
FreeBSD and Solid State Devices

John Kozubik <john@kozubik.com>
Revision: 44923

Copyright © 2001, 2009 The FreeBSD Documentation Project

FreeBSD is a registered trademark of the FreeBSD Foundation.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this document, and the FreeBSD
Project was aware of the trademark claim, the designations have been followed by the “™” or
the “®” symbol.

Copyright

Redistribution and use in source (XML DocBook) and 'compiled' forms (XML, HTML, PDF,
PostScript, RTF and so forth) with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code (XML DocBook) must retain the above copyright notice, this
list of conditions and the following disclaimer as the rst lines of this le unmodified.

2. Redistributions in compiled form (transformed to other DTDs, converted to PDF, PostScript,
RTF and other formats) must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with
the distribution.

Important

THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMEN-
TATION PROJECT "AS IS" AND ANY EXPRESS OR IMPLIED WARRAN-
TIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE FREEBSD DOCUMENTATION
PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENTATION,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

2014-05-23 17:36:54 by bcr.

Abstract
This article covers the use of solid state disk devices in FreeBSD to create embedded systems.

Embedded systems have the advantage of increased stability due to the lack of integral mov-
ing parts (hard drives). Account must be taken, however, for the generally low disk space
available in the system and the durability of the storage medium.

mailto:john@kozubik.com
https://svnweb.freebsd.org/changeset/doc/44923

Solid State Disk Devices

Specific topics to be covered include the types and attributes of solid state media suitable for
disk use in FreeBSD, kernel options that are of interest in such an environment, the rc.init-
diskless mechanisms that automate the initialization of such systems and the need for read-
only filesystems, and building filesystems from scratch. The article will conclude with some
general strategies for small and read-only FreeBSD environments.

Table of Contents
1. Solid State Disk Devices . 2
2. Kernel Options . 2
3. The rc Subsystem and Read-Only Filesystems . 3
4. Building a File System from Scratch . 3
5. System Strategies for Small and Read Only Environments . 5

1. Solid State Disk Devices
The scope of this article will be limited to solid state disk devices made from ash memory. Flash memory is a
solid state memory (no moving parts) that is non-volatile (the memory maintains data even after all power sources
have been disconnected). Flash memory can withstand tremendous physical shock and is reasonably fast (the ash
memory solutions covered in this article are slightly slower than a EIDE hard disk for write operations, and much
faster for read operations). One very important aspect of ash memory, the ramifications of which will be discussed
later in this article, is that each sector has a limited rewrite capacity. You can only write, erase, and write again to
a sector of ash memory a certain number of times before the sector becomes permanently unusable. Although
many ash memory products automatically map bad blocks, and although some even distribute write operations
evenly throughout the unit, the fact remains that there exists a limit to the amount of writing that can be done to
the device. Competitive units have between 1,000,000 and 10,000,000 writes per sector in their specification. This
figure varies due to the temperature of the environment.

Specifically, we will be discussing ATA compatible compact-ash units, which are quite popular as storage media
for digital cameras. Of particular interest is the fact that they pin out directly to the IDE bus and are compatible
with the ATA command set. Therefore, with a very simple and low-cost adaptor, these devices can be attached
directly to an IDE bus in a computer. Once implemented in this manner, operating systems such as FreeBSD see
the device as a normal hard disk (albeit small).

Other solid state disk solutions do exist, but their expense, obscurity, and relative unease of use places them beyond
the scope of this article.

2. Kernel Options
A few kernel options are of specific interest to those creating an embedded FreeBSD system.

All embedded FreeBSD systems that use ash memory as system disk will be interested in memory disks and mem-
ory filesystems. Because of the limited number of writes that can be done to ash memory, the disk and the filesys-
tems on the disk will most likely be mounted read-only. In this environment, filesystems such as /tmp and /var
are mounted as memory filesystems to allow the system to create logs and update counters and temporary les.
Memory filesystems are a critical component to a successful solid state FreeBSD implementation.

You should make sure the following lines exist in your kernel configuration le:

options MFS # Memory Filesystem
options MD_ROOT # md device usable as a potential root device
pseudo-device md # memory disk

2

FreeBSD and Solid State Devices

3. The rc Subsystem and Read-Only Filesystems
The post-boot initialization of an embedded FreeBSD system is controlled by /etc/rc.initdiskless .

/etc/rc.d/var mounts /var as a memory filesystem, makes a configurable list of directories in /var with the
mkdir(1) command, and changes modes on some of those directories. In the execution of /etc/rc.d/var , one
other rc.conf variable comes into play – varsize. A /var partition is created by /etc/rc.d/var based on the
value of this variable in rc.conf :

varsize=8192

Remember that this value is in sectors by default.

The fact that /var is a read-write filesystem is an important distinction, as the / partition (and any other partitions
you may have on your ash media) should be mounted read-only. Remember that in Section 1, “Solid State Disk
Devices” we detailed the limitations of ash memory - specifically the limited write capability. The importance
of not mounting filesystems on ash media read-write, and the importance of not using a swap le, cannot be
overstated. A swap le on a busy system can burn through a piece of ash media in less than one year. Heavy
logging or temporary le creation and destruction can do the same. Therefore, in addition to removing the swap
entry from your /etc/fstab , you should also change the Options eld for each filesystem to ro as follows:

Device Mountpoint FStype Options Dump Pass#
/dev/ad0s1a / ufs ro 1 1

A few applications in the average system will immediately begin to fail as a result of this change. For instance,
cron will not run properly as a result of missing cron tabs in the /var created by /etc/rc.d/var , and syslog and
dhcp will encounter problems as well as a result of the read-only filesystem and missing items in the /var that /
etc/rc.d/var has created. These are only temporary problems though, and are addressed, along with solutions
to the execution of other common software packages in Section 5, “System Strategies for Small and Read Only
Environments”.

An important thing to remember is that a filesystem that was mounted read-only with /etc/fstab can be made
read-write at any time by issuing the command:

/sbin/mount -uw partition

and can be toggled back to read-only with the command:

/sbin/mount -ur partition

4. Building a File System from Scratch
Because ATA compatible compact-ash cards are seen by FreeBSD as normal IDE hard drives, you could theoreti-
cally install FreeBSD from the network using the kern and mfsroot floppies or from a CD.

However, even a small installation of FreeBSD using normal installation procedures can produce a system in size
of greater than 200 megabytes. Because most people will be using smaller ash memory devices (128 megabytes
is considered fairly large - 32 or even 16 megabytes is common) an installation using normal mechanisms is not
possible—there is simply not enough disk space for even the smallest of conventional installations.

The easiest way to overcome this space limitation is to install FreeBSD using conventional means to a normal hard
disk. After the installation is complete, pare down the operating system to a size that will t onto your ash media,
then tar the entire filesystem. The following steps will guide you through the process of preparing a piece of ash
memory for your tarred filesystem. Remember, because a normal installation is not being performed, operations
such as partitioning, labeling, le-system creation, etc. need to be performed by hand. In addition to the kern and
mfsroot floppy disks, you will also need to use the fixit floppy.

3

https://www.FreeBSD.org/cgi/man.cgi?query=mkdir&sektion=1&manpath=freebsd-release-ports

Building a File System from Scratch

1. Partitioning Your Flash Media Device

After booting with the kern and mfsroot floppies, choose custom from the installation menu. In the custom
installation menu, choose partition. In the partition menu, you should delete all existing partitions using d.
After deleting all existing partitions, create a partition using c and accept the default value for the size of the
partition. When asked for the type of the partition, make sure the value is set to 165. Now write this partition
table to the disk by pressing w (this is a hidden option on this screen). If you are using an ATA compatible
compact ash card, you should choose the FreeBSD Boot Manager. Now press q to quit the partition menu.
You will be shown the boot manager menu once more - repeat the choice you made earlier.

2. Creating Filesystems on Your Flash Memory Device

Exit the custom installation menu, and from the main installation menu choose the fixit option. After en-
tering the fixit environment, enter the following command:

disklabel -e /dev/ad0c

At this point you will have entered the vi editor under the auspices of the disklabel command. Next, you need
to add an a: line at the end of the le. This a: line should look like:

a: 123456 0 4.2BSD 0 0

Where 123456 is a number that is exactly the same as the number in the existing c: entry for size. Basically
you are duplicating the existing c: line as an a: line, making sure that fstype is 4.2BSD . Save the le and exit.

disklabel -B -r /dev/ad0c
newfs /dev/ad0a

3. Placing Your Filesystem on the Flash Media

Mount the newly prepared ash media:

mount /dev/ad0a /flash

Bring this machine up on the network so we may transfer our tar le and explode it onto our ash media
filesystem. One example of how to do this is:

ifconfig xl0 192.168.0.10 netmask 255.255.255.0
route add default 192.168.0.1

Now that the machine is on the network, transfer your tar le. You may be faced with a bit of a dilemma at this
point - if your ash memory part is 128 megabytes, for instance, and your tar le is larger than 64 megabytes,
you cannot have your tar le on the ash media at the same time as you explode it - you will run out of space.
One solution to this problem, if you are using FTP, is to untar the le while it is transferred over FTP. If you
perform your transfer in this manner, you will never have the tar le and the tar contents on your disk at
the same time:

ftp> get tarfile.tar "| tar xvf -"

If your tarle is gzipped, you can accomplish this as well:

ftp> get tarfile.tar "| zcat | tar xvf -"

After the contents of your tarred filesystem are on your ash memory filesystem, you can unmount the ash
memory and reboot:

cd /
umount /flash
exit

4

FreeBSD and Solid State Devices

Assuming that you configured your filesystem correctly when it was built on the normal hard disk (with your
filesystems mounted read-only, and with the necessary options compiled into the kernel) you should now be
successfully booting your FreeBSD embedded system.

5. System Strategies for Small and Read Only Environments
In Section 3, “The rc Subsystem and Read-Only Filesystems”, it was pointed out that the /var filesystem construct-
ed by /etc/rc.d/var and the presence of a read-only root filesystem causes problems with many common soft-
ware packages used with FreeBSD. In this article, suggestions for successfully running cron, syslog, ports installa-
tions, and the Apache web server will be provided.

5.1. Cron

Upon boot, /var gets populated by /etc/rc.d/var using the list from /etc/mtree/BSD.var.dist , so the cron,
cron/tabs , at, and a few other standard directories get created.

However, this does not solve the problem of maintaining cron tabs across reboots. When the system reboots, the
/var filesystem that is in memory will disappear and any cron tabs you may have had in it will also disappear.
Therefore, one solution would be to create cron tabs for the users that need them, mount your / filesystem as read-
write and copy those cron tabs to somewhere safe, like /etc/tabs , then add a line to the end of /etc/rc.init-
diskless that copies those crontabs into /var/cron/tabs after that directory has been created during system
initialization. You may also need to add a line that changes modes and permissions on the directories you create
and the les you copy with /etc/rc.initdiskless .

5.2. Syslog

syslog.conf specifies the locations of certain log les that exist in /var/log . These les are not created by /etc/
rc.d/var upon system initialization. Therefore, somewhere in /etc/rc.d/var , after the section that creates the
directories in /var, you will need to add something like this:

touch /var/log/security /var/log/maillog /var/log/cron /var/log/messages
chmod 0644 /var/log/*

5.3. Ports Installation

Before discussing the changes necessary to successfully use the ports tree, a reminder is necessary regarding the
read-only nature of your filesystems on the ash media. Since they are read-only, you will need to temporarily
mount them read-write using the mount syntax shown in Section 3, “The rc Subsystem and Read-Only Filesys-
tems”. You should always remount those filesystems read-only when you are done with any maintenance - unnec-
essary writes to the ash media could considerably shorten its lifespan.

To make it possible to enter a ports directory and successfully run make install, we must create a packages direc-
tory on a non-memory filesystem that will keep track of our packages across reboots. Because it is necessary to
mount your filesystems as read-write for the installation of a package anyway, it is sensible to assume that an area
on the ash media can also be used for package information to be written to.

First, create a package database directory. This is normally in /var/db/pkg , but we cannot place it there as it will
disappear every time the system is booted.

mkdir /etc/pkg

Now, add a line to /etc/rc.d/var that links the /etc/pkg directory to /var/db/pkg . An example:

ln -s /etc/pkg /var/db/pkg

Now, any time that you mount your filesystems as read-write and install a package, the make install will work,
and package information will be written successfully to /etc/pkg (because the filesystem will, at that time, be
mounted read-write) which will always be available to the operating system as /var/db/pkg .

5

Apache Web Server

5.4. Apache Web Server

Note
The steps in this section are only necessary if Apache is set up to write its pid or log infor-
mation outside of /var. By default, Apache keeps its pid le in /var/run/httpd.pid and its
log les in /var/log .

It is now assumed that Apache keeps its log les in a directory apache_log_dir outside of /var. When this direc-
tory lives on a read-only filesystem, Apache will not be able to save any log les, and may have problems working.
If so, it is necessary to add a new directory to the list of directories in /etc/rc.d/var to create in /var, and to link
apache_log_dir to /var/log/apache . It is also necessary to set permissions and ownership on this new directory.

First, add the directory log/apache to the list of directories to be created in /etc/rc.d/var .

Second, add these commands to /etc/rc.d/var after the directory creation section:

chmod 0774 /var/log/apache
chown nobody:nobody /var/log/apache

Finally, remove the existing apache_log_dir directory, and replace it with a link:

rm -rf apache_log_dir
ln -s /var/log/apache apache_log_dir

6

	FreeBSD and Solid State Devices
	Table of Contents
	1. Solid State Disk Devices
	2. Kernel Options
	3. The rc Subsystem and Read-Only Filesystems
	4. Building a File System from Scratch
	5. System Strategies for Small and Read Only Environments
	5.1. Cron
	5.2. Syslog
	5.3. Ports Installation
	5.4. Apache Web Server

