rc.conf(5) via rc.subr(8) to
see whether it is enabled in the rst place, and to fetch a message to show at boot time. These two tasks in fact
are independent. On the one hand, an rc.d script can just support enabling and disabling its service. On the other
hand, a mandatory rc.d script can have configuration variables. We will do both things in the same script though:

#!/bin/sh

. /etc/rc.subr

name=dummy
rcvar=dummy_enable

start_cmd="${name}_start"
stop_cmd=":"

load_rc_config $name
: ${dummy_enable:=no}
: ${dummy_msg="Nothing started."}

dummy_start()
{
 echo "$dummy_msg"
}

run_rc_command "$1"

What changed in this example?

The variable rcvar specifies the name of the ON/OFF knob variable.
Now load_rc_config is invoked earlier in the script, before any rc.conf(5) variables are accessed.

Note
While examining rc.d scripts, keep in mind that sh(1) defers the evaluation of expres-
sions in a function until the latter is called. Therefore it is not an error to invoke load_r-
c_config as late as just before run_rc_command and still access rc.conf(5) variables from
the method functions exported to run_rc_command. This is because the method func-
tions are to be called by run_rc_command, which is invoked after load_rc_config.

A warning will be emitted by run_rc_command if rcvar itself is set, but the indicated knob variable is un-
set. If your rc.d script is for the base system, you should add a default setting for the knob to /etc/de-
faults/rc.conf and document it in rc.conf(5). Otherwise it is your script that should provide a default set-
ting for the knob. The canonical approach to the latter case is shown in the example.

Note
You can make rc.subr(8) act as though the knob is set to ON, irrespective of its current
setting, by prefixing the argument to the script with one or force , as in onestart or

5

https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports

Startup and shutdown of a simple daemon

forcestop. Keep in mind though that force has other dangerous effects we will touch
upon below, while one just overrides the ON/OFF knob. E.g., assume that dummy_enable
is OFF. The following command will run the start method in spite of the setting:

/etc/rc.d/dummy onestart

Now the message to be shown at boot time is no longer hard-coded in the script. It is specified by an rc.conf(5)
variable named dummy_msg. This is a trivial example of how rc.conf(5) variables can control an rc.d script.

Important
The names of all rc.conf(5) variables used exclusively by our script must have the same
prefix: ${name}_ . For example: dummy_mode, dummy_state_file, and so on.

Note
While it is possible to use a shorter name internally, e.g., just msg, adding the unique
prefix ${name}_ to all global names introduced by our script will save us from possible
collisions with the rc.subr(8) namespace.

As a rule, rc.d scripts of the base system need not provide defaults for their rc.conf(5)
variables because the defaults should be set in /etc/defaults/rc.conf instead. On the
other hand, rc.d scripts for ports should provide the defaults as shown in the example.

Here we use dummy_msg to actually control our script, i.e., to emit a variable message. Use of a shell function
is overkill here, since it only runs a single command; an equally valid alternative is:

start_cmd="echo \"$dummy_msg\""

5. Startup and shutdown of a simple daemon
We said earlier that rc.subr(8) could provide default methods. Obviously, such defaults cannot be too general. They
are suited for the common case of starting and shutting down a simple daemon program. Let us assume now that
we need to write an rc.d script for such a daemon called mumbled. Here it is:

#!/bin/sh

. /etc/rc.subr

name=mumbled
rcvar=mumbled_enable

command="/usr/sbin/${name}"

load_rc_config $name
run_rc_command "$1"

Pleasingly simple, isn't it? Let us examine our little script. The only new thing to note is as follows:

The command variable is meaningful to rc.subr(8). If it is set, rc.subr(8) will act according to the scenario
of serving a conventional daemon. In particular, the default methods will be provided for such arguments:
start , stop, restart , poll, and status.

6

https://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports

Practical rc.d scripting in BSD

The daemon will be started by running $command with command-line ags specified by $mumbled_flags. Thus
all the input data for the default start method are available in the variables set by our script. Unlike start ,
other methods may require additional information about the process started. For instance, stop must know
the PID of the process to terminate it. In the present case, rc.subr(8) will scan through the list of all processes,
looking for a process with its name equal to $procname. The latter is another variable of meaning to rc.subr(8),
and its value defaults to that of command. In other words, when we set command, procname is effectively set to
the same value. This enables our script to kill the daemon and to check if it is running in the rst place.

Note
Some programs are in fact executable scripts. The system runs such a script by starting
its interpreter and passing the name of the script to it as a command-line argument.
This is reflected in the list of processes, which can confuse rc.subr(8). You should addi-
tionally set command_interpreter to let rc.subr(8) know the actual name of the process
if $command is a script.

For each rc.d script, there is an optional rc.conf(5) variable that takes precedence
over command. Its name is constructed as follows: ${name}_program, where name is the
mandatory variable we discussed earlier. E.g., in this case it will be mumbled_program.
It is rc.subr(8) that arranges ${name}_program to override command.

Of course, sh(1) will permit you to set ${name}_program from rc.conf(5) or the script
itself even if command is unset. In that case, the special properties of ${name}_program
are lost, and it becomes an ordinary variable your script can use for its own purposes.
However, the sole use of ${name}_program is discouraged because using it together with
command became an idiom of rc.d scripting.

For more detailed information on default methods, refer to rc.subr(8).

6. Startup and shutdown of an advanced daemon
Let us add some meat onto the bones of the previous script and make it more complex and featureful. The default
methods can do a good job for us, but we may need some of their aspects tweaked. Now we will learn how to tune
the default methods to our needs.

#!/bin/sh

. /etc/rc.subr

name=mumbled
rcvar=mumbled_enable

command="/usr/sbin/${name}"
command_args="mock arguments > /dev/null 2>&1"

pidfile="/var/run/${name}.pid"

required_files="/etc/${name}.conf /usr/share/misc/${name}.rules"

sig_reload="USR1"

start_precmd="${name}_prestart"
stop_postcmd="echo Bye-bye"

extra_commands="reload plugh xyzzy"

7

https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports

Startup and shutdown of an advanced daemon

plugh_cmd="mumbled_plugh"
xyzzy_cmd="echo 'Nothing happens.'"

mumbled_prestart()
{
 if checkyesno mumbled_smart; then
 rc_flags="-o smart ${rc_flags}"
 fi
 case "$mumbled_mode" in
 foo)
 rc_flags="-frotz ${rc_flags}"
 ;;
 bar)
 rc_flags="-baz ${rc_flags}"
 ;;
 *)
 warn "Invalid value for mumbled_mode"
 return 1
 ;;
 esac
 run_rc_command xyzzy
 return 0
}

mumbled_plugh()
{
 echo 'A hollow voice says "plugh".'
}

load_rc_config $name
run_rc_command "$1"

Additional arguments to $command can be passed in command_args. They will be added to the command line
after $mumbled_flags. Since the final command line is passed to eval for its actual execution, input and
output redirections can be specified in command_args.

Note

Never include dashed options, like -X or --foo , in command_args. The contents of com-
mand_args will appear at the end of the final command line, hence they are likely to
follow arguments present in ${name}_flags ; but most commands will not recognize
dashed options after ordinary arguments. A better way of passing additional options to
$command is to add them to the beginning of ${name}_flags . Another way is to modify
rc_flags as shown later.

A good-mannered daemon should create a pidfile so that its process can be found more easily and reliably.
The variable pidfile, if set, tells rc.subr(8) where it can nd the pidfile for its default methods to use.

Note

In fact, rc.subr(8) will also use the pidfile to see if the daemon is already running before
starting it. This check can be skipped by using the faststart argument.

8

https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports

Practical rc.d scripting in BSD

If the daemon cannot run unless certain les exist, just list them in required_files, and rc.subr(8) will check
that those les do exist before starting the daemon. There also are required_dirs and required_vars for
directories and environment variables, respectively. They all are described in detail in rc.subr(8).

Note

The default method from rc.subr(8) can be forced to skip the prerequisite checks by
using forcestart as the argument to the script.

We can customize signals to send to the daemon in case they differ from the well-known ones. In particular,
sig_reload specifies the signal that makes the daemon reload its configuration; it is SIGHUP by default. An-
other signal is sent to stop the daemon process; the default is SIGTERM, but this can be changed by setting
sig_stop appropriately.

Note

The signal names should be specified to rc.subr(8) without the SIG prefix, as it is shown
in the example. The FreeBSD version of kill(1) can recognize the SIG prefix, but the
versions from other OS types may not.

Performing additional tasks before or after the default methods is easy. For each command-argument sup-
ported by our script, we can define argument_precmd and argument_postcmd . These sh(1) commands are
invoked before and after the respective method, as it is evident from their names.

Note

Overriding a default method with a custom argument_cmd still does not prevent us from
making use of argument_precmd or argument_postcmd if we need to. In particular, the
former is good for checking custom, sophisticated conditions that should be met before
performing the command itself. Using argument_precmd along with argument_cmd lets
us logically separate the checks from the action.

Do not forget that you can cram any valid sh(1) expressions into the methods, pre-, and
post-commands you define. Just invoking a function that makes the real job is a good
style in most cases, but never let style limit your understanding of what is going on
behind the curtain.

If we would like to implement custom arguments, which can also be thought of as commands to our script, we
need to list them in extra_commands and provide methods to handle them.

Note

The reload command is special. On the one hand, it has a preset method in rc.subr(8).
On the other hand, reload is not offered by default. The reason is that not all daemons
use the same reload mechanism and some have nothing to reload at all. So we need to
ask explicitly that the builtin functionality be provided. We can do so via extra_com-
mands.

9

https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=kill&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports

Startup and shutdown of an advanced daemon

What do we get from the default method for reload? Quite often daemons reload their
configuration upon reception of a signal — typically, SIGHUP. Therefore rc.subr(8) at-
tempts to reload the daemon by sending a signal to it. The signal is preset to SIGHUP
but can be customized via sig_reload if necessary.

Our script supports two non-standard commands, plugh and xyzzy . We saw them listed in extra_commands,
and now it is time to provide methods for them. The method for xyzzy is just inlined while that for plugh
is implemented as the mumbled_plugh function.

Non-standard commands are not invoked during startup or shutdown. Usually they are for the system ad-
min's convenience. They can also be used from other subsystems, e.g., devd(8) if specified in devd.conf(5).

The full list of available commands can be found in the usage line printed by rc.subr(8) when the script is
invoked without arguments. For example, here is the usage line from the script under study:

/etc/rc.d/mumbled
Usage: /etc/rc.d/mumbled [fast|force|one](start|stop|restart|rcvar|reload|plugh|
xyzzy|status|poll)

A script can invoke its own standard or non-standard commands if needed. This may look similar to calling
functions, but we know that commands and shell functions are not always the same thing. For instance, xyzzy
is not implemented as a function here. In addition, there can be a pre-command and post-command, which
should be invoked orderly. So the proper way for a script to run its own command is by means of rc.subr(8),
as shown in the example.
A handy function named checkyesno is provided by rc.subr(8). It takes a variable name as its argument and
returns a zero exit code if and only if the variable is set to YES, or TRUE, or ON, or 1, case insensitive; a non-zero
exit code is returned otherwise. In the latter case, the function tests the variable for being set to NO, FALSE ,
OFF, or 0, case insensitive; it prints a warning message if the variable contains anything else, i.e., junk.

Keep in mind that for sh(1) a zero exit code means true and a non-zero exit code means false.

Important

The checkyesno function takes a variable name. Do not pass the expanded value of a
variable to it; it will not work as expected.

The following is the correct usage of checkyesno:

if checkyesno mumbled_enable; then
 foo
fi

On the contrary, calling checkyesno as shown below will not work — at least not as
expected:

if checkyesno "${mumbled_enable}"; then
 foo
fi

We can affect the ags to be passed to $command by modifying rc_flags in $start_precmd .
In certain cases we may need to emit an important message that should go to syslog as well. This can be done
easily with the following rc.subr(8) functions: debug, info, warn, and err. The latter function then exits the
script with the code specified.

10

https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=devd&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=devd.conf&sektion=5&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports

Practical rc.d scripting in BSD

The exit codes from methods and their pre-commands are not just ignored by default. If argument_precmd
returns a non-zero exit code, the main method will not be performed. In turn, argument_postcmd will not be
invoked unless the main method returns a zero exit code.

Note
However, rc.subr(8) can be instructed from the command line to ignore those exit codes
and invoke all commands anyway by prefixing an argument with force , as in forces-
tart.

7. Connecting a script to the rc.d framework
After a script has been written, it needs to be integrated into rc.d. The crucial step is to install the script in /etc/
rc.d (for the base system) or /usr/local/etc/rc.d (for ports). Both <bsd.prog.mk> and <bsd.port.mk> provide
convenient hooks for that, and usually you do not have to worry about the proper ownership and mode. System
scripts should be installed from src/etc/rc.d through the Makefile found there. Port scripts can be installed
using USE_RC_SUBR as described in the Porter's Handbook.

However, we should consider beforehand the place of our script in the system startup sequence. The service han-
dled by our script is likely to depend on other services. For instance, a network daemon cannot function without
the network interfaces and routing up and running. Even if a service seems to demand nothing, it can hardly start
before the basic filesystems have been checked and mounted.

We mentioned rcorder(8) already. Now it is time to have a close look at it. In a nutshell, rcorder(8) takes a set of
les, examines their contents, and prints a dependency-ordered list of les from the set to stdout. The point is
to keep dependency information inside the les so that each le can speak for itself only. A le can specify the
following information:

• the names of the “conditions” (which means services to us) it provides;

• the names of the “conditions” it requires;

• the names of the “conditions” this le should run before;

• additional keywords that can be used to select a subset from the whole set of les (rcorder(8) can be instructed
via options to include or omit the les having particular keywords listed.)

It is no surprise that rcorder(8) can handle only text les with a syntax close to that of sh(1). That is, special lines
understood by rcorder(8) look like sh(1) comments. The syntax of such special lines is rather rigid to simplify their
processing. See rcorder(8) for details.

Besides using rcorder(8) special lines, a script can insist on its dependency upon another service by just starting
it forcibly. This can be needed when the other service is optional and will not start by itself because the system
admin has disabled it mistakenly in rc.conf(5).

With this general knowledge in mind, let us consider the simple daemon script enhanced with dependency stu:

#!/bin/sh

PROVIDE: mumbled oldmumble
REQUIRE: DAEMON cleanvar frotz
BEFORE: LOGIN
KEYWORD: nojail shutdown

11

https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/doc/en_US.ISO8859-1/books/porters-handbook/rc-scripts.html
https://www.FreeBSD.org/cgi/man.cgi?query=rcorder&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rcorder&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rcorder&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rcorder&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rcorder&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rcorder&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rcorder&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5&manpath=freebsd-release-ports

Connecting a script to the rc.d framework

. /etc/rc.subr

name=mumbled
rcvar=mumbled_enable

command="/usr/sbin/${name}"
start_precmd="${name}_prestart"

mumbled_prestart()
{
 if ! checkyesno frotz_enable && \
 ! /etc/rc.d/frotz forcestatus 1>/dev/null 2>&1; then
 force_depend frotz || return 1
 fi
 return 0
}

load_rc_config $name
run_rc_command "$1"

As before, detailed analysis follows:

That line declares the names of “conditions” our script provides. Now other scripts can record a dependency
on our script by those names.

Note

Usually a script specifies a single condition provided. However, nothing prevents us
from listing several conditions there, e.g., for compatibility reasons.

In any case, the name of the main, or the only, PROVIDE: condition should be the same
as ${name} .

So our script indicates which “conditions” provided by other scripts it depends on. According to the lines, our
script asks rcorder(8) to put it after the script(s) providing DAEMON and cleanvar, but before that providing
LOGIN .

Note

The BEFORE: line should not be abused to work around an incomplete dependency list
in the other script. The appropriate case for using BEFORE: is when the other script does
not care about ours, but our script can do its task better if run before the other one. A
typical real-life example is the network interfaces vs. the firewall: While the interfaces
do not depend on the firewall in doing their job, the system security will benefit from
the firewall being ready before there is any network traffic.

Besides conditions corresponding to a single service each, there are meta-conditions
and their “placeholder” scripts used to ensure that certain groups of operations are
performed before others. These are denoted by UPPERCASE names. Their list and pur-
poses can be found in rc(8).

Keep in mind that putting a service name in the REQUIRE: line does not guarantee that
the service will actually be running by the time our script starts. The required service
may fail to start or just be disabled in rc.conf(5). Obviously, rcorder(8) cannot track such
details, and rc(8) will not do that either. Consequently, the application started by our

12

https://www.FreeBSD.org/cgi/man.cgi?query=rcorder&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rcorder&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc&sektion=8&manpath=freebsd-release-ports

Practical rc.d scripting in BSD

script should be able to cope with any required services being unavailable. In certain
cases, we can help it as discussed below.

As we remember from the above text, rcorder(8) keywords can be used to select or leave out some scripts.
Namely any rcorder(8) consumer can specify through -k and -s options which keywords are on the “keep
list” and “skip list”, respectively. From all the les to be dependency sorted, rcorder(8) will pick only those
having a keyword from the keep list (unless empty) and not having a keyword from the skip list.

In FreeBSD, rcorder(8) is used by /etc/rc and /etc/rc.shutdown . These two scripts define the standard list
of FreeBSD rc.d keywords and their meanings as follows:

nojail
The service is not for jail(8) environment. The automatic startup and shutdown procedures will ignore
the script if inside a jail.

nostart
The service is to be started manually or not started at all. The automatic startup procedure will ignore
the script. In conjunction with the shutdown keyword, this can be used to write scripts that do something
only at system shutdown.

shutdown
This keyword is to be listed explicitly if the service needs to be stopped before system shutdown.

Note

When the system is going to shut down, /etc/rc.shutdown runs. It assumes that
most rc.d scripts have nothing to do at that time. Therefore /etc/rc.shutdown
selectively invokes rc.d scripts with the shutdown keyword, effectively ignoring
the rest of the scripts. For even faster shutdown, /etc/rc.shutdown passes the
faststop command to the scripts it runs so that they skip preliminary checks, e.g.,
the pidfile check. As dependent services should be stopped before their prerequi-
sites, /etc/rc.shutdown runs the scripts in reverse dependency order.

If writing a real rc.d script, you should consider whether it is relevant at system
shutdown time. E.g., if your script does its work in response to the start command
only, then you need not include this keyword. However, if your script manages a
service, it is probably a good idea to stop it before the system proceeds to the final
stage of its shutdown sequence described in halt(8). In particular, a service should
be stopped explicitly if it needs considerable time or special actions to shut down
cleanly. A typical example of such a service is a database engine.

To begin with, force_depend should be used with much care. It is generally better to revise the hierarchy of
configuration variables for your rc.d scripts if they are interdependent.

If you still cannot do without force_depend, the example offers an idiom of how to invoke it conditionally. In
the example, our mumbled daemon requires that another one, frotz , be started in advance. However, frotz
is optional, too; and rcorder(8) knows nothing about such details. Fortunately, our script has access to all
rc.conf(5) variables. If frotz_enable is true, we hope for the best and rely on rc.d to have started frotz .
Otherwise we forcibly check the status of frotz . Finally, we enforce our dependency on frotz if it is found
to be not running. A warning message will be emitted by force_depend because it should be invoked only if
a misconfiguration has been detected.

13

https://www.FreeBSD.org/cgi/man.cgi?query=rcorder&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rcorder&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rcorder&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rcorder&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=jail&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=halt&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rcorder&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5&manpath=freebsd-release-ports

Giving more flexibility to an rc.d script

8. Giving more flexibility to an rc.d script
When invoked during startup or shutdown, an rc.d script is supposed to act on the entire subsystem it is respon-
sible for. E.g., /etc/rc.d/netif should start or stop all network interfaces described by rc.conf(5). Either task can
be uniquely indicated by a single command argument such as start or stop. Between startup and shutdown, rc.d
scripts help the admin to control the running system, and it is when the need for more flexibility and precision
arises. For instance, the admin may want to add the settings of a new network interface to rc.conf(5) and then to
start it without interfering with the operation of the existing interfaces. Next time the admin may need to shut
down a single network interface. In the spirit of the command line, the respective rc.d script calls for an extra
argument, the interface name.

Fortunately, rc.subr(8) allows for passing any number of arguments to script's methods (within the system limits).
Due to that, the changes in the script itself can be minimal.

How can rc.subr(8) gain access to the extra command-line arguments. Should it just grab them directly? Not by
any means. Firstly, an sh(1) function has no access to the positional parameters of its caller, but rc.subr(8) is just
a sack of such functions. Secondly, the good manner of rc.d dictates that it is for the main script to decide which
arguments are to be passed to its methods.

So the approach adopted by rc.subr(8) is as follows: run_rc_command passes on all its arguments but the rst one
to the respective method verbatim. The rst, omitted, argument is the name of the method itself: start , stop,
etc. It will be shifted out by run_rc_command, so what is $2 in the original command line will be presented as $1
to the method, and so on.

To illustrate this opportunity, let us modify the primitive dummy script so that its messages depend on the addi-
tional arguments supplied. Here we go:

#!/bin/sh

. /etc/rc.subr

name="dummy"
start_cmd="${name}_start"
stop_cmd=":"
kiss_cmd="${name}_kiss"
extra_commands="kiss"

dummy_start()
{
 if [$# -gt 0 ­]; then
 echo "Greeting message: $*"
 else
 echo "Nothing started."
 fi
}

dummy_kiss()
{
 echo -n "A ghost gives you a kiss"
 if [$# -gt 0 ­]; then
 echo -n " and whispers: $*"
 fi
 case "$*" in
 *[.!?])
 echo
 ­;;
 *)
 echo .
 ­;;
 esac
}

14

https://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports

Practical rc.d scripting in BSD

load_rc_config $name
run_rc_command "$@"

What essential changes can we notice in the script?

All arguments you type after start can end up as positional parameters to the respective method. We can
use them in any way according to our task, skills, and fancy. In the current example, we just pass all of them
to echo(1) as one string in the next line — note $* within the double quotes. Here is how the script can be
invoked now:

/etc/rc.d/dummy start
Nothing started.
/etc/rc.d/dummy start Hello world!
Greeting message: Hello world!

The same applies to any method our script provides, not only to a standard one. We have added a custom
method named kiss, and it can take advantage of the extra arguments not less than start does. E.g.:

/etc/rc.d/dummy kiss
A ghost gives you a kiss.
/etc/rc.d/dummy kiss Once I was Etaoin Shrdlu...
A ghost gives you a kiss and whispers: Once I was Etaoin Shrdlu...

If we want just to pass all extra arguments to any method, we can merely substitute "$@" for "$1" in the last
line of our script, where we invoke run_rc_command.

Important
An sh(1) programmer ought to understand the subtle difference between $* and $@ as
the ways to designate all positional parameters. For its in-depth discussion, refer to a
good handbook on sh(1) scripting. Do not use the expressions until you fully understand
them because their misuse will result in buggy and insecure scripts.

Note
Currently run_rc_command may have a bug that prevents it from keeping the original
boundaries between arguments. That is, arguments with embedded whitespace may
not be processed correctly. The bug stems from $* misuse.

9. Further reading
The original article by Luke Mewburn offers a general overview of rc.d and detailed rationale for its design deci-
sions. It provides insight on the whole rc.d framework and its place in a modern BSD operating system.

The manual pages rc(8), rc.subr(8), and rcorder(8) document the rc.d components in great detail. You cannot fully
use the rc.d power without studying the manual pages and referring to them while writing your own scripts.

The major source of working, real-life examples is /etc/rc.d in a live system. Its contents are easy and pleasant to
read because most rough corners are hidden deep in rc.subr(8). Keep in mind though that the /etc/rc.d scripts
were not written by angels, so they might suffer from bugs and suboptimal design decisions. Now you can improve
them!

15

https://www.FreeBSD.org/cgi/man.cgi?query=echo&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
http://www.mewburn.net/luke/papers/rc.d.pdf
https://www.FreeBSD.org/cgi/man.cgi?query=rc&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rcorder&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rc.subr&sektion=8&manpath=freebsd-release-ports

	Practical rc.d scripting in BSD
	Table of Contents
	1. Introduction
	2. Outlining the task
	3. A dummy script
	4. A configurable dummy script
	5. Startup and shutdown of a simple daemon
	6. Startup and shutdown of an advanced daemon
	7. Connecting a script to the rc.d framework
	8. Giving more flexibility to an rc.d script
	9. Further reading

