
A project model for the FreeBSD Project

Niklas Saers

A project model for the FreeBSD Project
Niklas Saers
Revision: 50965
Copyright © 2002-2005 Niklas Saers

ii

https://svnweb.freebsd.org/changeset/doc/50965

Table of Contents
Foreword . vii
1. Overview . 1
2. Definitions . 3

2.1. Activity . 3
2.2. Process . 3
2.3. Hat . 3
2.4. Outcome . 3
2.5. FreeBSD . 3

3. Organisational structure . 5
4. Methodology model . 7

4.1. Development model . 7
4.2. Release branches . 8
4.3. Model summary . 9

5. Hats . 11
5.1. General Hats . 11
5.2. Official Hats . 12
5.3. Process dependent hats . 14

6. Processes . 17
6.1. Adding new and removing old committers . 17
6.2. Committing code . 18
6.3. Core election . 20
6.4. Development of new features . 21
6.5. Maintenance . 21
6.6. Problem reporting . 22
6.7. Reacting to misbehavior . 23
6.8. Release engineering . 24

7. Tools . 27
7.1. Subversion (SVN) . 27
7.2. Bugzilla . 27
7.3. Mailman . 27
7.4. Perforce . 27
7.5. Pretty Good Privacy . 27
7.6. Secure Shell . 27

8. Sub-projects . 29
8.1. The Ports Subproject . 29
8.2. The FreeBSD Documentation Project . 30

References . 31

List of Figures
3.1. The FreeBSD Project's structure . 5
3.2. The FreeBSD Project's structure with committers in categories . 6
4.1. Jørgenssen's model for change integration . 7
4.2. The FreeBSD release tree . 8
4.3. The overall development model . 9
5.1. Overview of official hats . 12
6.1. Process summary: adding a new committer . 17
6.2. Process summary: removing a committer . 18
6.3. Process summary: A committer commits code . 19
6.4. Process summary: A contributor commits code . 19
6.5. Process summary: Core elections . 20
6.6. Jørgenssen's model for change integration . 22
6.7. Process summary: problem reporting . 23
6.8. Process summary: release engineering . 25
8.1. Number of ports added between 1996 and 2005 . 29

Foreword
Up until now, the FreeBSD project has released a number of described techniques to do different parts of work.
However, a project model summarising how the project is structured is needed because of the increasing amount
of project members. 1 This paper will provide such a project model and is donated to the FreeBSD Documentation
project where it can evolve together with the project so that it can at any point in time reflect the way the project
works. It is based on [Saers, 2003].

I would like to thank the following people for taking the time to explain things that were unclear to me and for
proofreading the document.

• Andrey A. Chernov <ache@freebsd.org>

• Bruce A. Mah <bmah@freebsd.org>

• Dag-Erling Smørgrav <des@freebsd.org>

• Giorgos Keramidas<keramida@freebsd.org>

• Ingvil Hovig <ingvil.hovig@skatteetaten.no>

• Jesper Holck<jeh.inf@cbs.dk>

• John Baldwin <jhb@freebsd.org>

• John Polstra <jdp@freebsd.org>

• Kirk McKusick <mckusick@freebsd.org>

• Mark Linimon <linimon@freebsd.org>

• Marleen Devos

• Niels Jørgenssen<nielsj@ruc.dk>

• Nik Clayton <nik@freebsd.org>

• Poul-Henning Kamp <phk@freebsd.org>

• Simon L. Nielsen <simon@freebsd.org>

1 This goes hand-in-hand with Brooks' law that “adding another person to a late project will make it later” since it will increase the communi-
cation needs Brooks, 1995. A project model is a tool to reduce the communication needs.

mailto:ache@freebsd.org
mailto:bmah@freebsd.org
mailto:des@freebsd.org
mailto:keramida@freebsd.org
mailto:ingvil.hovig@skatteetaten.no
mailto:jeh.inf@cbs.dk
mailto:jhb@freebsd.org
mailto:jdp@freebsd.org
mailto:mckusick@freebsd.org
mailto:linimon@freebsd.org
mailto:nielsj@ruc.dk
mailto:nik@freebsd.org
mailto:phk@freebsd.org
mailto:simon@freebsd.org

Chapter 1. Overview
A project model is a means to reduce the communications overhead in a project. As shown by [Brooks, 1995], in-
creasing the number of project participants increases the communication in the project exponentionally. FreeBSD
has during the past few years increased both its mass of active users and committers, and the communication in
the project has risen accordingly. This project model will serve to reduce this overhead by providing an up-to-
date description of the project.

During the Core elections in 2002, Mark Murray stated “I am opposed to a long rule-book, as that satisfies lawyer-
tendencies, and is counter to the technocentricity that the project so badly needs.” [FreeBSD, 2002B]. This project
model is not meant to be a tool to justify creating impositions for developers, but as a tool to facilitate coordination.
It is meant as a description of the project, with an overview of how the different processes are executed. It is an
introduction to how the FreeBSD project works.

The FreeBSD project model will be described as of July 1st, 2004. It is based on the Niels Jørgensen's paper [Jør-
gensen, 2001], FreeBSD's official documents, discussions on FreeBSD mailing lists and interviews with developers.

After providing definitions of terms used, this document will outline the organisational structure (including role
descriptions and communication lines), discuss the methodology model and after presenting the tools used for
process control, it will present the defined processes. Finally it will outline major sub-projects of the FreeBSD
project.

[FreeBSD, 2002A, Section 1.2 and 1.3] give the vision and the architectural guidelines for the project. The vision is
“To produce the best UNIX-like operating system package possible, with due respect to the original software tools
ideology as well as usability, performance and stability.” The architectural guidelines help determine whether a
problem that someone wants to be solved is within the scope of the project

Chapter 2. Definitions
2.1. Activity
An “activity” is an element of work performed during the course of a project [PMI, 2000]. It has an output and leads
towards an outcome. Such an output can either be an input to another activity or a part of the process' delivery.

2.2. Process
A “process” is a series of activities that lead towards a particular outcome. A process can consist of one or more
sub-processes. An example of a process is software design.

2.3. Hat
A “hat” is synonymous with role. A hat has certain responsibilities in a process and for the process outcome. The
hat executes activities. It is well defined what issues the hat should be contacted about by the project members
and people outside the project.

2.4. Outcome
An “outcome” is the final output of the process. This is synonymous with deliverable, that is defined as “any mea-
surable, tangible, verifiable outcome, result or item that must be produced to complete a project or part of a project.
Often used more narrowly in reference to an external deliverable, which is a deliverable that is subject to approval
by the project sponsor or customer” by [PMI, 2000]. Examples of outcomes are a piece of software, a decision made
or a report written.

2.5. FreeBSD
When saying “FreeBSD” we will mean the BSD derivative UNIX-like operating system FreeBSD, whereas when say-
ing “the FreeBSD Project” we will mean the project organisation.

Chapter 3. Organisational structure
While no-one takes ownership of FreeBSD, the FreeBSD organisation is divided into core, committers and contrib-
utors and is part of the FreeBSD community that lives around it.

Figure 3.1. The FreeBSD Project's structure

Number of committers has been determined by going through CVS logs from January 1st, 2004 to December 31st,
2004 and contributors by going through the list of contributions and problem reports.

The main resource in the FreeBSD community is its developers: the committers and contributors. It is with their
contributions that the project can move forward. Regular developers are referred to as contributors. As by January
1st, 2003, there are an estimated 5500 contributors on the project.

Committers are developers with the privilege of being able to commit changes. These are usually the most active
developers who are willing to spend their time not only integrating their own code but integrating code submitted
by the developers who do not have this privilege. They are also the developers who elect the core team, and they
have access to closed discussions.

The project can be grouped into four distinct separate parts, and most developers will focus their involvement
in one part of FreeBSD. The four parts are kernel development, userland development, ports and documentation.
When referring to the base system, both kernel and userland is meant.

This split changes our triangle to look like this:

Figure 3.2. The FreeBSD Project's structure with committers in categories

Number of committers per area has been determined by going through CVS logs from January 1st, 2004 to Decem-
ber 31st, 2004. Note that many committers work in multiple areas, making the total number higher than the real
number of committers. The total number of committers at that time was 269.

Committers fall into three groups: committers who are only concerned with one area of the project (for instance
le systems), committers who are involved only with one sub-project and committers who commit to different
parts of the code, including sub-projects. Because some committers work on different parts, the total number in
the committers section of the triangle is higher than in the above triangle.

The kernel is the main building block of FreeBSD. While the userland applications are protected against faults
in other userland applications, the entire system is vulnerable to errors in the kernel. This, combined with the
vast amount of dependencies in the kernel and that it is not easy to see all the consequences of a kernel change,
demands developers with a relative full understanding of the kernel. Multiple development efforts in the kernel
also requires a closer coordination than userland applications do.

The core utilities, known as userland, provide the interface that identifies FreeBSD, both user interface, shared
libraries and external interfaces to connecting clients. Currently, 162 people are involved in userland development
and maintenance, many being maintainers for their own part of the code. Maintainership will be discussed in the
Maintainership section.

Documentation is handled by The FreeBSD Documentation Project and includes all documents surrounding the
FreeBSD project, including the web pages. There were during 2004 101 people making commits to the FreeBSD
Documentation Project.

Ports is the collection of meta-data that is needed to make software packages build correctly on FreeBSD. An ex-
ample of a port is the port for the web-browser Mozilla. It contains information about where to fetch the source,
what patches to apply and how, and how the package should be installed on the system. This allows automated
tools to fetch, build and install the package. As of this writing, there are more than 12600 ports available. 1 , ranging
from web servers to games, programming languages and most of the application types that are in use on modern
computers. Ports will be discussed further in the section The Ports Subproject.

1 Statistics are generated by counting the number of entries in the le fetched by portsdb by April 1st, 2005. portsdb is a part of the port
sysutils/portupgrade.

6

Chapter 4. Methodology model
4.1. Development model
There is no defined model for how people write code in FreeBSD. However, Niels Jørgenssen has suggested a model
of how written code is integrated into the project.

Figure 4.1. Jørgenssen's model for change integration

The “development release” is the FreeBSD-CURRENT ("-CURRENT") branch and the “production release” is the
FreeBSD-STABLE branch ("-STABLE") [Jørgensen, 2001].

This is a model for one change, and shows that after coding, developers seek community review and try integrating
it with their own systems. After integrating the change into the development release, called FreeBSD-CURRENT,
it is tested by many users and developers in the FreeBSD community. After it has gone through enough testing,
it is merged into the production release, called FreeBSD-STABLE. Unless each stage is finished successfully, the
developer needs to go back and make modifications in the code and restart the process. To integrate a change with
either -CURRENT or -STABLE is called making a commit.

Jørgensen found that most FreeBSD developers work individually, meaning that this model is used in parallel
by many developers on the different ongoing development efforts. A developer can also be working on multiple
changes, so that while he is waiting for review or people to test one or more of his changes, he may be writing
another change.

As each commit represents an increment, this is a massively incremental model. The commits are in fact so fre-
quent that during one year 1 , 85427 commits were made, making a daily average of 233 commits.

Within the “code” bracket in Jørgensen's figure, each programmer has his own working style and follows his own
development models. The bracket could very well have been called “development” as it includes requirements
gathering and analysis, system and detailed design, implementation and verification. However, the only output
from these stages is the source code or system documentation.

From a stepwise model's perspective (such as the waterfall model), the other brackets can be seen as further ver-
ification and system integration. This system integration is also important to see if a change is accepted by the
community. Up until the code is committed, the developer is free to choose how much to communicate about it to
the rest of the project. In order for -CURRENT to work as a buer (so that bright ideas that had some undiscovered
drawbacks can be backed out) the minimum time a commit should be in -CURRENT before merging it to -STABLE
is 3 days. Such a merge is referred to as an MFC (Merge From Current).

It is important to notice the word “change”. Most commits do not contain radical new features, but are mainte-
nance updates.

The only exceptions from this model are security fixes and changes to features that are deprecated in the -CURRENT
branch. In these cases, changes can be committed directly to the -STABLE branch.

In addition to many people working on the project, there are many related projects to the FreeBSD Project. These
are either projects developing brand new features, sub-projects or projects whose outcome is incorporated into

1 The period from January 1st, 2004 to December 31st, 2004 was examined to nd this number.

Release branches

FreeBSD 2. These projects t into the FreeBSD Project just like regular development efforts: they produce code that
is integrated with the FreeBSD Project. However, some of them (like Ports and Documentation) have the privilege
of being applicable to both branches or commit directly to both -CURRENT and -STABLE.

There is no standards to how design should be done, nor is design collected in a centralised repository. The main
design is that of 4.4BSD. 3 As design is a part of the “Code” bracket in Jørgenssen's model, it is up to every developer
or sub-project how this should be done. Even if the design should be stored in a central repository, the output from
the design stages would be of limited use as the differences of methodologies would make them poorly if at all
interoperable. For the overall design of the project, the project relies on the sub-projects to negotiate t interfaces
between each other rather than to dictate interfacing.

4.2. Release branches
The releases of FreeBSD is best illustrated by a tree with many branches where each major branch represents a
major version. Minor versions are represented by branches of the major branches.

In the following release tree, arrows that follow one-another in a particular direction represent a branch. Boxes
with full lines and diamonds represent official releases. Boxes with dotted lines represent the development branch
at that time. Security branches are represented by ovals. Diamonds differ from boxes in that they represent a
fork, meaning a place where a branch splits into two branches where one of the branches becomes a sub-branch.
For example, at 4.0-RELEASE the 4.0-CURRENT branch split into 4-STABLE and 5.0-CURRENT. At 4.5-RELEASE, the
branch forked o a security branch called RELENG_4_5.

Figure 4.2. The FreeBSD release tree

The latest -CURRENT version is always referred to as -CURRENT, while the latest -STABLE release is always referred
to as -STABLE. In this figure, -STABLE refers to 4-STABLE while -CURRENT refers to 5.0-CURRENT following 5.0-
RELEASE. [FreeBSD, 2002E]

A “major release” is always made from the -CURRENT branch. However, the -CURRENT branch does not need to fork
at that point in time, but can focus on stabilising. An example of this is that following 3.0-RELEASE, 3.1-RELEASE was
also a continuation of the -CURRENT-branch, and -CURRENT did not become a true development branch until this
version was released and the 3-STABLE branch was forked. When -CURRENT returns to becoming a development

2 For instance, the development of the Bluetooth stack started as a sub-project until it was deemed stable enough to be merged into the -

CURRENT branch. Now it is a part of the core FreeBSD system.
3 According to Kirk McKusick, after 20 years of developing UNIX operating systems, the interfaces are for the most part figured out. There is

therefore no need for much design. However, new applications of the system and new hardware leads to some implementations being more

beneficial than those that used to be preferred. One example is the introduction of web browsing that made the normal TCP/IP connection a

short burst of data rather than a steady stream over a longer period of time.

8

Chapter 4. Methodology model

branch, it can only be followed by a major release. 5-STABLE is predicted to be forked o 5.0-CURRENT at around
5.3-RELEASE. It is not until 5-STABLE is forked that the development branch will be branded 6.0-CURRENT.

A “minor release” is made from the -CURRENT branch following a major release, or from the -STABLE branch.

Following and including, 4.3-RELEASE4, when a minor release has been made, it becomes a “security branch”. This
is meant for organisations that do not want to follow the -STABLE branch and the potential new/changed features
it offers, but instead require an absolutely stable environment, only updating to implement security updates. 5

Each update to a security branch is called a “patchlevel”. For every security enhancement that is done, the patch-
level number is increased, making it easy for people tracking the branch to see what security enhancements they
have implemented. In cases where there have been especially serious security aws, an entire new release can be
made from a security branch. An example of this is 4.6.2-RELEASE.

4.3. Model summary
To summarise, the development model of FreeBSD can be seen as the following tree:

Figure 4.3. The overall development model

The tree of the FreeBSD development with ongoing development efforts and continuous integration.

The tree symbolises the release versions with major versions spawning new main branches and minor versions
being versions of the main branch. The top branch is the -CURRENT branch where all new development is inte-
grated, and the -STABLE branch is the branch directly below it.

4 The rst release this actually happened for was 4.5-RELEASE, but security branches were at the same time created for 4.3-RELEASE and 4.4-

RELEASE.
5 There is a terminology overlap with respect to the word "stable", which leads to some confusion. The -STABLE branch is still a development

branch, whose goal is to be useful for most people. If it is never acceptable for a system to get changes that are not announced at the time it

is deployed, that system should run a security branch.

9

Model summary

Clouds of development efforts hang over the project where developers use the development models they see t.
The product of their work is then integrated into -CURRENT where it undergoes parallel debugging and is finally
merged from -CURRENT into -STABLE. Security fixes are merged from -STABLE to the security branches.

10

Chapter 5. Hats
Many committers have a special area of responsibility. These roles are called hats. These hats can be either project
roles, such as public relations officer, or maintainer for a certain area of the code. Because this is a project where
people give voluntarily of their spare time, people with assigned hats are not always available. They must therefore
appoint a deputy that can perform the hat's role in his or her absence. The other option is to have the role held
by a group.

Many of these hats are not formalised. Formalised hats have a charter stating the exact purpose of the hat along
with its privileges and responsibilities. The writing of such charters is a new part of the project, and has thus yet
to be completed for all hats. These hat descriptions are not such a formalisation, rather a summary of the role with
links to the charter where available and contact addresses.

5.1. General Hats
5.1.1. Contributor

A Contributor contributes to the FreeBSD project either as a developer, as an author, by sending problem reports,
or in other ways contributing to the progress of the project. A contributor has no special privileges in the FreeBSD
project. [FreeBSD, 2002F]

5.1.2. Committer

A person who has the required privileges to add his code or documentation to the repository. A committer has
made a commit within the past 12 months. [FreeBSD, 2000A] An active committer is a committer who has made
an average of one commit per month during that time.

It is worth noting that there are no technical barriers to prevent someone, once having gained commit privileges to
the main- or a sub-project, to make commits in parts of that project's source the committer did not specifically get
permission to modify. However, when wanting to make modifications to parts a committer has not been involved
in before, he/she should read the logs to see what has happened in this area before, and also read the MAINTAINER
le to see if the maintainer of this part has any special requests on how changes in the code should be made

5.1.3. Core Team

The core team is elected by the committers from the pool of committers and serves as the board of directors of
the FreeBSD project. It promotes active contributors to committers, assigns people to well-defined hats, and is the
final arbiter of decisions involving which way the project should be heading. As by July 1st, 2004, core consisted
of 9 members. Elections are held every two years.

5.1.4. Maintainership

Maintainership means that that person is responsible for what is allowed to go into that area of the code and
has the final say should disagreements over the code occur. This involves proactive work aimed at stimulating
contributions and reactive work in reviewing commits.

With the FreeBSD source comes the MAINTAINERS le that contains a one-line summary of how each maintainer
would like contributions to be made. Having this notice and contact information enables developers to focus on
the development effort rather than being stuck in a slow correspondence should the maintainer be unavailable
for some time.

If the maintainer is unavailable for an unreasonably long period of time, and other people do a significant amount
of work, maintainership may be switched without the maintainer's approval. This is based on the stance that main-
tainership should be demonstrated, not declared.

Maintainership of a particular piece of code is a hat that is not held as a group.

Official Hats

5.2. Official Hats
The official hats in the FreeBSD Project are hats that are more or less formalised and mainly administrative roles.
They have the authority and responsibility for their area. The following illustration shows the responsibility lines.
After this follows a description of each hat, including who it is held by.

Figure 5.1. Overview of ocial hats

All boxes consist of groups of committers, except for the dotted boxes where the holders are not necessarily com-
mitters. The flattened circles are sub-projects and consist of both committers and non-committers of the main
project.

5.2.1. Documentation project manager

The FreeBSD Documentation Project architect is responsible for defining and following up documentation goals
for the committers in the Documentation project.

Hat held by: The DocEng team <doceng@FreeBSD.org>. The DocEng Charter.

5.2.2. Postmaster

The Postmaster is responsible for mail being correctly delivered to the committers' email address. He is also re-
sponsible for ensuring that the mailing lists work and should take measures against possible disruptions of mail
such as having troll-, spam- and virus-filters.

Hat currently held by: the Postmaster Team <postmaster@FreeBSD.org>.

5.2.3. Release Coordination

The responsibilities of the Release Engineering Team are

• Setting, publishing and following a release schedule for official releases

• Documenting and formalising release engineering procedures

• Creation and maintenance of code branches

• Coordinating with the Ports and Documentation teams to have an updated set of packages and documentation
released with the new releases

• Coordinating with the Security team so that pending releases are not affected by recently disclosed vulnerabil-
ities.

Further information about the development process is available in the release engineering section.

12

mailto:doceng@FreeBSD.org
https://www.freebsd.org/internal/doceng.html
mailto:postmaster@FreeBSD.org

Chapter 5. Hats

Hat held by: the Release Engineering team <re@FreeBSD.org>. The Release Engineering Charter.

5.2.4. Public Relations & Corporate Liaison

The Public Relations & Corporate Liaison's responsibilities are:

• Making press statements when happenings that are important to the FreeBSD Project happen.

• Being the official contact person for corporations that are working close with the FreeBSD Project.

• Take steps to promote FreeBSD within both the Open Source community and the corporate world.

• Handle the “freebsd-advocacy” mailing list.

This hat is currently not occupied.

5.2.5. Security Officer

The Security Officer's main responsibility is to coordinate information exchange with others in the security com-
munity and in the FreeBSD project. The Security Officer is also responsible for taking action when security prob-
lems are reported and promoting proactive development behavior when it comes to security.

Because of the fear that information about vulnerabilities may leak out to people with malicious intent before a
patch is available, only the Security Officer, consisting of an officer, a deputy and two Core team members, receive
sensitive information about security issues. However, to create or implement a patch, the Security Officer has the
Security Officer Team <security-team@FreeBSD.org> to help do the work.

5.2.6. Source Repository Manager

The Source Repository Manager is the only one who is allowed to directly modify the repository without using the
SVN tool. It is his/her responsibility to ensure that technical problems that arise in the repository are resolved
quickly. The source repository manager has the authority to back out commits if this is necessary to resolve a SVN
technical problem.

Hat held by: the Source Repository Manager <clusteradm@FreeBSD.org>.

5.2.7. Election Manager

The Election Manager is responsible for the Core election process. The manager is responsible for running and
maintaining the election system, and is the final authority should minor unforeseen events happen in the election
process. Major unforeseen events have to be discussed with the Core team

Hat held only during elections.

5.2.8. Web site Management

The Web site Management hat is responsible for coordinating the rollout of updated web pages on mirrors around
the world, for the overall structure of the primary web site and the system it is running upon. The management
needs to coordinate the content with The FreeBSD Documentation Project and acts as maintainer for the “www”
tree.

Hat held by: the FreeBSD Webmasters <www@FreeBSD.org>.

5.2.9. Ports Manager

The Ports Manager acts as a liaison between The Ports Subproject and the core project, and all requests from the
project should go to the ports manager.

Hat held by: the Ports Management Team <portmgr@FreeBSD.org>. The Portmgr charter.

13

mailto:re@FreeBSD.org
https://www.freebsd.org/releng/charter.html
mailto:security-team@FreeBSD.org
mailto:clusteradm@FreeBSD.org
mailto:www@FreeBSD.org
mailto:portmgr@FreeBSD.org
https://www.freebsd.org/portmgr/charter.html

Standards

5.2.10. Standards

The Standards hat is responsible for ensuring that FreeBSD complies with the standards it is committed to , keeping
up to date on the development of these standards and notifying FreeBSD developers of important changes that
allows them to take a proactive role and decrease the time between a standards update and FreeBSD's compliancy.

Hat currently held by: Garrett Wollman <wollman@FreeBSD.org>.

5.2.11. Core Secretary

The Core Secretary's main responsibility is to write drafts to and publish the final Core Reports. The secretary also
keeps the core agenda, thus ensuring that no balls are dropped unresolved.

Hat currently held by: Matthew Seaman <matthew@FreeBSD.org>.

5.2.12. Bugmeister

The Bugmeister is responsible for ensuring that the maintenance database is in working order, that the entries are
correctly categorised and that there are no invalid entries.

Hat currently held by: the Bugmeister Team <bugmeister@FreeBSD.org>.

5.2.13. Donations Liaison Officer

The task of the donations liaison officer is to match the developers with needs with people or organisations willing
to make a donation. The Donations Liaison Charter is available here

Hat held by: the Donations Liaison Office <donations@FreeBSD.org>.

5.2.14. Admin

(Also called “FreeBSD Cluster Admin”)

The admin team consists of the people responsible for administrating the computers that the project relies on for
its distributed work and communication to be synchronised. It consists mainly of those people who have physical
access to the servers.

Hat held by: the Admin team <admin@FreeBSD.org>.

5.3. Process dependent hats
5.3.1. Report originator

The person originally responsible for filing a Problem Report.

5.3.2. Bugbuster

A person who will either nd the right person to solve the problem, or close the PR if it is a duplicate or otherwise
not an interesting one.

5.3.3. Mentor

A mentor is a committer who takes it upon him/her to introduce a new committer to the project, both in terms of
ensuring the new committers setup is valid, that the new committer knows the available tools required in his/her
work and that the new committer knows what is expected of him/her in terms of behavior.

5.3.4. Vendor

The person(s) or organisation whom external code comes from and whom patches are sent to.

14

mailto:wollman@FreeBSD.org
mailto:matthew@FreeBSD.org
mailto:bugmeister@FreeBSD.org
https://www.freebsd.org/donations/
mailto:donations@FreeBSD.org
mailto:admin@FreeBSD.org

Chapter 5. Hats

5.3.5. Reviewers

People on the mailing list where the request for review is posted.

15

Chapter 6. Processes
The following section will describe the defined project processes. Issues that are not handled by these processes
happen on an ad-hoc basis based on what has been customary to do in similar cases.

6.1. Adding new and removing old committers
The Core team has the responsibility of giving and removing commit privileges to contributors. This can only be
done through a vote on the core mailing list. The ports and documentation sub-projects can give commit privileges
to people working on these projects, but have to date not removed such privileges.

Normally a contributor is recommended to core by a committer. For contributors or outsiders to contact core
asking to be a committer is not well thought of and is usually rejected.

If the area of particular interest for the developer potentially overlaps with other committers' area of maintain-
ership, the opinion of those maintainers is sought. However, it is frequently this committer that recommends the
developer.

When a contributor is given committer status, he is assigned a mentor. The committer who recommended the new
committer will, in the general case, take it upon himself to be the new committers mentor.

When a contributor is given his commit bit, a PGP-signed email is sent from either Core Secretary, Ports Manager
or nik@freebsd.org to both admins@freebsd.org, the assigned mentor, the new committer and core confirming
the approval of a new account. The mentor then gathers a password line, SSH 2 public key and PGP key from the
new committer and sends them to Admin. When the new account is created, the mentor activates the commit bit
and guides the new committer through the rest of the initial process.

Figure 6.1. Process summary: adding a new committer

When a contributor sends a piece of code, the receiving committer may choose to recommend that the contributor
is given commit privileges. If he recommends this to core, they will vote on this recommendation. If they vote in
favour, a mentor is assigned the new committer and the new committer has to email his details to the administra-
tors for an account to be created. After this, the new committer is all set to make his rst commit. By tradition,
this is by adding his name to the committers list.

Recall that a committer is considered to be someone who has committed code during the past 12 months. However,
it is not until after 18 months of inactivity have passed that commit privileges are eligible to be revoked. [FreeBSD,
2002H] There are, however, no automatic procedures for doing this. For reactions concerning commit privileges
not triggered by time, see section 1.5.8.

Committing code

Figure 6.2. Process summary: removing a committer

When Core decides to clean up the committers list, they check who has not made a commit for the past 18 months.
Committers who have not done so have their commit bits revoked.

It is also possible for committers to request that their commit bit be retired if for some reason they are no longer
going to be actively committing to the project. In this case, it can also be restored at a later time by core, should
the committer ask.

Roles in this process:

1. Core team

2. Contributor

3. Committer

4. Maintainership

5. Mentor

[FreeBSD, 2000A] [FreeBSD, 2002H] [FreeBSD, 2002I]

6.2. Committing code
The committing of new or modified code is one of the most frequent processes in the FreeBSD project and will
usually happen many times a day. Committing of code can only be done by a “committer”. Committers commit
either code written by themselves, code submitted to them or code submitted through a problem report.

When code is written by the developer that is non-trivial, he should seek a code review from the community. This
is done by sending mail to the relevant list asking for review. Before submitting the code for review, he should
ensure it compiles correctly with the entire tree and that all relevant tests run. This is called “pre-commit test”.
When contributed code is received, it should be reviewed by the committer and tested the same way.

When a change is committed to a part of the source that has been contributed from an outside Vendor, the main-
tainer should ensure that the patch is contributed back to the vendor. This is in line with the open source philos-

18

Chapter 6. Processes

ophy and makes it easier to stay in sync with outside projects as the patches do not have to be reapplied every
time a new release is made.

After the code has been available for review and no further changes are necessary, the code is committed into
the development branch, -CURRENT. If the change applies for the -STABLE branch or the other branches as well, a
“Merge From Current” ("MFC") countdown is set by the committer. After the number of days the committer chose
when setting the MFC have passed, an email will automatically be sent to the committer reminding him to commit
it to the -STABLE branch (and possibly security branches as well). Only security critical changes should be merged
to security branches.

Delaying the commit to -STABLE and other branches allows for “parallel debugging” where the committed code is
tested on a wide range of configurations. This makes changes to -STABLE to contain fewer faults and thus giving
the branch its name.

Figure 6.3. Process summary: A committer commits code

When a committer has written a piece of code and wants to commit it, he rst needs to determine if it is trivial
enough to go in without prior review or if it should rst be reviewed by the developer community. If the code is
trivial or has been reviewed and the committer is not the maintainer, he should consult the maintainer before
proceeding. If the code is contributed by an outside vendor, the maintainer should create a patch that is sent back
to the vendor. The code is then committed and the deployed by the users. Should they nd problems with the
code, this will be reported and the committer can go back to writing a patch. If a vendor is affected, he can choose
to implement or ignore the patch.

Figure 6.4. Process summary: A contributor commits code

The difference when a contributor makes a code contribution is that he submits the code through the Bugzilla
interface. This report is picked up by the maintainer who reviews the code and commits it.

19

Core election

Hats included in this process are:

1. Committer

2. Contributor

3. Vendor

4. Reviewer

[FreeBSD, 2001] [Jørgensen, 2001]

6.3. Core election
Core elections are held at least every two years. 1 Nine core members are elected. New elections are held if the
number of core members drops below seven. New elections can also be held should at least 1/3 of the active com-
mitters demand this.

When an election is to take place, core announces this at least 6 weeks in advance, and appoints an election manager
to run the elections.

Only committers can be elected into core. The candidates need to submit their candidacy at least one week before
the election starts, but can refine their statements until the voting starts. They are presented in the candidates
list. When writing their election statements, the candidates must answer a few standard questions submitted by
the election manager.

During elections, the rule that a committer must have committed during the 12 past months is followed strictly.
Only these committers are eligible to vote.

When voting, the committer may vote once in support of up to nine nominees. The voting is done over a period of
four weeks with reminders being posted on “developers” mailing list that is available to all committers.

The election results are released one week after the election ends, and the new core team takes office one week
after the results have been posted.

Should there be a voting tie, this will be resolved by the new, unambiguously elected core members.

Votes and candidate statements are archived, but the archives are not publicly available.

Figure 6.5. Process summary: Core elections

1The rst Core election was held September 2000

20

http://election.uk.freebsd.org/candidates.html
http://election.uk.freebsd.org/candidates.html

Chapter 6. Processes

Core announces the election and selects an election manager. He prepares the elections, and when ready, candi-
dates can announce their candidacies through submitting their statements. The committers then vote. After the
vote is over, the election results are announced and the new core team takes office.

Hats in core elections are:

• Core team

• Committer

• Election Manager

[FreeBSD, 2000A] [FreeBSD, 2002B] [FreeBSD, 2002G]

6.4. Development of new features
Within the project there are sub-projects that are working on new features. These projects are generally done
by one person [Jørgensen, 2001]. Every project is free to organise development as it sees t. However, when the
project is merged to the -CURRENT branch it must follow the project guidelines. When the code has been well
tested in the -CURRENT branch and deemed stable enough and relevant to the -STABLE branch, it is merged to
the -STABLE branch.

The requirements of the project are given by developer wishes, requests from the community in terms of direct
requests by mail, Problem Reports, commercial funding for the development of features, or contributions by the
scientific community. The wishes that come within the responsibility of a developer are given to that developer
who prioritises his time between the request and his wishes. A common way to do this is maintain a TODO-list
maintained by the project. Items that do not come within someone's responsibility are collected on TODO-lists
unless someone volunteers to take the responsibility. All requests, their distribution and follow-up are handled
by the Bugzilla tool.

Requirements analysis happens in two ways. The requests that come in are discussed on mailing lists, both within
the main project and in the sub-project that the request belongs to or is spawned by the request. Furthermore,
individual developers on the sub-project will evaluate the feasibility of the requests and determine the prioritisa-
tion between them. Other than archives of the discussions that have taken place, no outcome is created by this
phase that is merged into the main project.

As the requests are prioritised by the individual developers on the basis of doing what they nd interesting, nec-
essary or are funded to do, there is no overall strategy or prioritisation of what requests to regard as requirements
and following up their correct implementation. However, most developers have some shared vision of what issues
are more important, and they can ask for guidelines from the release engineering team.

The verification phase of the project is two-fold. Before committing code to the current-branch, developers request
their code to be reviewed by their peers. This review is for the most part done by functional testing, but also code
review is important. When the code is committed to the branch, a broader functional testing will happen, that may
trigger further code review and debugging should the code not behave as expected. This second verification form
may be regarded as structural verification. Although the sub-projects themselves may write formal tests such as
unit tests, these are usually not collected by the main project and are usually removed before the code is committed
to the current branch. 2

6.5. Maintenance
It is an advantage to the project to for each area of the source have at least one person that knows this area well.
Some parts of the code have designated maintainers. Others have de-facto maintainers, and some parts of the

2 More and more tests are however performed when building the system (“make world”). These tests are however a very new addition and no

systematic framework for these tests have yet been created.

21

Problem reporting

system do not have maintainers. The maintainer is usually a person from the sub-project that wrote and integrated
the code, or someone who has ported it from the platform it was written for. 3 The maintainer's job is to make sure
the code is in sync with the project the code comes from if it is contributed code, and apply patches submitted by
the community or write fixes to issues that are discovered.

The main bulk of work that is put into the FreeBSD project is maintenance. [Jørgensen, 2001] has made a figure
showing the life cycle of changes.

Figure 6.6. Jørgenssen's model for change integration

Here “development release” refers to the -CURRENT branch while “production release” refers to the -STABLE
branch. The “pre-commit test” is the functional testing by peer developers when asked to do so or trying out the
code to determine the status of the sub-project. “Parallel debugging” is the functional testing that can trigger more
review, and debugging when the code is included in the -CURRENT branch.

As of this writing, there were 269 committers in the project. When they commit a change to a branch, that consti-
tutes a new release. It is very common for users in the community to track a particular branch. The immediate
existence of a new release makes the changes widely available right away and allows for rapid feedback from the
community. This also gives the community the response time they expect on issues that are of importance to them.
This makes the community more engaged, and thus allows for more and better feedback that again spurs more
maintenance and ultimately should create a better product.

Before making changes to code in parts of the tree that has a history unknown to the committer, the committer
is required to read the commit logs to see why certain features are implemented the way they are in order not to
make mistakes that have previously either been thought through or resolved.

6.6. Problem reporting
Before FreeBSD 10, FreeBSD included a problem reporting tool called send-pr . Problems include bug reports, fea-
ture requests, feature enhancements and notices of new versions of external software that are included in the
project. Although send-pr is available, users and developers are encouraged to submit issues using our problem
report form.

Problem reports are sent to an email address where it is inserted into the Problem Reports maintenance database. A
Bugbuster classifies the problem and sends it to the correct group or maintainer within the project. After someone
has taken responsibility for the report, the report is being analysed. This analysis includes verifying the problem
and thinking out a solution for the problem. Often feedback is required from the report originator or even from
the FreeBSD community. Once a patch for the problem is made, the originator may be asked to try it out. Finally,
the working patch is integrated into the project, and documented if applicable. It there goes through the regular
maintenance cycle as described in section maintenance. These are the states a problem report can be in: open,
analyzed, feedback, patched, suspended and closed. The suspended state is for when further progress is not possible
due to the lack of information or for when the task would require so much work that nobody is working on it at
the moment.

3 sendmail and named are examples of code that has been merged from other platforms.

22

https://bugs.freebsd.org/submit/
https://bugs.freebsd.org/submit/

Chapter 6. Processes

Figure 6.7. Process summary: problem reporting

A problem is reported by the report originator. It is then classified by a bugbuster and handed to the correct
maintainer. He verifies the problem and discusses the problem with the originator until he has enough information
to create a working patch. This patch is then committed and the problem report is closed.

The roles included in this process are:

1. Report originator

2. Maintainership

3. Bugbuster

[FreeBSD, 2002C]. [FreeBSD, 2002D]

6.7. Reacting to misbehavior
[FreeBSD, 2001] has a number of rules that committers should follow. However, it happens that these rules are
broken. The following rules exist in order to be able to react to misbehavior. They specify what actions will result
in how long a suspension the committer's commit privileges.

• Committing during code freezes without the approval of the Release Engineering team - 2 days

• Committing to a security branch without approval - 2 days

• Commit wars - 5 days to all participating parties

• Impolite or inappropriate behavior - 5 days

[Lehey, 2002]

For the suspensions to be efficient, any single core member can implement a suspension before discussing it on the
“core” mailing list. Repeat offenders can, with a 2/3 vote by core, receive harsher penalties, including permanent
removal of commit privileges. (However, the latter is always viewed as a last resort, due to its inherent tendency to
create controversy). All suspensions are posted to the “developers” mailing list, a list available to committers only.

It is important that you cannot be suspended for making technical errors. All penalties come from breaking social
etiquette.

Hats involved in this process:

• Core team

• Committer

23

Release engineering

6.8. Release engineering
The FreeBSD project has a Release Engineering team with a principal release engineer that is responsible for cre-
ating releases of FreeBSD that can be brought out to the user community via the net or sold in retail outlets. Since
FreeBSD is available on multiple platforms and releases for the different architectures are made available at the
same time, the team has one person in charge of each architecture. Also, there are roles in the team responsible for
coordinating quality assurance efforts, building a package set and for having an updated set of documents. When
referring to the release engineer, a representative for the release engineering team is meant.

When a release is coming, the FreeBSD project changes shape somewhat. A release schedule is made containing
feature- and code-freezes, release of interim releases and the final release. A feature-freeze means no new features
are allowed to be committed to the branch without the release engineers' explicit consent. Code-freeze means no
changes to the code (like bugs-fixes) are allowed to be committed without the release engineers explicit consent.
This feature- and code-freeze is known as stabilising. During the release process, the release engineer has the full
authority to revert to older versions of code and thus "back out" changes should he nd that the changes are not
suitable to be included in the release.

There are three different kinds of releases:

1. .0 releases are the rst release of a major version. These are branched of the -CURRENT branch and have a
significantly longer release engineering cycle due to the unstable nature of the -CURRENT branch

2. .X releases are releases of the -STABLE branch. They are scheduled to come out every 4 months.

3. .X.Y releases are security releases that follow the .X branch. These come out only when sufficient security fixes
have been merged since the last release on that branch. New features are rarely included, and the security team
is far more involved in these than in regular releases.

For releases of the -STABLE-branch, the release process starts 45 days before the anticipated release date. During
the rst phase, the rst 15 days, the developers merge what changes they have had in -CURRENT that they want
to have in the release to the release branch. When this period is over, the code enters a 15 day code freeze in which
only bug fixes, documentation updates, security-related fixes and minor device driver changes are allowed. These
changes must be approved by the release engineer in advance. At the beginning of the last 15 day period a release
candidate is created for widespread testing. Updates are less likely to be allowed during this period, except for
important bug fixes and security updates. In this final period, all releases are considered release candidates. At the
end of the release process, a release is created with the new version number, including binary distributions on web
sites and the creation of a CD-ROM images. However, the release is not considered "really released" until a PGP-
signed message stating exactly that, is sent to the mailing list freebsd-announce; anything labelled as a "release"
before that may well be in-process and subject to change before the PGP-signed message is sent. 4.

The releases of the -CURRENT-branch (that is, all releases that end with “.0”) are very similar, but with twice as long
timeframe. It starts 8 weeks prior to the release with announcement of the release time line. Two weeks into the
release process, the feature freeze is initiated and performance tweaks should be kept to a minimum. Four weeks
prior to the release, an official beta version is made available. Two weeks prior to release, the code is officially
branched into a new version. This version is given release candidate status, and as with the release engineering of
-STABLE, the code freeze of the release candidate is hardened. However, development on the main development
branch can continue. Other than these differences, the release engineering processes are alike.

.0 releases go into their own branch and are aimed mainly at early adopters. The branch then goes through a
period of stabilisation, and it is not until the Release Engineering Team [13] decides the demands to stability have
been satisfied that the branch becomes -STABLE and -CURRENT targets the next major version. While this for the
majority has been with .1 versions, this is not a demand.

Most releases are made when a given date that has been deemed a long enough time since the previous release
comes. A target is set for having major releases every 18 months and minor releases every 4 months. The user
community has made it very clear that security and stability cannot be sacrificed by self-imposed deadlines and

4 Many commercial vendors use these images to create CD-ROMs that are sold in retail outlets.

24

Chapter 6. Processes

target release dates. For slips of time not to become too long with regards to security and stability issues, extra
discipline is required when committing changes to -STABLE.

Figure 6.8. Process summary: release engineering

These are the stages in the release engineering process. Multiple release candidates may be created until the release
is deemed stable enough to be released.

[FreeBSD, 2002E]

25

Chapter 7. Tools
The major support tools for supporting the development process are Perforce, Bugzilla, Mailman, and OpenSSH.
These are externally developed tools and are commonly used in the open source world.

7.1. Subversion (SVN)
Subversion (“SVN”) is a system to handle multiple versions of text les and tracking who committed what changes
and why. A project lives within a “repository” and different versions are considered different “branches”.

7.2. Bugzilla
Bugzilla is a maintenance database consisting of a set of tools to track bugs at a central site. It supports the bug
tracking process for sending and handling bugs as well as querying and updating the database and editing bug
reports. The project uses its web interface to send “Problem Reports” to the projects central Bugzilla server. The
committers also have web and command-line clients.

7.3. Mailman
Mailman is a program that automates the management of mailing lists. The FreeBSD Project uses it to run 16
general lists, 60 technical lists, 4 limited lists and 5 lists with CVS commit logs. It is also used for many mailing
lists set up and used by other people and projects in the FreeBSD community. General lists are lists for the general
public, technical lists are mainly for the development of specific areas of interest, and closed lists are for internal
communication not intended for the general public. The majority of all the communication in the project goes
through these 85 lists [FreeBSD, 2003A, Appendix C].

7.4. Perforce
Perforce is a commercial software configuration management system developed by Perforce Systems that is avail-
able on over 50 operating systems. It is a collection of clients built around the Perforce server that contains the
central le repository and tracks the operations done upon it. The clients are both clients for accessing the repos-
itory and administration of its configuration.

7.5. Pretty Good Privacy
Pretty Good Privacy, better known as PGP, is a cryptosystem using a public key architecture to allow people to
digitally sign and/or encrypt information in order to ensure secure communication between two parties. A sig-
nature is used when sending information out many recipients, enabling them to verify that the information has
not been tampered with before they received it. In the FreeBSD Project this is the primary means of ensuring that
information has been written by the person who claims to have written it, and not altered in transit.

7.6. Secure Shell
Secure Shell is a standard for securely logging into a remote system and for executing commands on the remote
system. It allows other connections, called tunnels, to be established and protected between the two involved
systems. This standard exists in two primary versions, and only version two is used for the FreeBSD Project. The
most common implementation of the standard is OpenSSH that is a part of the project's main distribution. Since
its source is updated more often than FreeBSD releases, the latest version is also available in the ports tree.

Chapter 8. Sub-projects
Sub-projects are formed to reduce the amount of communication needed to coordinate the group of developers.
When a problem area is sufficiently isolated, most communication would be within the group focusing on the
problem, requiring less communication with the groups they communicate with than were the group not isolated.

8.1. The Ports Subproject
A “port” is a set of meta-data and patches that are needed to fetch, compile and install correctly an external piece
of software on a FreeBSD system. The amount of ports have grown at a tremendous rate, as shown by the following
figure.

Figure 8.1. Number of ports added between 1996 and 2005

Figure 8.1, “Number of ports added between 1996 and 2005” is taken from the FreeBSD web site. It shows the num-
ber of ports available to FreeBSD in the period 1995 to 2005. It looks like the curve has rst grown exponentionally,
and then since the middle of 2001 grown linearly.

As the external software described by the port often is under continued development, the amount of work required
to maintain the ports is already large, and increasing. This has led to the ports part of the FreeBSD project gaining
a more empowered structure, and is more and more becoming a sub-project of the FreeBSD project.

Ports has its own core team with the Ports Manager as its leader, and this team can appoint committers without
FreeBSD Core's approval. Unlike in the FreeBSD Project, where a lot of maintenance frequently is rewarded with a
commit bit, the ports sub-project contains many active maintainers that are not committers.

Unlike the main project, the ports tree is not branched. Every release of FreeBSD follows the current ports collec-
tion and has thus available updated information on where to nd programs and how to build them. This, however,
means that a port that makes dependencies on the system may need to have variations depending on what version
of FreeBSD it runs on.

With an unbranched ports repository it is not possible to guarantee that any port will run on anything other than
-CURRENT and -STABLE, in particular older, minor releases. There is neither the infrastructure nor volunteer time
needed to guarantee this.

https://www.freebsd.org/ports/growth/status.png

The FreeBSD Documentation Project

For efficiency of communication, teams depending on Ports, such as the release engineering team, have their own
ports liaisons.

8.2. The FreeBSD Documentation Project
The FreeBSD Documentation project was started January 1995. From the initial group of a project leader, four team
leaders and 16 members, they are now a total of 44 committers. The documentation mailing list has just under 300
members, indicating that there is quite a large community around it.

The goal of the Documentation project is to provide good and useful documentation of the FreeBSD project, thus
making it easier for new users to get familiar with the system and detailing advanced features for the users.

The main tasks in the Documentation project are to work on current projects in the “FreeBSD Documentation Set”,
and translate the documentation to other languages.

Like the FreeBSD Project, documentation is split in the same branches. This is done so that there is always an
updated version of the documentation for each version. Only documentation errors are corrected in the security
branches.

Like the ports sub-project, the Documentation project can appoint documentation committers without FreeBSD
Core's approval. [FreeBSD, 2003B].

The Documentation project has a primer. This is used both to introduce new project members to the standard tools
and syntaxes and acts as a reference when working on the project.

30

References
[1] Frederick P. Brooks. Copyright © 1975, 1995 Pearson Education Limited. 0201835959. Addison-Wesley Pub Co.

The Mythical Man-Month. Essays on Software Engineering, Anniversary Edition (2nd Edition).

[2] Niklas Saers. Copyright © 2003. A project model for the FreeBSD Project. Candidatus Scientiarum thesis. http://
niklas.saers.com/thesis.

[3] Niels Jørgensen. Copyright © 2001. Putting it All in the Trunk. Incremental Software Development in the FreeBSD
Open Source Project. http://www.dat.ruc.dk/~nielsj/research/papers/freebsd.pdf.

[4] Project Management Institute. Copyright © 1996, 2000 Project Management Institute. 1-880410-23-0. Project
Management Institute. Newtown Square Pennsylvania USA . PMBOK Guide. A Guide to the Project Man-
agement Body of Knowledge, 2000 Edition.

[5] Copyright © 2002 The FreeBSD Project. Core Bylaws. https://www.freebsd.org/internal/bylaws.html.

[6] Copyright © 2002 The FreeBSD Documentation Project. FreeBSD Developer's Handbook. https://www.freebs-
d.org/doc/en_US.ISO8859-1/books/developers-handbook/.

[7] Copyright © 2002 The FreeBSD Project. Core team election 2002. http://election.uk.freebsd.org/candidates.html.

[8] Dag-Erling Smørgrav and Hiten Pandya. Copyright © 2002 The FreeBSD Documentation Project. The FreeBSD
Documentation Project. Problem Report Handling Guidelines. https://www.freebsd.org/doc/en/articles/pr-
guidelines/article.html.

[9] Dag-Erling Smørgrav. Copyright © 2002 The FreeBSD Documentation Project. The FreeBSD Documentation
Project. Writing FreeBSD Problem Reports. https://www.freebsd.org/doc/en/articles/problem-reports/ar-
ticle.html.

[10] Copyright © 2001 The FreeBSD Documentation Project. The FreeBSD Documentation Project. Committers Guide.
https://www.freebsd.org/doc/en/articles/committers-guide/article.html.

[11] Murray Stokely. Copyright © 2002 The FreeBSD Documentation Project. The FreeBSD Documentation
Project. FreeBSD Release Engineering. https://www.freebsd.org/doc/en_US.ISO8859-1/articles/releng/ar-
ticle.html.

[12] The FreeBSD Documentation Project. FreeBSD Handbook. https://www.freebsd.org/doc/en_US.ISO8859-1/
books/handbook.

[13] Copyright © 2002 The FreeBSD Documentation Project. The FreeBSD Documentation Project. Contributors to
FreeBSD. https://www.freebsd.org/doc/en_US.ISO8859-1/articles/contributors/article.html.

[14] Copyright © 2002 The FreeBSD Project. The FreeBSD Project. Core team elections 2002. http://election.uk.freeb-
sd.org.

[15] Copyright © 2002 The FreeBSD Project. The FreeBSD Project. Commit Bit Expiration Policy. 2002/04/06 15:35:30.
https://www.freebsd.org/internal/expire-bits.html.

[16] Copyright © 2002 The FreeBSD Project. The FreeBSD Project. New Account Creation Procedure. 2002/08/19
17:11:27. https://www.freebsd.org/internal/new-account.html.

[17] Copyright © 2002 The FreeBSD Documentation Project. The FreeBSD Documentation Project. FreeBSD DocEng
Team Charter. 2003/03/16 12:17. https://www.freebsd.org/internal/doceng.html.

[18] Greg Lehey. Copyright © 2002 Greg Lehey. Greg Lehey. Two years in the trenches. The evolution of a software
project. http://www.lemis.com/grog/In-the-trenches.pdf.

	A project model for the FreeBSD Project
	Table of Contents
	Foreword
	Chapter 1. Overview
	Chapter 2. Definitions
	2.1. Activity
	2.2. Process
	2.3. Hat
	2.4. Outcome
	2.5. FreeBSD

	Chapter 3. Organisational structure
	Chapter 4. Methodology model
	4.1. Development model
	4.2. Release branches
	4.3. Model summary

	Chapter 5. Hats
	5.1. General Hats
	5.1.1. Contributor
	5.1.2. Committer
	5.1.3. Core Team
	5.1.4. Maintainership

	5.2. Official Hats
	5.2.1. Documentation project manager
	5.2.2. Postmaster
	5.2.3. Release Coordination
	5.2.4. Public Relations & Corporate Liaison
	5.2.5. Security Officer
	5.2.6. Source Repository Manager
	5.2.7. Election Manager
	5.2.8. Web site Management
	5.2.9. Ports Manager
	5.2.10. Standards
	5.2.11. Core Secretary
	5.2.12. Bugmeister
	5.2.13. Donations Liaison Officer
	5.2.14. Admin

	5.3. Process dependent hats
	5.3.1. Report originator
	5.3.2. Bugbuster
	5.3.3. Mentor
	5.3.4. Vendor
	5.3.5. Reviewers

	Chapter 6. Processes
	6.1. Adding new and removing old committers
	6.2. Committing code
	6.3. Core election
	6.4. Development of new features
	6.5. Maintenance
	6.6. Problem reporting
	6.7. Reacting to misbehavior
	6.8. Release engineering

	Chapter 7. Tools
	7.1. Subversion (SVN)
	7.2. Bugzilla
	7.3. Mailman
	7.4. Perforce
	7.5. Pretty Good Privacy
	7.6. Secure Shell

	Chapter 8. Sub-projects
	8.1. The Ports Subproject
	8.2. The FreeBSD Documentation Project

	References

