Frequently Asked Questions for FreeBSD
 10.X and 11.X
Table of Contents
	1. Introduction
	2. Documentation and Support
	3. Installation
	4. Hardware Compatibility	4.1. General
	4.2. Architectures and Processors
	4.3. Hard Drives, Tape Drives, and CD and DVD Drives
	4.4. Keyboards and Mice
	4.5. Other Hardware

	5. Troubleshooting
	6. User Applications
	7. Kernel Configuration
	8. Disks, File Systems, and Boot Loaders
	9. ZFS
	10. System Administration
	11. The X Window System and Virtual Consoles
	12. Networking
	13. Security
	14. PPP
	15. Serial Communications
	16. Miscellaneous Questions
	17. The FreeBSD Funnies
	18. Advanced Topics
	19. Acknowledgments
	Bibliography

Frequently Asked Questions for FreeBSD
 10.X and 11.X
The FreeBSD Documentation Project

Revision: 51553Copyright © 1995-2017 The FreeBSD Documentation Project
CopyrightLegal NoticeAbstract
This is the Frequently Asked Questions
	(FAQ) for FreeBSD versions
	10.X and 11.X. Every effort has been made to
	make this FAQ as informative as possible;
	if you have any suggestions as to how it may be improved, send
	them to the FreeBSD documentation project mailing list.
The latest version of this document is always available
	from the FreeBSD
	 website. It may also be downloaded as one large
	HTML file with HTTP or as
	a variety of other formats from the FreeBSD FTP
	 server.

 [

	 Split HTML
	
 /
 Single HTML
]

Chapter 1. Introduction
	1.1.
	What is FreeBSD?

		FreeBSD is a modern operating system for desktops,
	 laptops, servers, and embedded systems with support for a
	 large number of platforms.
It is based on U.C. Berkeley's
	 “4.4BSD-Lite” release, with some
	 “4.4BSD-Lite2” enhancements. It is also
	 based indirectly on William Jolitz's port of U.C.
	 Berkeley's “Net/2” to the i386™, known as
	 “386BSD”, though very little of the 386BSD
	 code remains.
FreeBSD is used by companies, Internet Service Providers,
	 researchers, computer professionals, students and home
	 users all over the world in their work, education and
	 recreation.
For more detailed information on FreeBSD, refer to the
	 FreeBSD
	 Handbook.

	1.2.
	What is the goal of the FreeBSD Project?

		The goal of the FreeBSD Project is to provide a stable
	 and fast general purpose operating system that may be used
	 for any purpose without strings attached.

	1.3.
	Does the FreeBSD license have any restrictions?

		Yes. Those restrictions do not control how the code
	 is used, but how to treat the FreeBSD Project itself.
	 The license itself is available at
	 license
	 and can be summarized like this:
	Do not claim that you wrote this.

	Do not sue us if it breaks.

	Do not remove or modify the license.

Many of us have a significant investment in the
	 project and would certainly not mind a little financial
	 compensation now and then, but we definitely do not insist
	 on it. We believe that our first and foremost
	 “mission” is to provide code to any and all
	 comers, and for whatever purpose, so that the code gets
	 the widest possible use and provides the widest possible
	 benefit. This, we believe, is one of the most fundamental
	 goals of Free Software and one that we enthusiastically
	 support.
Code in our source tree which falls under the GNU
	 General Public License (GPL) or GNU
	 Library General Public License (LGPL) comes with
	 slightly more strings attached, though at least on the
	 side of enforced access rather than the usual opposite.
	 Due to the additional complexities that can evolve in the
	 commercial use of GPL software, we do, however, endeavor
	 to replace such software with submissions under the more
	 relaxed FreeBSD
	 license whenever possible.

	1.4.
	Can FreeBSD replace my current operating system?

		For most people, yes. But this question is not quite
	 that cut-and-dried.
Most people do not actually use an operating system.
	 They use applications. The applications are what really
	 use the operating system. FreeBSD is designed to provide a
	 robust and full-featured environment for applications. It
	 supports a wide variety of web browsers, office suites,
	 email readers, graphics programs, programming
	 environments, network servers, and much more.
	 Most of these applications can be
	 managed through the Ports
	 Collection.
If an application is only available on one operating
	 system, that operating system cannot just be replaced.
	 Chances are, there is a very similar application on FreeBSD,
	 however. As a solid office or Internet server or a
	 reliable workstation, FreeBSD will almost certainly do
	 everything you need. Many computer users across the
	 world, including both novices and experienced UNIX®
	 administrators, use FreeBSD as their only desktop operating
	 system.
Users migrating to FreeBSD from another UNIX®-like
	 environment will find FreeBSD to be similar.
	 Windows® and Mac OS® users may be interested in instead
	 using TrueOS, a
	 FreeBSD-based desktop distribution. Non-UNIX® users should
	 expect to invest some additional time learning the
	 UNIX® way of doing things. This FAQ
	 and the FreeBSD
	 Handbook are excellent places to start.

	1.5.
	Why is it called FreeBSD?

			It may be used free of charge, even by commercial
		users.

	Full source for the operating system is freely
		available, and the minimum possible restrictions have
		been placed upon its use, distribution and
		incorporation into other work (commercial or
		non-commercial).

	Anyone who has an improvement or bug fix is free
		to submit their code and have it added to the source
		tree (subject to one or two obvious
		provisions).

It is worth pointing out that the word
	 “free” is being used in two ways here: one
	 meaning “at no cost” and the other meaning
	 “do whatever you like”. Apart from
	 one or two things you cannot do with
	 the FreeBSD code, for example pretending you wrote it, you
	 can really do whatever you like with it.

	1.6.
	What are the differences between FreeBSD and NetBSD,
	 OpenBSD, and other open source BSD operating
	 systems?

		James Howard wrote a good explanation of the history
	 and differences between the various projects, called The
	 BSD Family Tree which goes a fair way to
	 answering this question. Some of the information is out
	 of date, but the history portion in particular remains
	 accurate.
Most of the BSDs share patches and code, even today.
	 All of the BSDs have common ancestry.
The design goals of FreeBSD are described in Q: 1.2, above. The design goals of
	 the other most popular BSDs may be summarized as
	 follows:
	OpenBSD aims for operating system security above
		all else. The OpenBSD team wrote ssh(1) and
		pf(4), which have both been ported to
		FreeBSD.

	NetBSD aims to be easily ported to other hardware
		platforms.

	DragonFly BSD is a fork of FreeBSD 4.8 that
		has since developed many interesting features of its
		own, including the HAMMER file system and support for
		user-mode “vkernels”.

	1.7.
	What is the latest version of FreeBSD?

		At any point in the development of FreeBSD, there can be
	 multiple parallel branches. 11.X releases are made
	 from the 11-STABLE branch, and 10.X releases are
	 made from the 10-STABLE branch.
Up until the release of 9.0, the 10.X series
	 was the one known as -STABLE.
	 However, as of 12.X, the 10.X branch
	 will be designated for an “extended support”
	 status and receive only fixes for major problems, such as
	 security-related fixes.
	
Version 11.1
	 is the latest release from the 11-STABLE branch; it was
	 released in July 2017. Version 10.4
	 is the latest release from the 10-STABLE branch; it
	 was released in October 2017.
Releases are made every
	 few months. While many people stay more
	 up-to-date with the FreeBSD sources (see the questions on
	 FreeBSD-CURRENT and FreeBSD-STABLE) than that, doing so
	 is more of a commitment, as the sources are a moving
	 target.
More information on FreeBSD releases can be found on the
	 Release
	 Engineering page and in release(7).

	1.8.
	What is FreeBSD-CURRENT?

		FreeBSD-CURRENT
	 is the development version of the operating system, which
	 will in due course become the new FreeBSD-STABLE branch. As
	 such, it is really only of interest to developers working
	 on the system and die-hard hobbyists. See the relevant
	 section in the Handbook
	 for details on running
	 -CURRENT.
Users not familiar with FreeBSD should not use
	 FreeBSD-CURRENT. This branch sometimes evolves quite quickly
	 and due to mistake can be un-buildable at times. People
	 that use FreeBSD-CURRENT are expected to be able to analyze,
	 debug, and report problems.
FreeBSD snapshot
	 releases are made based on the current state of the
	 -CURRENT and
	 -STABLE branches. The goals behind
	 each snapshot release are:
	To test the latest version of the installation
		software.

	To give people who would like to run
		-CURRENT or
		-STABLE but who do not have the
		time or bandwidth to follow it on a day-to-day basis
		an easy way of bootstrapping it onto their
		systems.

	To preserve a fixed reference point for the code
		in question, just in case we break something really
		badly later. (Although Subversion normally prevents
		anything horrible like this happening.)

	To ensure that all new features and fixes in need
		of testing have the greatest possible number of
		potential testers.

No claims are made that any
	 -CURRENT snapshot can be considered
	 “production quality” for any purpose.
	 If a stable and fully tested system is needed,
	 stick to full releases.
Snapshot releases are directly available from snapshot.
Official snapshots are generated on a regular
	 basis for all actively developed branches.

	1.9.
	What is the FreeBSD-STABLE
	 concept?

		Back when FreeBSD 2.0.5 was released, FreeBSD
	 development branched in two. One branch was named -STABLE,
	 one -CURRENT.
	 FreeBSD-STABLE is the development branch
	 from which major releases are made. Changes go into this
	 branch at a slower pace and with the general assumption
	 that they have first been tested in FreeBSD-CURRENT.
	 However, at any given time, the sources for FreeBSD-STABLE
	 may or may not be suitable for general use, as it may
	 uncover bugs and corner cases that were not yet found in
	 FreeBSD-CURRENT. Users who do not have the resources to
	 perform testing should instead run the most recent release
	 of FreeBSD.
	 FreeBSD-CURRENT, on the other hand, has
	 been one unbroken line since 2.0 was released, leading
	 towards 11.1-RELEASE and beyond. For more
	 detailed information on branches see “FreeBSD
	 Release Engineering: Creating the Release
	 Branch”, the status of the branches and
	 the upcoming release schedule can be found on the Release
	 Engineering Information page.
11.1-STABLE is the actively developed
	 -STABLE branch. The latest release
	 on the 11.1-STABLE branch is
	 11.1-RELEASE, which was released in
	 July 2017.
The 12-CURRENT branch is the actively developed
	 -CURRENT branch toward the next
	 generation of FreeBSD. See What is
	 FreeBSD-CURRENT? for more information on this
	 branch.

	1.10.
	When are FreeBSD releases made?

		The Release Engineering Team <re@FreeBSD.org> releases a new major version of FreeBSD about
	 every 18 months and a new minor version about every 8
	 months, on average. Release dates are announced well in
	 advance, so that the people working on the system know
	 when their projects need to be finished and tested. A
	 testing period precedes each release, to ensure that the
	 addition of new features does not compromise the stability
	 of the release. Many users regard this caution as one of
	 the best things about FreeBSD, even though waiting for all
	 the latest goodies to reach -STABLE
	 can be a little frustrating.
More information on the release engineering process
	 (including a schedule of upcoming releases) can be found
	 on the release
	 engineering pages on the FreeBSD Web site.
For people who need or want a little more excitement,
	 binary snapshots are made weekly as discussed
	 above.

	1.11.
	Who is responsible for FreeBSD?

		The key decisions concerning the FreeBSD project, such as
	 the overall direction of the project and who is allowed to
	 add code to the source tree, are made by a core
	 team of 9 people. There is a much larger team of
	 more than 350 committers
	 who are authorized to make changes directly to the FreeBSD
	 source tree.
However, most non-trivial changes are discussed in
	 advance in the mailing
	 lists, and there are no restrictions on who may
	 take part in the discussion.

	1.12.
	Where can I get FreeBSD?

		Every significant release of FreeBSD is available via
	 anonymous FTP from the FreeBSD
	 FTP site:
	The latest 11-STABLE release,
		11.1-RELEASE can be found in the 11.1-RELEASE
		 directory.

	Snapshot
		releases are made monthly for the -CURRENT and -STABLE branch, these being
		of service purely to bleeding-edge testers and
		developers.

	The latest 10-STABLE release,
		10.4-RELEASE can be found in the 10.4-RELEASE
		 directory.

Information about obtaining FreeBSD on CD, DVD, and other
	 media can be found in the
	 Handbook.

	1.13.
	How do I access the Problem Report database?

		The Problem Report database of all user change
	 requests may be queried by using our web-based PR query
	 interface.
The web-based
	 problem report submission interface can be used
	 to submit problem reports through a web browser.
Before submitting a problem report, read Writing
	 FreeBSD Problem Reports, an article on how to write
	 good problem reports.

Chapter 2. Documentation and Support
	2.1.
	What good books are there about FreeBSD?

		The project produces a wide range of documentation,
	 available online from this link: https://www.FreeBSD.org/docs.html.
	 In addition, the Bibliography at the
	 end of this FAQ, and the
	 one in the Handbook reference other recommended
	 books.

	2.2.
	Is the documentation available in other formats, such
	 as plain text (ASCII), or PostScript®?

		Yes. The documentation is available in a number of
	 different formats and compression schemes on the FreeBSD FTP
	 site, in the /pub/FreeBSD/doc/
	 directory.
The documentation is categorized in a number of
	 different ways. These include:
	The document's name, such as
		faq, or
		handbook.

	The document's language and encoding. These are
		based on the locale names found under
		/usr/share/locale on a FreeBSD
		system. The current languages and encodings
		are as follows:
	Name	Meaning
	en_US.ISO8859-1	English (United States)
	bn_BD.ISO10646-1	Bengali or Bangla (Bangladesh)
	da_DK.ISO8859-1	Danish (Denmark)
	de_DE.ISO8859-1	German (Germany)
	el_GR.ISO8859-7	Greek (Greece)
	es_ES.ISO8859-1	Spanish (Spain)
	fr_FR.ISO8859-1	French (France)
	hu_HU.ISO8859-2	Hungarian (Hungary)
	it_IT.ISO8859-15	Italian (Italy)
	ja_JP.eucJP	Japanese (Japan, EUC encoding)
	mn_MN.UTF-8	Mongolian (Mongolia, UTF-8
			encoding)
	nl_NL.ISO8859-1	Dutch (Netherlands)
	no_NO.ISO8859-1	Norwegian (Norway)
	pl_PL.ISO8859-2	Polish (Poland)
	pt_BR.ISO8859-1	Portuguese (Brazil)
	ru_RU.KOI8-R	Russian (Russia, KOI8-R encoding)
	sr_YU.ISO8859-2	Serbian (Serbia)
	tr_TR.ISO8859-9	Turkish (Turkey)
	zh_CN.UTF-8	Simplified Chinese (China, UTF-8
			encoding)
	zh_TW.UTF-8	Traditional Chinese (Taiwan, UTF-8
			encoding)

Note:
Some documents may not be available in all
		 languages.

	The document's format. We produce the
		documentation in a number of different output formats.
		Each format has its own advantages and disadvantages.
		Some formats are better suited for online reading,
		while others are meant to be aesthetically pleasing
		when printed on paper. Having the documentation
		available in any of these formats ensures that our
		readers will be able to read the parts they are
		interested in, either on their monitor, or on paper
		after printing the documents. The currently available
		formats are:
	Format	Meaning
	html-split	A collection of small, linked, HTML
			files.
	html	One large HTML file containing the entire
			document
	pdf	Adobe's Portable Document Format
	ps	PostScript®
	rtf	Microsoft®'s Rich Text Format
	txt	Plain text

Note:
Page numbers are not automatically updated when
		 loading Rich Text Format into Word. Press Ctrl+A,
		 Ctrl+End,
		 F9 after loading the document, to
		 update the page numbers.

	The compression and packaging scheme.
	Where the format is
		 html-split, the files are
		 bundled up using tar(1). The resulting
		 .tar file is then compressed
		 using the compression schemes detailed in the next
		 point.

	All the other formats generate one file. For
		 example,
		 article.pdf,
		 book.html, and so on.
These files are then compressed using either
		 the zip or
		 bz2 compression schemes.
		 tar(1) can be used to uncompress these
		 files.
So the PostScript® version of the Handbook,
		 compressed using bzip2 will be
		 stored in a file called
		 book.ps.bz2 in the
		 handbook/ directory.

After choosing the format and compression mechanism,
	 download the
	 compressed files, uncompress them, and then copy
	 the appropriate documents into place.
For example, the split HTML version of the
	 FAQ, compressed using bzip2(1),
	 can be found in
	 doc/en_US.ISO8859-1/books/faq/book.html-split.tar.bz2
	 To download and uncompress that file, type:
fetch https://download.freebsd.org/ftp/doc/en_US.ISO8859-1/books/faq/book.html-split.tar.bz2
tar xvf book.html-split.tar.bz2
If the file is compressed,
	 tar will automatically
	 detect the appropriate format and decompress it correctly,
	 resulting in a collection of
	 .html files. The main one is called
	 index.html, which will contain the
	 table of contents, introductory material, and links to the
	 other parts of the document.

	2.3.
	Where do I find info on the FreeBSD mailing lists? What
	 FreeBSD news groups are available?

		Refer to the Handbook
	 entry on mailing-lists and the Handbook
	 entry on newsgroups.

	2.4.
	Are there FreeBSD IRC (Internet Relay Chat)
	 channels?

		Yes, most major IRC networks host a FreeBSD chat
	 channel:
	Channel #FreeBSDhelp on EFNet
		is a channel dedicated to helping FreeBSD users.

	Channel #FreeBSD on Freenode is
		a general help channel with many users at any time.
		The conversations have been known to run off-topic for
		a while, but priority is given to users with FreeBSD
		questions. Other users can help with
		the basics, referring to the Handbook whenever
		possible and providing links for learning more about
		a particular topic. This is primarily an English
		speaking channel, though it does have users from all
		over the world. Non-native English speakers should
		try to ask the question in English first and then
		relocate to ##freebsd-lang as
		appropriate.

	Channel #FreeBSD on DALNET is
		available at irc.dal.net in
		the US and irc.eu.dal.net in
		Europe.

	Channel #FreeBSD on UNDERNET
		is available at
		us.undernet.org in the US and
		eu.undernet.org in Europe.
		Since it is a help channel, be prepared to read the
		documents you are referred to.

	Channel #FreeBSD on RUSNET
		is a Russian language channel dedicated to
		helping FreeBSD users. This is also good place for
		non-technical discussions.

	Channel #bsdchat on Freenode is
		a Traditional Chinese (UTF-8 encoding) language
		channel dedicated to helping FreeBSD users.
		This is also good place for non-technical
		discussions.

The FreeBSD wiki has a good
	 list of IRC channels.
Each of these channels are distinct and are not
	 connected to each other. Since their chat styles differ,
	 try each to find one suited to your
	 chat style.

	2.5.
	Are there any web based forums to discuss FreeBSD?

		The official FreeBSD forums are located at https://forums.FreeBSD.org/.

	2.6.
	Where can I get commercial FreeBSD training and
	 support?

		iXsystems,
	 Inc., parent company of the FreeBSD
	 Mall, provides commercial FreeBSD and TrueOS
	 software support,
	 in addition to FreeBSD development and tuning
	 solutions.
BSD Certification Group, Inc. provides system
	 administration certifications for DragonFly BSD,
	 FreeBSD, NetBSD, and OpenBSD. Refer to their
	 site for more information.
Any other organizations providing training and support
	 should contact the Project to be listed here.

Chapter 3. Installation
Nik Clayton	3.1.
	Which platform should I download? I have a 64
	 bit capable Intel® CPU,
	 but I only see amd64.

		amd64 is the term FreeBSD uses for 64-bit
	 compatible x86 architectures (also known as "x86-64" or
	 "x64"). Most modern computers should use amd64.
	 Older hardware should use i386. When installing
	 on a non-x86-compatible architecture, select the
	 platform which best matches the hardware.

	3.2.
	Which file do I download to get FreeBSD?

		On the Getting
	 FreeBSD page, select [iso] next
	 to the architecture that matches the hardware.
Any of the following can be used:
	file	description
	disc1.iso	Contains enough to install FreeBSD and
		 a minimal set of packages.
	dvd1.iso	Similar to disc1.iso
		 but with additional packages.
	memstick.img	A bootable image sufficient for writing to a
		 USB stick.
	bootonly.iso	A minimal image that requires network access
		 during installation to completely install
		 FreeBSD.

Full instructions on this procedure and a little bit
	 more about installation issues in general can be found in
	 the Handbook
	 entry on installing FreeBSD.

	3.3.
	What do I do if the install image does not
	 boot?

		This can be caused by not downloading the image in
	 binary mode when using
	 FTP.
Some FTP clients default their transfer mode to
	 ascii and attempt to change any
	 end-of-line characters received to match the
	 conventions used by the client's system. This will
	 almost invariably corrupt the boot image. Check the
	 SHA-256 checksum of the downloaded boot image: if it
	 is not exactly that on the
	 server, then the download process is suspect.
When using a command line FTP client, type
	 binary at the FTP command prompt
	 after getting connected to the server and before
	 starting the download of the image.

	3.4.
	Where are the instructions for installing FreeBSD?

		Installation instructions
	 can be found at Handbook
	 entry on installing FreeBSD.

	3.5.
	What are the minimum requirements to run FreeBSD?

		FreeBSD requires a 486 or better PC,
	 64 MB or more of RAM, and at least 1.1 GB of hard
	 disk space.

	3.6.
	How can I make my own custom release or install
	 disk?

		Customized FreeBSD installation media can be created by
	 building a custom release. Follow the instructions in the
	 Release
	 Engineering article.

	3.7.
	Can Windows® co-exist with FreeBSD?

		If Windows® is installed first, then yes. FreeBSD's
	 boot manager will then manage to boot Windows® and FreeBSD.
	 If Windows® is installed afterwards, it will
	 overwrite the boot manager. If that
	 happens, see the next section.

	3.8.
	Another operating system destroyed my Boot Manager.
	 How do I get it back?

		This depends upon the boot manager.
	 The FreeBSD boot selection menu can be reinstalled using
	 boot0cfg(8). For example, to restore the boot menu
	 onto the disk ada0:
boot0cfg -B ada0
The non-interactive MBR bootloader can be installed
	 using gpart(8):
gpart bootcode -b /boot/mbr ada0
For more complex situations, including GPT disks, see
	 gpart(8).

	3.9.
	Do I need to install the source?

		In general, no. There is nothing in the base system
	 which requires the presence of the source to operate.
	 Some ports, like sysutils/lsof, will
	 not build unless the source is installed. In particular,
	 if the port builds a kernel module or directly operates on
	 kernel structures, the source must be installed.

	3.10.
	Do I need to build a kernel?

		Usually not. The supplied GENERIC
	 kernel contains the drivers an ordinary computer will
	 need. freebsd-update(8), the FreeBSD binary upgrade
	 tool, cannot upgrade custom kernels, another reason to
	 stick with the GENERIC kernel when
	 possible. For computers with very limited RAM, such as
	 embedded systems, it may be worthwhile to build a smaller
	 custom kernel containing just the required drivers.

	3.11.
	Should I use DES, Blowfish, or MD5 passwords and how
	 do I specify which form my users receive?

		FreeBSD uses
	 SHA512 by
	 default. DES
	 passwords are still available for backwards compatibility
	 with operating systems that still
	 use the less secure password format. FreeBSD also supports
	 the Blowfish and MD5 password formats. Which
	 password format to use for new passwords is controlled by
	 the passwd_format login capability in
	 /etc/login.conf, which takes values
	 of des, blf (if
	 these are available) or md5. See the
	 login.conf(5) manual page for more information about
	 login capabilities.

	3.12.
	What are the limits for FFS file systems?

		For FFS file systems, the largest file system is
	 practically limited by the amount of memory required to
	 fsck(8) the file system. fsck(8) requires one
	 bit per fragment, which with the default fragment size of
	 4 KB equates to 32 MB of memory per TB of disk.
	 This does mean that on architectures which limit userland
	 processes to 2 GB (e.g., i386™), the maximum
	 fsck(8)'able filesystem is ~60 TB.
If there was not a fsck(8) memory limit the
	 maximum filesystem size would be 2 ^ 64 (blocks)
	 * 32 KB => 16 Exa * 32 KB => 512
	 ZettaBytes.
The maximum size of a single FFS file is approximately
	 2 PB with the default block size of 32 KB. Each
	 32 KB block can point to 4096 blocks. With triple
	 indirect blocks, the calculation is 32 KB * 12 +
	 32 KB * 4096 + 32 KB * 4096^2 + 32 KB *
	 4096^3. Increasing the block size to 64 KB will
	 increase the max file size by a factor of 16.

	3.13.
	Why do I get an error message, readin
	 failed after compiling and booting a new
	 kernel?

		The world and kernel are out of sync. This
	 is not supported. Be sure to use make
	 buildworld and make
	 buildkernel to update the kernel.
Boot the system by specifying the kernel directly at
	 the second stage, pressing any key when the
	 | shows up before loader is
	 started.

	3.14.
	Is there a tool to perform post-installation
	 configuration tasks?

		Yes. bsdconfig provides a
	 nice interface to configure FreeBSD post-installation.

Chapter 4. Hardware Compatibility
4.1. General
	4.1.1.
	I want to get a piece of hardware for my FreeBSD
	 system. Which model/brand/type is best?

		This is discussed continually on the FreeBSD mailing
	 lists but is to be expected since hardware changes so
	 quickly. Read through the Hardware Notes
	 for FreeBSD 11.1
	 or 10.4
	 and search the mailing list archives
	 before asking about the latest and greatest hardware.
	 Chances are a discussion about that type of hardware
	 took place just last week.
Before purchasing a laptop, check the archives for
	 FreeBSD laptop computer mailing list and FreeBSD general questions mailing list, or possibly a specific
	 mailing list for a particular hardware type.

	4.1.2.
	What are the limits for memory? Does FreeBSD support
	 more than 4 GB of memory
	 (RAM)? More than 16 GB? More than
	 48 GB?

		FreeBSD as an operating system generally supports
	 as much physical memory (RAM) as the platform it is
	 running on does. Keep in mind that different platforms
	 have different limits for memory; for example i386™
	 without PAE supports at most
	 4 GB of memory (and usually less than that because
	 of PCI address space) and i386™ with PAE supports at
	 most 64 GB memory. As of FreeBSD 10, AMD64
	 platforms support up to 4 TB of physical
	 memory.

	4.1.3.
	Why does FreeBSD report less than 4 GB memory when
	 installed on an i386™ machine?

		The total address space on i386™ machines is
	 32-bit, meaning that at most 4 GB of memory is
	 addressable (can be accessed). Furthermore, some
	 addresses in this range are reserved by hardware for
	 different purposes, for example for using and
	 controlling PCI devices, for accessing video memory, and
	 so on. Therefore, the total amount of memory usable by
	 the operating system for its kernel and applications is
	 limited to significantly less than 4 GB. Usually,
	 3.2 GB to 3.7 GB is the maximum usable
	 physical memory in this configuration.
To access more than 3.2 GB to 3.7 GB of
	 installed memory (meaning up to 4 GB but also more
	 than 4 GB), a special tweak called
	 PAE must be used. PAE stands for
	 Physical Address Extension and is a way for 32-bit x86
	 CPUs to address more than 4 GB of memory. It
	 remaps the memory that would otherwise be overlaid by
	 address reservations for hardware devices above the
	 4 GB range and uses it as additional physical
	 memory (see pae(4)). Using PAE has some drawbacks;
	 this mode of memory access is a little bit slower than
	 the normal (without PAE) mode and loadable modules (see
	 kld(4)) are not supported. This means all drivers
	 must be compiled into the kernel.
The most common way to enable PAE is to build a new
	 kernel with the special ready-provided kernel
	 configuration file called PAE,
	 which is already configured to build a safe kernel.
	 Note that some entries in this kernel configuration file
	 are too conservative and some drivers marked as unready
	 to be used with PAE are actually usable. A rule of
	 thumb is that if the driver is usable on 64-bit
	 architectures (like AMD64), it is also usable with PAE.
	 When creating a custom kernel configuration
	 file, PAE can be enabled by adding the following
	 line:
options PAE
PAE is not much used nowadays because most new x86
	 hardware also supports running in 64-bit mode, known as
	 AMD64 or Intel® 64. It has a much larger address
	 space and does not need such tweaks. FreeBSD supports
	 AMD64 and it is recommended that this version of FreeBSD be
	 used instead of the i386™ version if 4 GB or more
	 memory is required.

4.2. Architectures and Processors
	4.2.1.
	Does FreeBSD support architectures other than the
	 x86?

		Yes. FreeBSD divides support into multiple tiers.
	 Tier 1 architectures, such as i386 or amd64; are fully
	 supported. Tiers 2 and 3 are supported on a
	 best-effort basis. A full explanation of the tier
	 system is available in the Committer's
		Guide.
A complete list of supported architectures can be
	 found on the platforms
		page.

	4.2.2.
	Does FreeBSD support Symmetric Multiprocessing
	 (SMP)?

		FreeBSD supports symmetric multi-processor (SMP) on all
	 non-embedded platforms (e.g, i386, amd64,
	 etc.). SMP is also supported in arm and MIPS kernels,
	 although some CPUs may not support this. FreeBSD's SMP
	 implementation uses fine-grained locking, and
	 performance scales nearly linearly with number of
	 CPUs.
smp(4) has more details.

	4.2.3.
	What is microcode?
	 How do I install Intel® CPU microcode updates?

		Microcode is a method of programmatically
	 implementing hardware level instructions. This allows
	 for CPU bugs to be fixed without replacing the on board
	 chip.
Install sysutils/devcpu-data,
	 then add:
microcode_update_enable="YES"
to /etc/rc.conf

4.3. Hard Drives, Tape Drives, and CD and DVD Drives
	4.3.1.
	What kind of hard drives does FreeBSD support?

		FreeBSD supports EIDE, SATA, SCSI, and SAS drives (with
	 a compatible controller; see the next section), and all
	 drives using the original “Western Digital”
	 interface (MFM, RLL, ESDI, and of course IDE). A few
	 ESDI controllers that use proprietary interfaces may not
	 work: stick to WD1002/3/6/7 interfaces and
	 clones.

	4.3.2.
	Which SCSI or SAS controllers are supported?

		See the complete list in the Hardware Notes for FreeBSD
	 11.1
	 or 10.4.

	4.3.3.
	What types of tape drives are supported?

		FreeBSD supports all standard SCSI tape
	 interfaces.

	4.3.4.
	Does FreeBSD support tape changers?

		FreeBSD supports SCSI changers using the ch(4)
	 device and the chio(1) command. The details of how
	 to control the changer can be found in
	 chio(1).
While
	 AMANDA and some other
	 products already understands changers, other
	 applications only know how to move a tape from one point
	 to another. In this case, keep track of which slot a
	 tape is in and which slot the tape currently in the
	 drive needs to go back to.

	4.3.5.
	Which CD-ROM and CD-RW drives are supported by
	 FreeBSD?

		Any SCSI drive connected to a supported controller
	 is supported. Most ATAPI compatible IDE CD-ROMs are
	 supported.
FreeBSD supports any ATAPI-compatible IDE CD-R or CD-RW
	 drive.
FreeBSD also supports any SCSI CD-R or CD-RW drives.
	 Install the sysutils/cdrtools port or
	 package, then use cdrecord.

4.4. Keyboards and Mice
	4.4.1.
	Is it possible to use a mouse outside the
	 X Window system?

		The default console driver,
	 syscons(4), provides the ability to use a mouse
	 pointer in text consoles to cut & paste text. Run
	 the mouse daemon, moused(8), and turn on the mouse
	 pointer in the virtual console:
moused -p /dev/xxxx -t yyyy
vidcontrol -m on
Where xxxx is the mouse
	 device name and yyyy is a
	 protocol type for the mouse. The mouse daemon can
	 automatically determine the protocol type of most mice,
	 except old serial mice. Specify the
	 auto protocol to invoke automatic
	 detection. If automatic detection does not work, see
	 the moused(8) manual page for a list of supported
	 protocol types.
For a PS/2 mouse, add
	 moused_enable="YES" to
	 /etc/rc.conf to start the mouse
	 daemon at boot time. Additionally, to
	 use the mouse daemon on all virtual terminals instead of
	 just the console, add allscreens_flags="-m
		on" to
	 /etc/rc.conf.
When the mouse daemon is running, access to the
	 mouse must be coordinated between the mouse daemon and
	 other programs such as X Windows. Refer to the
	 FAQ
	 Why does my mouse not work
		with X? for more details on this issue.

	4.4.2.
	How do I cut and paste text with a mouse in the text
	 console?

		It is not possible to remove data using the mouse.
	 However, it is possible to copy and paste. Once the
	 mouse daemon is running as described in the previous question, hold down
	 button 1 (left button) and move the mouse to select a
	 region of text. Then, press button 2 (middle button) to
	 paste it at the text cursor. Pressing button 3 (right
	 button) will “extend” the selected region
	 of text.
If the mouse does not have a middle button, it is
	 possible to emulate one or remap buttons using mouse
	 daemon options. See the moused(8) manual page for
	 details.

	4.4.3.
	My mouse has a fancy wheel and buttons. Can I use
	 them in FreeBSD?

		The answer is, unfortunately, “It
		depends”. These mice with additional features
	 require specialized driver in most cases. Unless the
	 mouse device driver or the user program has specific
	 support for the mouse, it will act just like a standard
	 two, or three button mouse.
For the possible usage of wheels in the X Window
	 environment, refer to that section.

	4.4.4.
	How do I use my delete key in sh
	 and csh?

		For the Bourne Shell, add
	 the following lines to ~/.shrc.
	 See sh(1) and editrc(5).
bind ^? ed-delete-next-char # for console
bind ^[[3~ ed-delete-next-char # for xterm
For the C Shell, add the
	 following lines to ~/.cshrc.
	 See csh(1).
bindkey ^? delete-char # for console
bindkey ^[[3~ delete-char # for xterm
For more information, see this
		page.

4.5. Other Hardware
	4.5.1.
	Workarounds for no sound from my pcm(4) sound
	 card?

		Some sound cards set their output volume to 0 at
	 every boot. Run the following command every time the
	 machine boots:
mixer pcm 100 vol 100 cd 100

	4.5.2.
	Does FreeBSD support power management on my
	 laptop?

		FreeBSD supports the ACPI features
	 found in modern hardware. Further information can be
	 found in acpi(4).

Chapter 5. Troubleshooting
	5.1.
	Why is FreeBSD finding the wrong amount of memory on
	 i386™ hardware?

		The most likely reason is the difference between
	 physical memory addresses and virtual addresses.
The convention for most PC hardware is to use the
	 memory area between 3.5 GB and 4 GB for a
	 special purpose (usually for PCI). This address space is
	 used to access PCI hardware. As a result real, physical
	 memory cannot be accessed by that address space.
What happens to the memory that should appear in that
	 location is hardware dependent. Unfortunately,
	 some hardware does nothing and the ability to use that
	 last 500 MB of RAM is entirely lost.
Luckily, most hardware remaps the memory to a higher
	 location so that it can still be used. However, this can
	 cause some confusion when watching the boot
	 messages.
On a 32-bit version of FreeBSD, the memory appears lost,
	 since it will be remapped above 4 GB, which a 32-bit
	 kernel is unable to access. In this case, the solution is
	 to build a PAE enabled kernel. See the entry on memory
	 limits for more information.
On a 64-bit version of FreeBSD, or when running a
	 PAE-enabled kernel, FreeBSD will correctly detect and remap
	 the memory so it is usable. During boot, however, it may
	 seem as if FreeBSD is detecting more memory than the system
	 really has, due to the described remapping. This is
	 normal and the available memory will be corrected as the
	 boot process completes.

	5.2.
	Why do my programs occasionally die with
	 Signal 11 errors?

		Signal 11 errors are caused when a process has
	 attempted to access memory which the operating system has
	 not granted it access to. If something like this is
	 happening at seemingly random intervals,
	 start investigating the cause.
These problems can usually be attributed to
	 either:
	If the problem is occurring only in a specific
		custom application, it is
		probably a bug in the code.

	If it is a problem with part of the base FreeBSD
		system, it may also be buggy code, but more often than
		not these problems are found and fixed long before us
		general FAQ readers get to use
		these bits of code (that is what -CURRENT is
		for).

It is probably
	 not a FreeBSD bug if the
	 problem occurs compiling a program, but the activity
	 that the compiler is carrying out changes each
	 time.
For example, if make
	 buildworld fails while trying
	 to compile ls.c into
	 ls.o and, when run again, it fails
	 in the same place, this is a broken build. Try
	 updating source and try again. If the compile fails
	 elsewhere, it is almost certainly due to hardware.
In the first case, use a debugger such as
	 gdb(1) to find the point in the program which is
	 attempting to access a bogus address and fix
	 it.
In the second case, verify which piece of
	 hardware is at fault.
Common causes of this include:
	The hard disks might be overheating: Check that
		the fans are still working, as the disk and
		other hardware might be overheating.

	The processor running is overheating: This might
		be because the processor has been overclocked, or the
		fan on the processor might have died. In either case,
		ensure that the hardware is running at
		what it is specified to run at, at least while trying
		to solve this problem. If it is not, clock it back
		to the default settings.)
Regarding overclocking, it is far
		cheaper to have a slow system than a fried system that
		needs replacing! Also the community is not
		sympathetic to problems on overclocked systems.

	Dodgy memory: if multiple memory
		SIMMS/DIMMS are installed, pull them all out and try
		running the machine with each SIMM or DIMM
		individually to narrow the problem down to either the
		problematic DIMM/SIMM or perhaps even a
		combination.

	Over-optimistic motherboard settings: the BIOS
		settings, and some motherboard jumpers, provide
		options to set various timings. The defaults
		are often sufficient, but sometimes setting the wait
		states on RAM too low, or setting the “RAM
		 Speed: Turbo” option
		will cause strange behavior. A possible idea is to
		set to BIOS defaults, after noting
		the current settings first.

	Unclean or insufficient power to the motherboard.
		Remove any unused I/O boards, hard disks, or
		CD-ROMs,
		or disconnect the power cable from them, to see if
		the power supply can manage a smaller load. Or try
		another power supply, preferably one with a little
		more power. For instance, if the current power supply
		is rated at 250 Watts, try one rated at
		300 Watts.

Read the section on
	 Signal 11 for a further
	 explanation and a discussion on how memory testing
	 software or hardware can still pass faulty memory. There
	 is an extensive FAQ on this at the SIG11
	 problem FAQ.
Finally, if none of this has helped, it is possibly
	 a bug in FreeBSD.
	 Follow these instructions
	 to send a problem report.

	5.3.
	My system crashes with either Fatal trap
	 12: page fault in kernel mode, or
	 panic:, and spits out a bunch of
	 information. What should I do?

		The FreeBSD developers are interested in these
	 errors, but need more information than just the error
	 message. Copy the full crash message. Then consult the
	 FAQ section on kernel
	 panics, build a debugging kernel, and get a
	 backtrace. This might sound difficult, but does not
	 require any programming skills. Just follow the
	 instructions.

	5.4.
	What is the meaning of the error maxproc
	 limit exceeded by uid %i, please see tuning(7) and
	 login.conf(5)?

		The FreeBSD kernel will only allow a certain number of
	 processes to exist at one time. The number is based on
	 the kern.maxusers sysctl(8)
	 variable. kern.maxusers also affects
	 various other in-kernel limits, such as network buffers.
	 If the machine is heavily loaded,
	 increase kern.maxusers. This will
	 increase these other system limits in addition to the
	 maximum number of processes.
To adjust the kern.maxusers value,
	 see the File/Process
	 Limits section of the Handbook. While that
	 section refers to open files, the same limits apply to
	 processes.
If the machine is lightly loaded but running a very
	 large number of processes, adjust the
	 kern.maxproc tunable by defining it in
	 /boot/loader.conf. The tunable will
	 not get adjusted until the system is rebooted. For more
	 information about tuning tunables, see
	 loader.conf(5). If these processes are being run by
	 a single user, adjust
	 kern.maxprocperuid to be one less than
	 the new kern.maxproc value. It must
	 be at least one less because one system program,
	 init(8), must always be running.

	5.5.
	Why do full screen applications on remote machines
	 misbehave?

		The remote machine may be setting the terminal type to
	 something other than xterm which is
	 required by the FreeBSD console. Alternatively the kernel
	 may have the wrong values for the width and height of the
	 terminal.
Check the value of the TERM
	 environment variable is xterm. If the
	 remote machine does not support that try
	 vt100.
Run stty -a to check what the
	 kernel thinks the terminal dimensions are. If they are
	 incorrect, they can be changed by running
	 stty rows RR cols
	 CC.
Alternatively, if the client machine has
	 x11/xterm installed, then running
	 resize will query the terminal for the
	 correct dimensions and set them.

	5.6.
	Why does it take so long to connect to my computer via
	 ssh or
	 telnet?

		The symptom: there is a long delay between the time
	 the TCP connection is established and the time when the
	 client software asks for a password (or, in
	 telnet(1)'s case, when a login prompt
	 appears).
The problem: more likely than not, the delay is caused
	 by the server software trying to resolve the client's IP
	 address into a hostname. Many servers, including the
	 Telnet and
	 SSH servers that come with
	 FreeBSD, do this to store the hostname in a log file for
	 future reference by the administrator.
The remedy: if the problem occurs whenever connecting
	 the client computer to any server, the problem
	 is with the client. If the problem only occurs
	 when someone connects to the server computer, the
	 problem is with the server.
If the problem is with the client, the only remedy is
	 to fix the DNS so the server can resolve it. If this is
	 on a local network, consider it a server problem and keep
	 reading. If this is on the Internet,
	 contact your ISP.
If the problem is with the server on a
	 local network, configure the server
	 to resolve address-to-hostname queries for the local
	 address range. See hosts(5) and named(8)
	 for more information. If this is on the
	 Internet, the problem may be that the local server's
	 resolver is not functioning correctly. To check, try to
	 look up another host such as
	 www.yahoo.com. If it does not
	 work, that is the problem.
Following a fresh install of FreeBSD, it is also possible
	 that domain and name server information is missing from
	 /etc/resolv.conf. This will often
	 cause a delay in SSH, as the
	 option UseDNS is set to
	 yes by default in
	 /etc/ssh/sshd_config. If this is
	 causing the problem, either fill in the
	 missing information in
	 /etc/resolv.conf or set
	 UseDNS to no in
	 sshd_config as a temporary
	 workaround.

	5.7.
	Why does file: table is full
	 show up repeatedly in dmesg(8)?

		This error message indicates that the number of
	 available file descriptors have been exhausted on the
	 system. Refer to the kern.maxfiles
	 section of the Tuning
	 Kernel Limits section of the Handbook for a
	 discussion and solution.

	5.8.
	Why does the clock on my computer keep incorrect
	 time?

		The computer has two or more clocks, and FreeBSD has
	 chosen to use the wrong one.
Run dmesg(8), and check for lines that contain
	 Timecounter. The one with the highest
	 quality value that FreeBSD chose.
dmesg | grep Timecounter
Timecounter "i8254" frequency 1193182 Hz quality 0
Timecounter "ACPI-fast" frequency 3579545 Hz quality 1000
Timecounter "TSC" frequency 2998570050 Hz quality 800
Timecounters tick every 1.000 msec
Confirm this by checking the
	 kern.timecounter.hardware
	 sysctl(3).
sysctl kern.timecounter.hardware
kern.timecounter.hardware: ACPI-fast
It may be a broken ACPI timer. The simplest solution
	 is to disable the ACPI timer in
	 /boot/loader.conf:
debug.acpi.disabled="timer"
Or the BIOS may modify the TSC clock—perhaps to
	 change the speed of the processor when running from
	 batteries, or going into a power saving mode, but FreeBSD is
	 unaware of these adjustments, and appears to gain or lose
	 time.
In this example, the i8254 clock is
	 also available, and can be selected by writing its name to
	 the kern.timecounter.hardware
	 sysctl(3).
sysctl kern.timecounter.hardware=i8254
kern.timecounter.hardware: TSC -> i8254
The computer should now start keeping more accurate
	 time.
To have this change automatically run at boot time,
	 add the following line to
	 /etc/sysctl.conf:
kern.timecounter.hardware=i8254

	5.9.
	What does the error swap_pager: indefinite
	 wait buffer: mean?

		This means that a process is trying to page memory
	 from
	 disk, and the page attempt has hung trying to access the
	 disk for more than 20 seconds. It might be caused by bad
	 blocks on the disk drive, disk wiring, cables, or any
	 other disk I/O-related hardware. If the drive itself is
	 bad, disk errors will appear in
	 /var/log/messages and in the output
	 of dmesg. Otherwise, check the cables
	 and connections.

	5.10.
	What is a lock order
	 reversal?

		The FreeBSD kernel uses a number of resource locks to
	 arbitrate contention for certain resources. When multiple
	 kernel threads try to obtain multiple resource locks,
	 there's always the potential for a deadlock, where two
	 threads have each obtained one of the locks and blocks
	 forever waiting for the other thread to release one of the
	 other locks. This sort of locking problem can be avoided
	 if all threads obtain the locks in the same order.
A run-time lock diagnostic system called
	 witness(4), enabled in FreeBSD-CURRENT and disabled by
	 default for stable branches and releases, detects the
	 potential for deadlocks due to locking errors, including
	 errors caused by obtaining multiple resource locks with a
	 different order from different parts of the kernel. The
	 witness(4) framework tries to detect this problem as
	 it happens, and reports it by printing a message to the
	 system console about a lock order
	 reversal (often referred to also as
	 LOR).
It is possible to get false positives, as
	 witness(4) is conservative. A true positive report
	 does not mean that a system is
	 dead-locked; instead it should be understood as a warning
	 that a deadlock could have happened here.
Note:
Problematic LORs tend to get
	 fixed quickly, so check the FreeBSD-CURRENT mailing list before posting
	 to it.

	5.11.
	What does Called ... with the following
	 non-sleepable locks held mean?

		This means that a function that may sleep was called
	 while a mutex (or other unsleepable) lock was held.
The reason this is an error is because mutexes are not
	 intended to be held for long periods of time; they are
	 supposed to only be held to maintain short periods of
	 synchronization. This programming contract allows device
	 drivers to use mutexes to synchronize with the rest of the
	 kernel during interrupts. Interrupts (under FreeBSD) may not
	 sleep. Hence it is imperative that no subsystem in the
	 kernel block for an extended period while holding a
	 mutex.
To catch such errors, assertions may be added to the
	 kernel that interact with the witness(4) subsystem to
	 emit a warning or fatal error (depending on the system
	 configuration) when a potentially blocking call is made
	 while holding a mutex.
In summary, such warnings are non-fatal, however with
	 unfortunate timing they could cause undesirable effects
	 ranging from a minor blip in the system's responsiveness
	 to a complete system lockup.
For additional information about locking in FreeBSD see
	 locking(9).

	5.12.
	Why does
	 buildworld/installworld
	 die with the message touch: not
	 found?

		This error does not mean that the touch(1)
	 utility is missing. The error is instead probably due to
	 the dates of the files being set sometime in the future.
	 If the CMOS clock is set to local time, run
	 adjkerntz -i to adjust
	 the kernel clock when booting into single-user
	 mode.

Chapter 6. User Applications
	6.1.
	Where are all the user applications?

		Refer to the ports
	 page for info on software packages ported to
	 FreeBSD. The list currently tops 24,000 and is
	 growing daily, so come back to check often or subscribe to
	 the FreeBSD announcements mailing list for periodic updates on new
	 entries.
Most ports should work on all supported versions of
	 FreeBSD. Those that do not are specifically marked as such.
	 Each time a FreeBSD release is made, a snapshot of the ports
	 tree at the time of release in also included in the
	 ports/ directory.
FreeBSD supports compressed binary packages to easily
	 install and uninstall ports. Use pkg(7) to control
	 the installation of packages.

	6.2.
	How do I download the Ports tree? Should I be using
	 SVN?

		Any of the methods listed here work:
	Use portsnap for most use cases. Refer to Using
		the Ports Collection for instructions on how to
		use this tool.

	Use SVN if custom patches to the
		ports tree are needed. Refer to Using
		 Subversion for details.

	6.3.
	Does FreeBSD support Java™?

		Yes. Refer to https://www.FreeBSD.org/java/
	 for more information.

	6.4.
	Why can I not build this port on my
	 10.X -, or
	 11.X -STABLE machine?

		If the installed FreeBSD version lags
	 significantly behind -CURRENT or
	 -STABLE, update the
	 Ports Collection using the instructions in Using
	 the Ports Collection. If the system is
	 up-to-date, someone might have committed a change to the
	 port which works for -CURRENT but
	 which broke the port for -STABLE.
	 Submit
	 a bug report, since the Ports Collection is supposed to
	 work
	 for both the -CURRENT and
	 -STABLE branches.

	6.5.
	I just tried to build INDEX using
	 make index, and it failed. Why?

		First, make sure that the Ports Collection is
	 up-to-date. Errors that affect building
	 INDEX from an up-to-date copy of the
	 Ports Collection are high-visibility and are thus almost
	 always fixed immediately.
There are rare cases where INDEX
	 will not build due to odd cases involving
	 OPTIONS_SET
	 being set in make.conf. If
	 you suspect that this is the case, try to make
	 INDEX with those variables
	 turned off before reporting it to FreeBSD ports mailing list.

	6.6.
	I updated the sources, now how do I update my
	 installed ports?

		FreeBSD does not include a port upgrading tool, but it
	 does have some tools to make the upgrade process somewhat
	 easier. Additional tools are available to simplify
	 port handling and are described the Upgrading
	 Ports section in the FreeBSD Handbook.

	6.7.
	Do I need to recompile every port each time I perform
	 a major version update?

		Yes! While a recent system will run with
	 software compiled under an older release,
	 things will randomly crash and fail to work once
	 other ports are installed or updated.
When the system is upgraded, various shared libraries,
	 loadable modules, and other parts of the system will be
	 replaced with newer versions. Applications linked against
	 the older versions may fail to start or, in other cases,
	 fail to function properly.
For more information, see the
	 section on upgrades in the FreeBSD Handbook.

	6.8.
	Do I need to recompile every port each time I perform
	 a minor version update?

		In general, no. FreeBSD developers do their utmost to
	 guarantee binary compatibility across all releases with
	 the same major version number. Any exceptions will be
	 documented in the Release Notes, and advice given there
	 should be followed.

	6.9.
	Why is /bin/sh so minimal? Why
	 does FreeBSD not use bash or another
	 shell?

		Many people need to write shell scripts which will be
	 portable across many systems. That is why POSIX®
	 specifies the shell and utility commands in great detail.
	 Most scripts are written in Bourne shell (sh(1)), and
	 because several important programming interfaces
	 (make(1), system(3), popen(3), and
	 analogues in higher-level scripting languages like Perl
	 and Tcl) are specified to use the Bourne shell to
	 interpret commands. Because the Bourne shell is so often
	 and widely used, it is important for it to be quick to
	 start, be deterministic in its behavior, and have a small
	 memory footprint.
The existing implementation is our best effort at
	 meeting as many of these requirements simultaneously as we
	 can. To keep /bin/sh small, we have
	 not provided many of the convenience features that other
	 shells have. That is why other more featureful shells
	 like bash, scsh,
	 tcsh(1), and zsh are available.
	 Compare the memory utilization of
	 these shells by looking at the “VSZ” and
	 “RSS” columns in a ps -u
	 listing.

	6.10.
	How do I create audio CDs from my MIDI files?

		To create audio CDs from MIDI files, first install
	 audio/timidity++ from ports then
	 install manually the GUS patches set by Eric A. Welsh,
	 available at http://alleg.sourceforge.net/digmid.html.
	 After TiMidity++ has been
	 installed properly, MIDI files may be converted to WAV
	 files with the following command line:
% timidity -Ow -s 44100 -o /tmp/juke/01.wav 01.mid
The WAV files can then be converted to other formats
	 or burned onto audio CDs, as described in the FreeBSD
	 Handbook.

Chapter 7. Kernel Configuration
	7.1.
	I would like to customize my kernel. Is it
	 difficult?

		Not at all! Check out the kernel
	 config section of the Handbook.
Note:
The new kernel will be
	 installed to the /boot/kernel
	 directory along with its modules, while the old kernel
	 and its modules will be moved to the
	 /boot/kernel.old directory. If
	 a mistake is made in the
	 configuration, simply boot the previous version of the
	 kernel.

	7.2.
	Why is my kernel so big?

		GENERIC kernels shipped with FreeBSD
	 are compiled in debug mode.
	 Kernels built in debug mode contain debug data in
	 separate files that are used for debugging.
	 FreeBSD releases prior to 11.0 store these debug files in
	 the same directory as the kernel itself,
	 /boot/kernel/.
	 In FreeBSD 11.0 and later the debug files are stored in
	 /usr/lib/debug/boot/kernel/.
	 Note that there will be little or no performance loss from
	 running a debug kernel, and it is useful to keep one
	 around in case of a system panic.
When running low on disk space, there
	 are different options to reduce the size of
	 /boot/kernel/ and
	 /usr/lib/debug/.
To not install the symbol files,
	 make sure the following line exists in
	 /etc/src.conf:
WITHOUT_KERNEL_SYMBOLS=yes
For more information see src.conf(5).
If you want to avoid building debug files altogether,
	 make sure that both of the following are true:
	This line does not exist in the kernel
		configuration file:
makeoptions DEBUG=-g

	Do not run config(8) with
		-g.

Either of the above settings will cause the kernel to
	 be built in debug mode.
To build and install only the specified modules, list
	 them in
	 /etc/make.conf:
MODULES_OVERRIDE= accf_http ipfw
Replace accf_httpd ipfw with a
	 list of needed modules. Only the listed modules will be
	 built. This reduces the size of the kernel
	 directory and decreases the amount of time needed to
	 build the kernel. For more information, read
	 /usr/share/examples/etc/make.conf.
Unneeded devices can be removed from the kernel
	 to further reduce the size. See Q: 7.1 for more information.
To put any of these options into effect, follow the
	 instructions to build
	 and install the new kernel.
For reference, the FreeBSD 11 amd64 kernel
	 (/boot/kernel/kernel) is
	 approximately 25 MB.

	7.3.
	Why does every kernel I try to build fail to compile,
	 even GENERIC?

		There are a number of possible causes for this
	 problem:
	The source
		tree is different from the one used to build the
		currently running system. When attempting an upgrade,
		read /usr/src/UPDATING, paying
		particular attention to the “COMMON
		 ITEMS” section at the end.

	The make
		 buildkernel command did not complete
		 successfully. The make
		 buildkernel target relies on files
		generated by the make buildworld
		target to complete its job correctly.

	Even when building FreeBSD-STABLE, it is possible
		that the source tree was fetched at a time when it was
		either being modified or it was broken.
		Only releases are guaranteed to be
		buildable, although FreeBSD-STABLE builds fine the
		majority of the time. Try re-fetching the source tree
		and see if the problem goes away. Try using a
		different mirror in case the previous one is having
		problems.

	7.4.
	Which scheduler is in use on a
	 running system?

		The name of the scheduler currently being used is
	 directly available as the value of the
	 kern.sched.name sysctl:
% sysctl kern.sched.name
kern.sched.name: ULE

	7.5.
	What is kern.sched.quantum?

		kern.sched.quantum is the maximum
	 number of ticks a process can run without being preempted
	 in the 4BSD scheduler.

Chapter 8. Disks, File Systems, and Boot Loaders
	8.1.
	How can I add my new hard disk to my FreeBSD
	 system?

		See the Adding
	 Disks section in the FreeBSD Handbook.

	8.2.
	How do I move my system over to my huge new
	 disk?

		The best way is to reinstall the operating system on
	 the new disk, then move the user data over. This is
	 highly recommended when tracking
	 -STABLE for more than one release or
	 when updating a release instead of installing a new one.
	 Install booteasy on both disks with boot0cfg(8) and
	 dual boot until you are happy with the new configuration.
	 Skip the next paragraph to find out how to move the data
	 after doing this.
Alternatively, partition and label the new disk with
	 either sade(8) or gpart(8). If the disks are
	 MBR-formatted, booteasy can be installed on both disks
	 with boot0cfg(8) so that the computer can dual boot
	 to the old or new system after the copying is done.
Once the new disk set up,
	 the data cannot just be copied. Instead, use tools that
	 understand device files and system flags, such as
	 dump(8). Although it is recommended
	 to move the data while in single-user mode, it
	 is not required.
When the disks are formatted with
	 UFS, never use anything but
	 dump(8) and restore(8) to move the root file
	 system. These commands should also be used when moving a
	 single partition to another empty partition. The sequence
	 of steps to use dump to move the data
	 from one UFS partitions to a new
	 partition is:
	newfs the new partition.

	mount it on a temporary mount
		point.

	cd to that directory.

	dump the old partition, piping
		output to the new one.

For example, to move
	 /dev/ada1s1a with
	 /mnt as the temporary mount point,
	 type:
newfs /dev/ada1s1a
mount /dev/ada1s1a /mnt
cd /mnt
dump 0af - / | restore rf -
Rearranging partitions with
	 dump takes a bit more work. To merge a
	 partition like /var into its parent,
	 create the new partition large enough for both, move the
	 parent partition as described above, then move the child
	 partition into the empty directory that the first move
	 created:
newfs /dev/ada1s1a
mount /dev/ada1s1a /mnt
cd /mnt
dump 0af - / | restore rf -
cd var
dump 0af - /var | restore rf -
To split a directory from its parent, say putting
	 /var on its own partition when it was
	 not before, create both partitions, then mount the child
	 partition on the appropriate directory in the temporary
	 mount point, then move the old single partition:
newfs /dev/ada1s1a
newfs /dev/ada1s1d
mount /dev/ada1s1a /mnt
mkdir /mnt/var
mount /dev/ada1s1d /mnt/var
cd /mnt
dump 0af - / | restore rf -
The cpio(1) and pax(1) utilities are also
	 available for moving user data. These are known to lose
	 file flag information, so use them with caution.

	8.3.
	Which partitions can safely use Soft Updates? I have
	 heard that Soft Updates on / can
	 cause problems. What about Journaled Soft Updates?

		Short answer: Soft Updates can usually be safely used
	 on all partitions.
Long answer: Soft Updates has two characteristics
	 that may be undesirable on certain partitions. First, a
	 Soft Updates partition has a small chance of losing data
	 during a system crash. The partition will not be
	 corrupted as the data will simply be lost. Second, Soft
	 Updates can cause temporary space shortages.
When using Soft Updates, the kernel can take up to
	 thirty seconds to write changes to the physical disk.
	 When a large file is deleted the file still resides on
	 disk until the kernel actually performs the deletion.
	 This can cause a very simple race condition. Suppose
	 one large file is deleted and another large file is
	 immediately created. The first large file is not yet
	 actually removed from the physical disk, so the disk might
	 not have enough room for the second large file. This will
	 produce an error that the partition does not have enough
	 space, even though a large chunk of space has just been
	 released. A few seconds later, the file creation works as
	 expected.
If a system should crash after the kernel accepts a
	 chunk of data for writing to disk, but before that data is
	 actually written out, data could be lost. This risk is
	 extremely small, but generally manageable.
These issues affect all partitions using Soft Updates.
	 So, what does this mean for the root partition?
Vital information on the root partition changes very
	 rarely. If the system crashed during the thirty-second
	 window after such a change is made, it is possible that
	 data could be lost. This risk is negligible for most
	 applications, but be aware that it exists. If
	 the system cannot tolerate this much risk, do not use
	 Soft Updates on the root file system!
/ is traditionally one of the
	 smallest partitions. If
	 /tmp is on
	 /, there may be intermittent
	 space problems. Symlinking /tmp to
	 /var/tmp will solve this
	 problem.
Finally, dump(8) does not work in live mode (-L)
	 on a filesystem, with Journaled Soft Updates
	 (SU+J).

	8.4.
	Can I mount other foreign file systems under
	 FreeBSD?

		FreeBSD supports a variety of other file systems.
	UFS
	UFS CD-ROMs can be mounted directly on FreeBSD.
		 Mounting disk partitions from Digital UNIX and other
		 systems that support UFS may be more complex,
		 depending on the details of the disk partitioning
		 for the operating system in question.

	ext2/ext3
	FreeBSD supports ext2fs and
		 ext3fs partitions. See
		 ext2fs(5) for more information.

	NTFS
	FUSE based NTFS support is available as a port
		 (sysutils/fusefs-ntfs). For more
		 information see ntfs-3g.

	FAT
	FreeBSD includes a read-write FAT driver. For more
		 information, see mount_msdosfs(8).

	ZFS
	FreeBSD includes a port of Sun™'s ZFS driver. The
		 current recommendation is to use it only on
		 amd64 platforms with sufficient memory. For
		 more information, see zfs(8).

FreeBSD includes the Network File System
	 NFS and the FreeBSD Ports Collection
	 provides several FUSE applications to support many other
	 file systems.

	8.5.
	How do I mount a secondary DOS partition?

		The secondary DOS partitions are found after
	 all the primary partitions. For
	 example, if E is the
	 second DOS partition on the second SCSI drive, there will
	 be a device file for “slice 5” in
	 /dev. To mount it:
mount -t msdosfs /dev/da1s5 /dos/e

	8.6.
	Is there a cryptographic file system for FreeBSD?

		Yes, gbde(8) and geli(8).
	 See the Encrypting
	 Disk Partitions section of the FreeBSD
	 Handbook.

	8.7.
	How do I boot FreeBSD and Linux® using
	 GRUB?

		To boot FreeBSD using GRUB,
	 add the following to either
	 /boot/grub/menu.lst or
	 /boot/grub/grub.conf, depending upon
	 which is used by the Linux® distribution.
title FreeBSD 9.1
	root (hd0,a)
	kernel /boot/loader
Where hd0,a points to the
	 root partition on the first disk. To specify
	 the slice number, use something like this
	 (hd0,2,a). By default, if the
	 slice number is omitted, GRUB
	 searches the first slice
	 which has the a partition.

	8.8.
	How do I boot FreeBSD and Linux® using
	 BootEasy?

		Install LILO at the start of the Linux® boot
	 partition instead of in the Master Boot Record. You can
	 then boot LILO from
	 BootEasy.
This is recommended when running Windows® and Linux®
	 as it makes it simpler to get Linux® booting again if
	 Windows® is reinstalled.

	8.9.
	How do I change the boot prompt from
	 ??? to something more
	 meaningful?

		This cannot be accomplished with the standard boot
	 manager without rewriting it. There are a number of other
	 boot managers in the sysutils
	 category of the Ports Collection.

	8.10.
	How do I use a new removable drive?

		If the drive already has a file system on it,
	 use a command like this:
mount -t msdosfs /dev/da0s1 /mnt
If the drive will only be used with FreeBSD systems,
	 partition it with UFS or
	 ZFS. This will provide long filename
	 support, improvement in performance, and stability. If
	 the drive will be used by other operating systems, a more
	 portable choice, such as msdosfs, is better.
dd if=/dev/zero of=/dev/da0 count=2
gpart create -s GPT /dev/da0
gpart add -t freebsd-ufs /dev/da0
Finally, create a new file system:
newfs /dev/da0p1
and mount it:
mount /dev/da0s1 /mnt
It is a good idea to add a line to
	 /etc/fstab (see fstab(5)) so you
	 can just type mount /mnt in the
	 future:
/dev/da0p1 /mnt ufs rw,noauto 0 0

	8.11.
	Why do I get Incorrect super
	 block when mounting a CD?

		The type of device to mount must be specified. This
	 is described in the Handbook section on Using
	 Data CDs.

	8.12.
	Why do I get Device not
	 configured when mounting a CD?

		This generally means that there is no CD in the
	 drive, or the drive is not visible on the bus.
	 Refer to the Using
	 Data CDs section of the Handbook for a detailed
	 discussion of this issue.

	8.13.
	Why do all non-English characters in filenames show up
	 as “?” on my CDs when mounted in FreeBSD?

		The CD probably uses the “Joliet”
	 extension for storing information about files and
	 directories. This is discussed in the Handbook section on
	 Using
	 Data CD-ROMs.

	8.14.
	A CD burned under FreeBSD cannot be read
	 under any other operating system. Why?

		This means a raw file was burned to the CD, rather
	 than creating an ISO 9660 file system. Take a look
	 at the Handbook section on Using
	 Data CDs.

	8.15.
	How can I create an image of a data CD?

		This is discussed in the Handbook section on Writing
	 Data to an ISO File System.
	 For more on working with CD-ROMs, see the Creating
	 CDs Section in the Storage chapter in the
	 Handbook.

	8.16.
	Why can I not mount an audio
	 CD?

		Trying to mount an audio CD will produce an error
	 like cd9660: /dev/cd0: Invalid
	 argument. This is because
	 mount only works on file systems.
	 Audio CDs do not have file systems; they just have data.
	 Instead, use a program that reads audio CDs, such as the
	 audio/xmcd package or port.

	8.17.
	How do I mount a multi-session
	 CD?

		By default, mount(8) will attempt to mount the
	 last data track (session) of a CD. To
	 load an earlier session, use the
	 -s command line argument. Refer to
	 mount_cd9660(8) for specific examples.

	8.18.
	How do I let ordinary users mount CD-ROMs, DVDs,
	 USB drives, and other removable media?

		As root set
	 the sysctl variable vfs.usermount to
	 1.
sysctl vfs.usermount=1
To make this persist across reboots, add the line
	 vfs.usermount=1 to
	 /etc/sysctl.conf so that it is reset
	 at system boot time.
Users can only mount devices they have read
	 permissions to. To allow users to mount a device
	 permissions must be set in
	 /etc/devfs.conf.
For example, to allow users to mount the first USB
	 drive add:
Allow all users to mount a USB drive.
	 own /dev/da0 root:operator
	 perm /dev/da0 0666
All users can now mount devices they could read onto a
	 directory that they own:
% mkdir ~/my-mount-point
% mount -t msdosfs /dev/da0 ~/my-mount-point
Unmounting the device is simple:
% umount ~/my-mount-point
Enabling vfs.usermount, however,
	 has negative security implications. A better way to
	 access MS-DOS® formatted media is to use the
	 emulators/mtools package in the Ports
	 Collection.
Note:
The device name used in the previous examples must
	 be changed according to the configuration.

	8.19.
	The du and df
	 commands show different amounts of disk space available.
	 What is going on?

		This is due to how these commands actually work.
	 du goes through the directory tree,
	 measures how large each file is, and presents the totals.
	 df just asks the file system how much
	 space it has left. They seem to be the same thing, but a
	 file without a directory entry will affect
	 df but not
	 du.
When a program is using a file, and the file is
	 deleted, the file is not really removed from the file
	 system until the program stops using it. The file is
	 immediately deleted from the directory listing, however.
	 As an example, consider a file large enough
	 to affect the output of
	 du and df. A
	 file being viewed with more can be
	 deleted wihout causing an error.
	 The entry is
	 removed from the directory so no other program or user can
	 access it. However, du shows that it
	 is gone as it has walked the directory tree and the
	 file is not listed. df shows that it
	 is still there, as the file system knows that
	 more is still using that space. Once
	 the more session ends,
	 du and df will
	 agree.
This situation is common on web servers. Many people
	 set up a FreeBSD web server and forget to rotate the log
	 files. The access log fills up /var.
	 The new administrator deletes the file, but the system
	 still complains that the partition is full. Stopping and
	 restarting the web server program would free the file,
	 allowing the system to release the disk space. To prevent
	 this from happening, set up newsyslog(8).
Note that Soft Updates can delay the freeing of disk
	 space and it can take up to 30 seconds for the
	 change to be visible.

	8.20.
	How can I add more swap space?

		This section of the Handbook
	 describes how to do this.

	8.21.
	Why does FreeBSD see my disk as smaller than the
	 manufacturer says it is?

		Disk manufacturers calculate gigabytes as a billion
	 bytes each, whereas FreeBSD calculates them as
	 1,073,741,824 bytes each. This explains why, for
	 example, FreeBSD's boot messages will report a disk that
	 supposedly has 80 GB as holding
	 76,319 MB.
Also note that FreeBSD will (by default) reserve 8% of the
	 disk space.

	8.22.
	How is it possible for a partition to be more than
	 100% full?

		A portion of each UFS partition (8%, by default) is
	 reserved for use by the operating system and the
	 root user.
	 df(1) does not count that space when calculating the
	 Capacity column, so it can exceed 100%.
	 Notice that the Blocks
	 column is always greater than the sum of the
	 Used and Avail
	 columns, usually by a factor of 8%.
For more details, look up -m in
	 tunefs(8).

Chapter 9. ZFS
	9.1.
	What is the minimum amount of RAM one should have to
	 run ZFS?

		A minimum of 4GB of RAM is required for comfortable
	 usage, but individual workloads can vary widely.

	9.2.
	What is the ZIL and when does it get used?

		The ZIL (ZFS
	 intent log) is a write log used to implement posix write
	 commitment semantics across crashes. Normally writes
	 are bundled up into transaction groups and written to
	 disk when filled (“Transaction Group
		Commit”). However syscalls like fsync(2)
	 require a commitment that the data is written to stable
	 storage before returning. The ZIL is needed for writes
	 that have been acknowledged as written but which are not
	 yet on disk as part of a transaction. The transaction
	 groups are timestamped. In the event of a crash the
	 last valid timestamp is found and missing data is merged
	 in from the ZIL.

	9.3.
	Do I need a SSD for ZIL?

		By default, ZFS stores the ZIL in the pool with all
	 the data. If an application has a heavy write load,
	 storing the ZIL in a separate device that has very fast
	 synchronous, sequential write performance can improve
	 overall system. For other workloads, a SSD is unlikely
	 to make much of an improvement.

	9.4.
	What is the L2ARC?

		The L2ARC is a read cache stored
	 on a fast device such as an SSD.
	 This cache is not persistent across reboots. Note that
	 RAM is used as the first layer of cache and the L2ARC is
	 only needed if there is insufficient RAM.
L2ARC needs space in the ARC to index it. So,
	 perversely, a working set that fits perfectly in the
	 ARC will not fit perfectly any more if a L2ARC is used
	 because part of the ARC is holding the L2ARC index,
	 pushing part of the working set into the L2ARC which is
	 slower than RAM.

	9.5.
	Is enabling deduplication advisable?

		Generally speaking, no.
Deduplication takes up a significant amount of RAM
	 and may slow down read and write disk access times.
	 Unless one is storing data that is very heavily
	 duplicated, such as virtual machine images or user
	 backups, it is possible that deduplication will do more
	 harm than good. Another consideration is the inability
	 to revert deduplication status. If data is written when
	 deduplication is enabled, disabling dedup will not cause
	 those blocks which were deduplicated to be replicated
	 until they are next modified.
Deduplication can also lead to some unexpected
	 situations. In particular, deleting files may become
	 much slower.

	9.6.
	I cannot delete or create files on my ZFS pool.
	 How can I fix this?

		This could happen because the pool is 100% full.
	 ZFS requires space on the disk to write transaction
	 metadata. To restore the pool to a usable state,
	 truncate the file to delete:
% truncate -s 0 unimportant-file
File truncation works because a new transaction is
	 not started, new spare blocks are created
	 instead.
Note:
On systems with additional ZFS dataset tuning,
		such as deduplication, the space may not be
		immediately available

	9.7.
	Does ZFS support TRIM for Solid State Drives?

		ZFS TRIM support was added to FreeBSD 10-CURRENT
	 with revision r240868. ZFS TRIM
	 support was added to all FreeBSD-STABLE branches in
	 r252162 and
	 r251419, respectively.
ZFS TRIM is enabled by default, and can be turned
	 off by adding this line to
	 /etc/sysctl.conf:
vfs.zfs.trim_disable=1
Note:
ZFS TRIM may not work with all configurations,
		such as a ZFS filesystem on a GELI-backed
		device.

Chapter 10. System Administration
	10.1.
	Where are the system start-up configuration
	 files?

		The primary configuration file is
	 /etc/defaults/rc.conf which is
	 described in rc.conf(5). System startup scripts
	 such as /etc/rc and
	 /etc/rc.d, which are described in
	 rc(8), include this file. Do not edit this
	 file! Instead, to edit an entry in
	 /etc/defaults/rc.conf, copy the line
	 into /etc/rc.conf and change it
	 there.
For example, if to start named(8), the
	 included DNS server:
echo 'named_enable="YES"' >> /etc/rc.conf
To start up local services, place shell scripts in the
	 /usr/local/etc/rc.d directory. These
	 shell scripts should be set executable, the default file
	 mode is 555.

	10.2.
	How do I add a user easily?

		Use the adduser(8) command, or the pw(8)
	 command for more complicated situations.
To remove the user, use the rmuser(8) command or,
	 if necessary, pw(8).

	10.3.
	Why do I keep getting messages like root:
	 not found after editing
	 /etc/crontab?

		This is normally caused by editing the system crontab.
	 This is not the correct way to do things as the system
	 crontab has a different format to the per-user crontabs.
	 The system
	 crontab has an extra field, specifying which user to run
	 the command as. cron(8) assumes this user is the
	 first word of the command to execute. Since no such
	 command exists, this error message is displayed.
To delete the extra, incorrect crontab:
crontab -r

	10.4.
	Why do I get the error, you are not in the
	 correct group to su root when I try to
	 su to root?

		This is a security feature. In order to
	 su to
	 root, or any
	 other account with superuser privileges, the user account
	 must be a member of the
	 wheel group.
	 If this feature were not there, anybody with an
	 account on a system who also found out root's password would be
	 able to gain superuser level access to the system.
To allow someone to su to
	 root, put
	 them in the wheel group using
	 pw:
pw groupmod wheel -m lisa
The above example will add user lisa to the group
	 wheel.

	10.5.
	I made a mistake in rc.conf, or
	 another startup file, and now I cannot edit it because the
	 file system is read-only. What should I do?

		Restart the system using boot
	 -s at the loader prompt to enter single-user
	 mode. When prompted for a shell pathname, press
	 Enter and run mount
	 -urw / to re-mount the root file system in
	 read/write mode. You may also need to run mount
	 -a -t ufs to mount the file system where your
	 favorite editor is defined. If that editor is on
	 a network file system, either configure
	 the network manually before mounting the network file
	 systems, or use an editor which resides on a local file
	 system, such as ed(1).
In order to use a full screen editor such as
	 vi(1) or emacs(1), run
	 export TERM=xterm
	 so that these editors can load the correct data from the
	 termcap(5) database.
After performing these steps, edit
	 /etc/rc.conf to
	 fix the syntax error. The error message displayed
	 immediately after the kernel boot messages should indicate
	 the number of the line in the file which is at
	 fault.

	10.6.
	Why am I having trouble setting up my printer?

		See the Handbook
	 entry on printing for troubleshooting
	 tips.

	10.7.
	How can I correct the keyboard mappings for my
	 system?

		Refer to the Handbook section on using
	 localization, specifically the section on console
	 setup.

	10.8.
	Why can I not get user quotas to work properly?

			It is possible that the kernel is not configured
		to use quotas. In this case,
		add the following line to the kernel configuration
		file and recompile the kernel:
options QUOTA
Refer to the Handbook
		 entry on quotas for full details.

	Do not turn on quotas on
		/.

	Put the quota file on the file system that the
		quotas are to be enforced on:
	File System	Quota file
	/usr	/usr/admin/quotas
	/home	/home/admin/quotas
	…	…

	10.9.
	Does FreeBSD support System V IPC primitives?

		Yes, FreeBSD supports System V-style IPC, including
	 shared memory, messages and semaphores, in the
	 GENERIC kernel. With a custom
	 kernel, support may be loaded with the
	 sysvshm.ko,
	 sysvsem.ko and
	 sysvmsg.ko kernel modules, or
	 enabled in the custom kernel by adding the following lines
	 to the kernel configuration file:
options SYSVSHM # enable shared memory
options SYSVSEM # enable for semaphores
options SYSVMSG # enable for messaging
Recompile and install the kernel.

	10.10.
	What other mail-server software can I use instead of
	 Sendmail?

		The Sendmail
	 server is the default mail-server software for FreeBSD, but
	 it can be replaced with another
	 MTA installed from the Ports Collection. Available ports
	 include mail/exim,
	 mail/postfix, and
	 mail/qmail. Search the mailing lists
	 for discussions regarding the advantages and disadvantages
	 of the available MTAs.

	10.11.
	I have forgotten the root password! What do I
	 do?

		Do not panic! Restart the system, type
	 boot -s at the
	 Boot: prompt to enter single-user mode.
	 At the question about the shell to use, hit
	 Enter which will display a
	 # prompt. Enter mount
	 -urw / to remount the root file system
	 read/write, then run mount -a to
	 remount all the file systems. Run passwd
	 root to change the root password then run
	 exit(1) to continue booting.
Note:
If you are still prompted to give the root password when
	 entering the single-user mode, it means that the console
	 has been marked as insecure in
	 /etc/ttys. In this case, it will
	 be required to boot from a FreeBSD installation disk,
	 choose the Live CD or
	 Shell at the beginning of the
	 install process and issue the commands mentioned above.
	 Mount the specific partition in this
	 case and then chroot to it. For example, replace
	 mount -urw / with
	 mount /dev/ada0p1 /mnt; chroot /mnt
	 for a system on
	 ada0p1.

Note:
If the root partition cannot be mounted from
	 single-user mode, it is possible that the partitions are
	 encrypted and it is impossible to mount them without the
	 access keys. For more information see the section
	 about encrypted disks in the FreeBSD Handbook.

	10.12.
	How do I keep Control+Alt+Delete
	 from rebooting the system?

		When using syscons(4), the default console
	 driver, build and install a new kernel with this line in
	 the configuration file:
options SC_DISABLE_REBOOT
This can also be done by setting the following
	 sysctl(8) which does not require a reboot or kernel
	 recompile:
sysctl hw.syscons.kbd_reboot=0
Note:
The above two methods are exclusive: The
	 sysctl(8) does not exist if the kernel is compiled
	 with SC_DISABLE_REBOOT.

	10.13.
	How do I reformat DOS text files to UNIX®
	 ones?

		Use this perl(1) command:
% perl -i.bak -npe 's/\r\n/\n/g' file(s)
where file(s) is one or
	 more files to process. The modification is done in-place,
	 with the original file stored with a
	 .bak extension.
Alternatively, use tr(1):
% tr -d '\r' < dos-text-file > unix-file
dos-text-file is the file
	 containing DOS text while
	 unix-file will contain the
	 converted output. This can be quite a bit faster than
	 using perl.
Yet another way to reformat DOS text files is to use
	 the converters/dosunix port from the
	 Ports Collection. Consult its documentation about the
	 details.

	10.14.
	How do I re-read /etc/rc.conf and
	 re-start /etc/rc without a
	 reboot?

		Go into single-user mode and then back to multi-user
	 mode:
shutdown now
return
exit

	10.15.
	I tried to update my system to the latest
	 -STABLE, but got
	 -BETAx,
	 -RC or
	 -PRERELEASE! What is going
	 on?

		Short answer: it is just a name.
	 RC stands for “Release
	 Candidate”. It signifies that a release is
	 imminent. In FreeBSD, -PRERELEASE is
	 typically synonymous with the code freeze before a
	 release. (For some releases, the
	 -BETA label was used in the same way
	 as -PRERELEASE.)
Long answer: FreeBSD derives its releases from one of two
	 places. Major, dot-zero, releases, such as 9.0-RELEASE
	 are branched from the head of the development stream,
	 commonly referred to as -CURRENT. Minor releases, such
	 as 6.3-RELEASE or 5.2-RELEASE, have been snapshots of the
	 active -STABLE branch.
	 Starting with 4.3-RELEASE, each release also now has its
	 own branch which can be tracked by people requiring an
	 extremely conservative rate of development (typically only
	 security advisories).
When a release is about to be made, the branch from
	 which it will be derived from has to undergo a certain
	 process. Part of this process is a code freeze. When a
	 code freeze is initiated, the name of the branch is
	 changed to reflect that it is about to become a release.
	 For example, if the branch used to be called 6.2-STABLE,
	 its name will be changed to 6.3-PRERELEASE to signify the
	 code freeze and signify that extra pre-release testing
	 should be happening. Bug fixes can still be committed to
	 be part of the release. When the source code is in shape
	 for the release the name will be changed to 6.3-RC to
	 signify that a release is about to be made from it. Once
	 in the RC stage, only the most critical bugs found can be
	 fixed. Once the release (6.3-RELEASE in this example) and
	 release branch have been made, the branch will be renamed
	 to 6.3-STABLE.
For more information on version numbers and the
	 various Subversion branches, refer to the Release
	 Engineering article.

	10.16.
	I tried to install a new kernel, and the
	 chflags(1) failed. How do I get around this?

		Short answer: the security level is
	 greater than 0. Reboot directly to single-user mode to
	 install the kernel.
Long answer: FreeBSD disallows changing system flags at
	 security levels greater than 0. To check the current
	 security level:
sysctl kern.securelevel
The security level cannot be lowered in multi-user
	 mode, so boot to single-user mode to install the kernel,
	 or change the security level in
	 /etc/rc.conf then reboot. See the
	 init(8) manual page for details on
	 securelevel, and see
	 /etc/defaults/rc.conf and the
	 rc.conf(5) manual page for more information on
	 rc.conf.

	10.17.
	I cannot change the time on my system by more than one
	 second! How do I get around this?

		Short answer: the system is at a security level
	 greater than 1. Reboot directly to single-user mode to
	 change the date.
Long answer: FreeBSD disallows changing the time by more
	 that one second at security levels greater than 1. To
	 check the security level:
sysctl kern.securelevel
The security level cannot be lowered in multi-user
	 mode. Either boot to single-user mode to change the date
	 or change the security level in
	 /etc/rc.conf and reboot. See the
	 init(8) manual page for details on
	 securelevel, and see
	 /etc/defaults/rc.conf and the
	 rc.conf(5) manual page for more information on
	 rc.conf.

	10.18.
	Why is rpc.statd using 256 MB
	 of memory?

		No, there is no memory leak, and it is not using
	 256 MB of memory. For convenience,
	 rpc.statd maps an obscene amount of
	 memory into its address space. There is nothing terribly
	 wrong with this from a technical standpoint; it just
	 throws off things like top(1) and ps(1).
rpc.statd(8) maps its status file (resident on
	 /var) into its address space; to save
	 worrying about remapping it later when it needs to grow,
	 it maps it with a generous size. This is very evident
	 from the source code, where one can see that the length
	 argument to mmap(2) is 0x10000000,
	 or one sixteenth of the address space on an IA32, or
	 exactly 256 MB.

	10.19.
	Why can I not unset the schg file
	 flag?

		The system is running a securelevel greater than 0.
	 Lower the securelevel and try again. For
	 more information, see the FAQ
	 entry on securelevel and the init(8) manual
	 page.

	10.20.
	What is vnlru?

		vnlru flushes and frees vnodes when
	 the system hits the kern.maxvnodes
	 limit. This kernel thread sits mostly idle, and only
	 activates when there is a huge amount of RAM and users are
	 accessing tens of thousands of tiny files.

	10.21.
	What do the various memory states displayed by
	 top mean?

			Active: pages recently
		statistically used.

	Inactive: pages recently
		statistically unused.

	Cache: (most often) pages that
		have percolated from inactive to a status where they
		maintain their data, but can often be immediately
		reused (either with their old association, or reused
		with a new association). There can be certain
		immediate transitions from active
		to cache state if the page is known
		to be clean (unmodified), but that transition is a
		matter of policy, depending upon the algorithm choice
		of the VM system maintainer.

	Free: pages without data
		content, and can be immediately used in certain
		circumstances where cache pages might be ineligible.
		Free pages can be reused at interrupt or process
		state.

	Wired: pages that are fixed
		into memory, usually for kernel purposes, but also
		sometimes for special use in processes.

Pages are most often written to disk (sort of a VM
	 sync) when they are in the inactive state, but active
	 pages can also be synced. This depends upon the CPU
	 tracking of the modified bit being available, and in
	 certain situations there can be an advantage for a block
	 of VM pages to be synced, whether they are active or
	 inactive. In most common cases, it is best to think of
	 the inactive queue to be a queue of relatively unused
	 pages that might or might not be in the process of being
	 written to disk. Cached pages are already synced, not
	 mapped, but available for immediate process use with their
	 old association or with a new association. Free pages are
	 available at interrupt level, but cached or free pages can
	 be used at process state for reuse. Cache pages are not
	 adequately locked to be available at interrupt
	 level.
There are some other flags (e.g., busy flag or busy
	 count) that might modify some of the described
	 rules.

	10.22.
	How much free memory is available?

		There are a couple of kinds of “free
	 memory”. One kind is the amount of memory
	 immediately available without paging anything else out.
	 That is approximately the size of cache queue + size of
	 free queue (with a derating factor, depending upon system
	 tuning). Another kind of “free memory” is
	 the total amount of VM space. That can
	 be complex, but is dependent upon the amount of swap space
	 and memory. Other kinds of “free memory”
	 descriptions are also possible, but it is relatively
	 useless to define these, but rather it is important to
	 make sure that the paging rate is kept low, and to avoid
	 running out of swap space.

	10.23.
	What is /var/empty?

		/var/empty is a directory that
	 the sshd(8) program uses when performing privilege
	 separation. The /var/empty
	 directory is empty, owned by root and has the
	 schg flag set. This directory should
	 not be deleted.

	10.24.
	I just changed
	 /etc/newsyslog.conf. How can I check
	 if it does what I expect?

		To see what newsyslog(8) will do, use the
	 following:
% newsyslog -nrvv

	10.25.
	My time is wrong, how can I change the
	 timezone?

		Use tzsetup(8).

Chapter 11. The X Window System and Virtual Consoles
	11.1.
	What is the X Window System?

		The X Window System (commonly X11)
	 is the most widely available windowing system capable of
	 running on UNIX® or UNIX® like systems, including
	 FreeBSD. The X.Org
	 Foundation administers the X
	 protocol standards, with the current reference
	 implementation, version 11 release 7.7, so
	 references are often shortened to
	 X11.
Many implementations are available for different
	 architectures and operating systems. An implementation of
	 the server-side code is properly known as an X
	 server.

	11.2.
	I want to run Xorg, how do I go about it?

		To install Xorg do one of the following:
Use the x11/xorg
	 meta-port, which builds and installs every Xorg
	 component.
Use x11/xorg-minimal, which builds
	 and installs only the necessary Xorg components.
Install Xorg from FreeBSD packages:
pkg install xorg
After the installation of Xorg, follow the
	 instructions from the X11
	 Configuration section of the FreeBSD
	 Handbook.

	11.3.
	I tried to run X, but I get a
	 No devices detected. error when I
	 type startx. What do I do now?

		The system is probably running at a raised
	 securelevel. It is not possible to
	 start X at a raised securelevel because
	 X requires write access to io(4). For more
	 information, see at the init(8) manual page.
There are two solutions to the problem: set the
	 securelevel back down to zero or run
	 xdm(1) (or an alternative display manager) at boot
	 time before the securelevel is
	 raised.
See Q: 11.10 for more information
	 about running xdm(1) at boot time.

	11.4.
	Why does my mouse not work with X?

		When using syscons(4), the default console
	 driver, FreeBSD can be configured to support a mouse pointer
	 on each virtual screen. To avoid conflicting with X,
	 syscons(4) supports a virtual device called
	 /dev/sysmouse. All mouse events
	 received from the real mouse device are written to the
	 sysmouse(4) device via moused(8). To use the
	 mouse on one or more virtual consoles,
	 and use X, see Q: 4.4.1 and set up
	 moused(8).
Then edit /etc/X11/xorg.conf and
	 make sure the following lines exist:
Section "InputDevice"
 Option "Protocol" "SysMouse"
 Option "Device" "/dev/sysmouse"
.....
Starting with Xorg version 7.4, the
	 InputDevice sections in
	 xorg.conf are ignored in favor of
	 autodetected devices. To restore the old behavior, add
	 the following line to the ServerLayout
	 or ServerFlags section:
Option "AutoAddDevices" "false"
Some people prefer to use
	 /dev/mouse under X. To make this
	 work, /dev/mouse should be linked
	 to /dev/sysmouse (see
	 sysmouse(4)) by adding the following line to
	 /etc/devfs.conf (see
	 devfs.conf(5)):
link sysmouse mouse
This link can be created by restarting devfs(5)
	 with the following command (as root):
service devfs restart

	11.5.
	My mouse has a fancy wheel. Can I use it in X?

		Yes, if X is configured for a 5 button mouse. To
	 do this, add the lines Buttons 5
	 and ZAxisMapping 4 5 to the
	 “InputDevice” section of
	 /etc/X11/xorg.conf, as seen in this
	 example:
Section "InputDevice"
 Identifier "Mouse1"
 Driver "mouse"
 Option "Protocol" "auto"
 Option "Device" "/dev/sysmouse"
 Option "Buttons" "5"
 Option "ZAxisMapping" "4 5"
EndSection
The mouse can be enabled in
	 Emacsby adding these
	 lines to ~/.emacs:
;; wheel mouse
(global-set-key [mouse-4] 'scroll-down)
(global-set-key [mouse-5] 'scroll-up)

	11.6.
	My laptop has a Synaptics touchpad. Can I use it in
	 X?

		Yes, after configuring a few things to make
	 it work.
In order to use the Xorg synaptics driver,
	 first remove moused_enable from
	 rc.conf.
To enable synaptics, add the following line to
	 /boot/loader.conf:
hw.psm.synaptics_support="1"
Add the following to
	 /etc/X11/xorg.conf:
Section "InputDevice"
Identifier "Touchpad0"
Driver "synaptics"
Option "Protocol" "psm"
Option "Device" "/dev/psm0"
EndSection
And be sure to add the following into the
	 “ServerLayout” section:
InputDevice "Touchpad0" "SendCoreEvents"

	11.7.
	How do I use remote X displays?

		For security reasons, the default setting is to not
	 allow a machine to remotely open a window.
To enable this feature, start
	 X with the optional
	 -listen_tcp argument:
% startx -listen_tcp

	11.8.
	What is a virtual console and how do I make
	 more?

		Virtual consoles provide
	 several simultaneous sessions on the same machine without
	 doing anything complicated like setting up a network or
	 running X.
When the system starts, it will display a login prompt
	 on the monitor after displaying all the boot messages.
	 Type in your login name and password to
	 start working on the first virtual
	 console.
To start another
	 session, perhaps to look at documentation for a program
	 or to read mail while waiting for an
	 FTP transfer to finish,
	 hold down Alt and press
	 F2. This will display the login prompt
	 for the second virtual
	 console. To go back to the
	 original session, press Alt+F1.
The default FreeBSD installation has eight virtual
	 consoles enabled. Alt+F1,
	 Alt+F2,
	 Alt+F3,
	 and so on will switch between these virtual
	 consoles.
To enable more of virtual consoles, edit
	 /etc/ttys (see ttys(5)) and add
	 entries for ttyv8 to
	 ttyvc, after the comment on
	 “Virtual terminals”:
Edit the existing entry for ttyv8 in /etc/ttys and change
"off" to "on".
ttyv8 "/usr/libexec/getty Pc" xterm on secure
ttyv9 "/usr/libexec/getty Pc" xterm on secure
ttyva "/usr/libexec/getty Pc" xterm on secure
ttyvb "/usr/libexec/getty Pc" xterm on secure
The more virtual
	 terminals, the more resources that are used. This can be
	 problematic on systems with 8 MB RAM or less.
	 Consider changing secure to
	 insecure.
Important:
In order to run an X server, at least one virtual
	 terminal must be left to off for it
	 to use. This means that only eleven of the Alt-function
	 keys can be used as virtual consoles so that one is left
	 for the X server.

For example, to run X and eleven virtual consoles, the
	 setting for virtual terminal 12 should be:
ttyvb "/usr/libexec/getty Pc" xterm off secure
The easiest way to activate the
	 virtual consoles is to reboot.

	11.9.
	How do I access the virtual consoles from X?

		Use Ctrl+Alt+Fn
	 to switch back to a virtual console. Press Ctrl+Alt+F1
	 to return to the first virtual console.
Once at a text console, use
	 Alt+Fn
	 to move between them.
To return to the X session, switch to the
	 virtual console running X. If X was started from the
	 command line using startx,
	 the X session will attach to the next unused virtual
	 console, not the text console from which it was invoked.
	 For eight active virtual terminals, X will
	 run on the ninth, so use Alt+F9.

	11.10.
	How do I start XDM on
	 boot?

		There are two schools of thought on how to start
	 xdm(1). One school starts xdm
	 from /etc/ttys (see ttys(5))
	 using the supplied example, while the other runs
	 xdm from
	 rc.local (see rc(8)) or from an
	 X script in
	 /usr/local/etc/rc.d. Both are
	 equally valid, and one may work in situations where the
	 other does not. In both cases the result is the same: X
	 will pop up a graphical login prompt.
The ttys(5) method has the advantage of
	 documenting which vty X will start on and passing the
	 responsibility of restarting the X server on logout to
	 init(8). The rc(8) method makes it easy to
	 kill xdm if there is
	 a problem starting the X server.
If loaded from rc(8), xdm
	 should be started without any arguments.
	 xdm must start
	 after getty(8) runs, or else
	 getty and xdm will
	 conflict, locking out the console. The best way around
	 this is to have the script sleep 10 seconds or so then
	 launch xdm.
When starting xdm from
	 /etc/ttys, there still is a chance of
	 conflict between xdm and getty(8).
	 One way to avoid this is to add the vt
	 number in
	 /usr/local/lib/X11/xdm/Xservers:
:0 local /usr/local/bin/X vt4
The above example will direct the X server to run in
	 /dev/ttyv3. Note the number is
	 offset by one. The X server counts the vty from one,
	 whereas the FreeBSD kernel numbers the vty from zero.

	11.11.
	Why do I get Couldn't open
	 console when I run
	 xconsole?

		When X is started with
	 startx, the permissions on
	 /dev/console will
	 not get changed, resulting in things
	 like xterm -C and
	 xconsole not working.
This is because of the way console permissions are set
	 by default. On a multi-user system, one does not
	 necessarily want just any user to be able to write on the
	 system console. For users who are logging directly onto a
	 machine with a VTY, the fbtab(5) file exists to solve
	 such problems.
In a nutshell, make sure an uncommented line of the
	 form is in /etc/fbtab (see
	 fbtab(5)):
/dev/ttyv0 0600 /dev/console
It will ensure that whomever logs in on
	 /dev/ttyv0 will own the
	 console.

	11.12.
	Why does my PS/2 mouse misbehave under X?

		The mouse and the mouse driver may have become out of
	 synchronization. In rare cases, the driver may also
	 erroneously report synchronization errors:
psmintr: out of sync (xxxx != yyyy)
If this happens, disable the synchronization check
	 code by setting the driver flags for the PS/2 mouse driver
	 to 0x100. This can be easiest achieved
	 by adding hint.psm.0.flags="0x100" to
	 /boot/loader.conf and
	 rebooting.

	11.13.
	How do I reverse the mouse buttons?

		Type
	 xmodmap -e "pointer = 3 2 1". Add this
	 command to ~/.xinitrc or
	 ~/.xsession to make it happen
	 automatically.

	11.14.
	How do I install a splash screen and where do I find
	 them?

		The detailed answer for this question can be found in
	 the Boot
	 Time Splash Screens section of the FreeBSD
	 Handbook.

	11.15.
	Can I use the Windows keys on my
	 keyboard in X?

		Yes. Use xmodmap(1) to
	 define which functions the keys should perform.
Assuming all Windows keyboards are
	 standard, the keycodes for these three keys are the
	 following:
	115 —
		Windows key, between the left-hand
		Ctrl and Alt
		keys

	116 —
		Windows key, to the right of
		AltGr

	117 —
		Menu, to the left of the right-hand
		Ctrl

To have the left Windows key print a
	 comma, try this.
xmodmap -e "keycode 115 = comma"
To have the Windows key-mappings
	 enabled automatically every time X is started, either put
	 the xmodmap commands in
	 ~/.xinitrc or, preferably, create
	 a ~/.xmodmaprc and include the
	 xmodmap options, one per line, then add
	 the following line to
	 ~/.xinitrc:
xmodmap $HOME/.xmodmaprc
For example, to map the 3 keys to be
	 F13, F14, and
	 F15, respectively. This would make it
	 easy to map them to useful functions within applications
	 or the window manager.
To do this, put the following in
	 ~/.xmodmaprc.
keycode 115 = F13
keycode 116 = F14
keycode 117 = F15
For the x11-wm/fvwm2 desktop
	 manager, one could map the keys so that
	 F13 iconifies or de-iconifies the
	 window the cursor is in, F14 brings the
	 window the cursor is in to the front or, if it is already
	 at the front, pushes it to the back, and
	 F15 pops up the main Workplace
	 menu even if the cursor is not on the
	 desktop, which is useful when no part of
	 the desktop is visible.
The following entries in
	 ~/.fvwmrc implement the
	 aforementioned setup:
Key F13 FTIWS A Iconify
Key F14 FTIWS A RaiseLower
Key F15 A A Menu Workplace Nop

	11.16.
	How can I get 3D hardware acceleration for
	 OpenGL®?

		The availability of 3D acceleration depends on the
	 version of Xorg and the type of video
	 chip. For an nVidia chip, use
	 the binary drivers provided for FreeBSD by installing one of
	 the following ports:
The latest versions of nVidia cards are supported
	 by the x11/nvidia-driver
	 port.
Older drivers are available as
	 x11/nvidia-driver-###
nVidia provides detailed information on which
	 card is supported by which driver on their web site: http://www.nvidia.com/object/IO_32667.html.
For Matrox G200/G400, check the
	 x11-drivers/xf86-video-mga
	 port.
For ATI Rage 128 and Radeon see
	 ati(4), r128(4) and radeon(4).

Chapter 12. Networking
	12.1.
	Where can I get information on “diskless
	 booting”?

		“Diskless booting” means that the FreeBSD
	 box is booted over a network, and reads the necessary
	 files from a server instead of its hard disk. For full
	 details, see the
	 Handbook entry on diskless booting.

	12.2.
	Can a FreeBSD box be used as a dedicated network
	 router?

		Yes. Refer to the Handbook entry on advanced
	 networking, specifically the section on routing
	 and gateways.

	12.3.
	Can I connect my Windows® box to the Internet via
	 FreeBSD?

		Typically, people who ask this question have two PCs
	 at home, one with FreeBSD and one with some version of
	 Windows® the idea is to use the FreeBSD box to connect to
	 the Internet and then be able to access the Internet from
	 the Windows® box through the FreeBSD box. This is really
	 just a special case of the previous question and works
	 perfectly well.
Dialup users must use -nat
	 and set gateway_enable to
	 YES in
	 /etc/rc.conf. For more information,
	 refer to ppp(8) or the Handbook
	 entry on user PPP.
If the connection to the Internet is over Ethernet,
	 use natd(8). A tutorial can be found in the natd
	 section of the Handbook.

	12.4.
	Does FreeBSD support PPP?

		Yes. ppp(8) provides support for both incoming
	 and outgoing connections.
For more information on how to use this, refer to
	 the Handbook
	 chapter on PPP.

	12.5.
	Does FreeBSD support NAT or Masquerading?

		Yes. For instructions on how to use NAT over a PPP
	 connection, see the Handbook
	 entry on PPP. To use NAT over
	 some other sort of network connection, look at the
	 natd
	 section of the Handbook.

	12.6.
	How can I set up Ethernet aliases?

		If the alias is on the same subnet as an address
	 already configured on the interface, add
	 netmask 0xffffffff to this
	 command:
ifconfig ed0 alias 192.0.2.2 netmask 0xffffffff
Otherwise, specify the network address and
	 netmask as usual:
ifconfig ed0 alias 172.16.141.5 netmask 0xffffff00
More information can be found in the FreeBSD Handbook.

	12.7.
	Why can I not NFS-mount from a Linux® box?

		Some versions of the Linux® NFS code only accept
	 mount requests from a privileged port; try to issue the
	 following command:
mount -o -P linuxbox:/blah /mnt

	12.8.
	Why does mountd keep telling me it
	 can't change attributes and that I
	 have a bad exports list on my FreeBSD
	 NFS server?

		The most frequent problem is not understanding the
	 correct format of /etc/exports.
	 Review exports(5) and the NFS
	 entry in the Handbook, especially the section on configuring
	 NFS.

	12.9.
	How do I enable IP multicast support?

		Install the net/mrouted package
	 or port and add
	 mrouted_enable="YES" to
	 /etc/rc.conf start this service at
	 boot time.

	12.10.
	Why do I have to use the FQDN for hosts on my
	 site?

		See the answer in the FreeBSD Handbook.

	12.11.
	Why do I get an error, Permission
	 denied, for all networking
	 operations?

		If the kernel is compiled with the
	 IPFIREWALL option, be aware
	 that the default policy is to deny all packets that are
	 not explicitly allowed.
If the firewall is unintentionally misconfigured,
	 restore network operability by
	 typing the following as root:
ipfw add 65534 allow all from any to any
Consider setting
	 firewall_type="open" in
	 /etc/rc.conf.
For further information on configuring this
	 firewall, see the Handbook
	 chapter.

	12.12.
	Why is my ipfw “fwd”
	 rule to redirect a service to another machine not
	 working?

		Possibly because network address translation (NAT) is
	 needed instead of just forwarding packets. A
	 “fwd” rule only forwards packets, it does not
	 actually change the data inside the packet. Consider this
	 rule:
01000 fwd 10.0.0.1 from any to foo 21
When a packet with a destination address of
	 foo arrives at the machine with
	 this rule, the packet is forwarded to
	 10.0.0.1, but it still has the
	 destination address of foo.
	 The destination address of the packet is
	 not changed to
	 10.0.0.1. Most machines would
	 probably drop a packet that they receive with a
	 destination address that is not their own. Therefore,
	 using a “fwd” rule does not often work the
	 way the user expects. This behavior is a feature and not
	 a bug.
See the FAQ about
	 redirecting services, the natd(8) manual, or
	 one of the several port redirecting utilities in the Ports
	 Collection for a correct way to do this.

	12.13.
	How can I redirect service requests from one machine
	 to another?

		FTP and other service requests can be redirected with
	 the sysutils/socket package or port.
	 Replace the entry for the service in
	 /etc/inetd.conf to call
	 socket, as seen in this example for
	 ftpd:
ftp stream tcp nowait nobody /usr/local/bin/socket socket ftp.example.com ftp
where ftp.example.com and
	 ftp are the host and port to
	 redirect to, respectively.

	12.14.
	Where can I get a bandwidth management tool?

		There are three bandwidth management tools available
	 for FreeBSD. dummynet(4) is integrated into FreeBSD as
	 part of ipfw(4). ALTQ
	 has been integrated into FreeBSD as part of pf(4).
	 Bandwidth Manager from Emerging
	 Technologies is a commercial product.

	12.15.
	Why do I get /dev/bpf0: device not
	 configured?

		The running application requires the Berkeley
	 Packet Filter (bpf(4)), but it was removed from a
	 custom kernel. Add this to the kernel config file and
	 build a new kernel:
device bpf # Berkeley Packet Filter

	12.16.
	How do I mount a disk from a Windows® machine that is
	 on my network, like smbmount in Linux®?

		Use the SMBFS toolset. It
	 includes a set of kernel modifications and a set of
	 userland programs. The programs and information are
	 available as mount_smbfs(8) in the base
	 system.

	12.17.
	What are these messages about: Limiting
	 icmp/open port/closed port response in my
	 log files?

		This kernel message indicates that some activity is
	 provoking it to send a large amount of ICMP or TCP reset
	 (RST) responses. ICMP responses are
	 often generated as a result of attempted connections to
	 unused UDP ports. TCP resets are generated as a result of
	 attempted connections to unopened TCP ports. Among
	 others, these are the kinds of activities which may cause
	 these messages:
	Brute-force denial of service (DoS) attacks (as
		opposed to single-packet attacks which exploit a
		specific vulnerability).

	Port scans which attempt to connect to a large
		number of ports (as opposed to only trying a few
		well-known ports).

The first number in the message indicates how many
	 packets the kernel would have sent if the limit was not in
	 place, and the second indicates the limit. This limit
	 is controlled using
	 net.inet.icmp.icmplim. This example
	 sets the limit to 300
	 packets per second:
sysctl net.inet.icmp.icmplim=300
To disable these messages
	 without disabling response
	 limiting, use
	 net.inet.icmp.icmplim_output
	 to disable the output:
sysctl net.inet.icmp.icmplim_output=0
Finally, to disable response limiting completely,
	 set net.inet.icmp.icmplim to
	 0. Disabling response limiting is
	 discouraged for the reasons listed above.

	12.18.
	What are these arp: unknown hardware
	 address format error messages?

		This means that some device on the local Ethernet is
	 using a MAC address in a format that FreeBSD does not
	 recognize. This is probably caused by someone
	 experimenting with an Ethernet card somewhere else on the
	 network. This is most commonly seen on cable modem
	 networks. It is harmless, and should not affect the
	 performance of the FreeBSD system.

	12.19.
	Why do I keep seeing messages like:
	 192.168.0.10 is on
	 fxp1 but got reply from 00:15:17:67:cf:82 on
	 rl0, and how do I disable it?

		Because a packet is coming from outside the network
	 unexpectedly. To disable them, set
	 net.link.ether.inet.log_arp_wrong_iface
	 to 0.

Chapter 13. Security
	13.1.
	What is a sandbox?

		“Sandbox” is a security term. It can
	 mean two things:
	A process which is placed inside a set of virtual
		walls that are designed to prevent someone who breaks
		into the process from being able to break into the
		wider system.
The process is only able to run inside the walls.
		Since nothing the process does in regards to executing
		code is supposed to be able to breach the walls, a
		detailed audit of its code is not needed in order to
		be able to say certain things about its
		security.
The walls might be a user ID, for example.
		This is the definition used in the security(7)
		and named(8) man pages.
Take the ntalk service, for
		example (see inetd(8)). This service used to run
		as user ID root. Now it runs as
		user ID tty. The tty user is a sandbox
		designed to make it more difficult for someone who has
		successfully hacked into the system via
		ntalk from being able to hack
		beyond that user ID.

	A process which is placed inside a simulation of
		the machine. It means that someone who is able to
		break into the process may believe that he can break
		into the wider machine but is, in fact, only breaking
		into a simulation of that machine and not modifying
		any real data.
The most common way to accomplish this is to build
		a simulated environment in a subdirectory and then run
		the processes in that directory chrooted so that
		/ for that process is this
		directory, not the real / of the
		system).
Another common use is to mount an underlying file
		system read-only and then create a file system layer
		on top of it that gives a process a seemingly
		writeable view into that file system. The process may
		believe it is able to write to those files, but only
		the process sees the effects — other processes
		in the system do not, necessarily.
An attempt is made to make this sort of sandbox so
		transparent that the user (or hacker) does not realize
		that he is sitting in it.

UNIX® implements two core sandboxes. One is at the
	 process level, and one is at the userid level.
Every UNIX® process is completely firewalled off from
	 every other UNIX® process. One process cannot modify the
	 address space of another.
A UNIX® process is owned by a particular userid. If
	 the user ID is not the root user, it serves to
	 firewall the process off from processes owned by other
	 users. The user ID is also used to firewall off
	 on-disk data.

	13.2.
	What is securelevel?

		securelevel is a security
	 mechanism implemented in the kernel. When the securelevel
	 is positive, the kernel restricts certain tasks; not even
	 the superuser (root) is allowed to do
	 them. The securelevel mechanism limits the ability
	 to:
	Unset certain file flags, such as
		schg (the system immutable
		flag).

	Write to kernel memory via
		/dev/mem and
		/dev/kmem.

	Load kernel modules.

	Alter firewall rules.

To check the status of the securelevel on a running
	 system:
sysctl -n kern.securelevel
The output contains the current value of the
	 securelevel. If it is greater than 0, at
	 least some of the securelevel's protections are
	 enabled.
The securelevel of a running system cannot be lowered
	 as this would defeat its purpose. If a task requires that
	 the securelevel be non-positive, change the
	 kern_securelevel and
	 kern_securelevel_enable variables in
	 /etc/rc.conf and reboot.
For more information on securelevel and the specific
	 things all the levels do, consult init(8).
Warning:
Securelevel is not a silver bullet; it has many
	 known deficiencies. More often than not, it provides a
	 false sense of security.
One of its biggest problems is that in order for it
	 to be at all effective, all files used in the boot
	 process up until the securelevel is set must be
	 protected. If an attacker can get the system to execute
	 their code prior to the securelevel being set (which
	 happens quite late in the boot process since some things
	 the system must do at start-up cannot be done at an
	 elevated securelevel), its protections are invalidated.
	 While this task of protecting all files used in the boot
	 process is not technically impossible, if it is
	 achieved, system maintenance will become a nightmare
	 since one would have to take the system down, at least
	 to single-user mode, to modify a configuration
	 file.
This point and others are often discussed on the
	 mailing lists, particularly the FreeBSD security mailing list.
	 Search the archives here
	 for an extensive discussion. A more fine-grained
	 mechanism is preferred.

	13.3.
	BIND9
	 (named) is listening on some
	 high-numbered ports. What is going on?

		BIND uses a random high-numbered port for outgoing
	 queries. Recent versions of it choose a new, random UDP
	 port for each query. This may cause problems for some
	 network configurations, especially if a firewall blocks
	 incoming UDP packets on particular ports. To
	 get past that firewall, try the
	 avoid-v4-udp-ports and
	 avoid-v6-udp-ports options to avoid
	 selecting random port numbers within a blocked
	 range.
Warning:
If a port number (like 53) is specified via the
	 query-source or
	 query-source-v6 options in
	 /usr/local/etc/namedb/named.conf,
	 randomized
	 port selection will not be used. It is strongly
	 recommended that these options not be used to specify
	 fixed port numbers.

Congratulations, by the way. It is good practice to
	 read sockstat(1) output and notice odd
	 things!

	13.4.
	The Sendmail daemon is
	 listening on port 587 as well as the standard port 25!
	 What is going on?

		Recent versions of Sendmail
	 support a mail submission feature that runs over port 587.
	 This is not yet widely supported, but is growing in
	 popularity.

	13.5.
	What is this UID 0 toor account? Have I been
	 compromised?

		Do not worry. toor is an
	 “alternative” superuser account, where toor
	 is root spelled backwards. It is intended to be used with
	 a non-standard shell so the default shell for root does not need to
	 change. This is important as shells which are not part of
	 the base distribution, but are instead installed from
	 ports or packages, are installed in
	 /usr/local/bin which, by default,
	 resides on a different file system. If root's shell is located in
	 /usr/local/bin and the
	 file system
	 containing /usr/local/bin) is not
	 mounted, root will not be able to
	 log in to fix a problem and will have to reboot into
	 single-user mode in order to enter the path to a
	 shell.
Some people use toor for day-to-day
	 root tasks with
	 a non-standard shell, leaving root, with a standard
	 shell, for single-user mode or emergencies. By default, a
	 user cannot log in using toor as it does not have a
	 password, so log in as root and set a password
	 for toor before
	 using it to login.

Chapter 14. PPP
	14.1.
	I cannot make ppp(8) work. What am I doing
	 wrong?

		First, read ppp(8) and
	 the PPP
	 section of the Handbook. To assist in
	 troubleshooting, enable logging with the
	 following command:
set log Phase Chat Connect Carrier lcp ipcp ccp command
This command may be typed at the ppp(8) command
	 prompt or it may be entered at the start of the
	 default section
	 in /etc/ppp/ppp.conf. Make sure that
	 /etc/syslog.conf contains the lines
	 below and the file /var/log/ppp.log
	 exists:
!ppp
. /var/log/ppp.log
A lot about what is going can be learned from the log
	 file. Do not worry if it does not all make sense as
	 it may make sense to someone else.

	14.2.
	Why does ppp(8) hang when I run it?

		This is usually because the hostname will not
	 resolve. The best way to fix this is to make sure that
	 /etc/hosts is read first by the
	 by ensuring that the hosts line is
	 listed first in /etc/host.conf.
	 Then, put an entry in /etc/hosts for
	 the local machine. If there is no local network, change
	 the localhost line:
127.0.0.1 foo.example.com foo localhost
Otherwise, add another entry for the host.
	 Consult the relevant manual pages for more details.
When finished, verify that this command is successful:
	 ping -c1 `hostname`.

	14.3.
	Why will ppp(8) not dial in
	 -auto mode?

		First, check that a default route exists. This
	 command should display two entries:
Destination Gateway Flags Refs Use Netif Expire
default 10.0.0.2 UGSc 0 0 tun0
10.0.0.2 10.0.0.1 UH 0 0 tun0
If
	 a default route is not listed, make sure that the
	 HISADDR line has been added to
	 /etc/ppp/ppp.conf.
Another reason for the default route line being
	 missing is that a default
	 route has been added to /etc/rc.conf
	 and this line is missing
	 from /etc/ppp/ppp.conf:
delete ALL
If this is the case, go back to the Final
	 System Configuration section of the
	 Handbook.

	14.4.
	What does No route to host
	 mean?

		This error is usually because the following section
	 is missing in
	 /etc/ppp/ppp.linkup:
MYADDR:
 delete ALL
 add 0 0 HISADDR
This is only necessary for a dynamic IP address or
	 when the address of the default gateway is unknown. When
	 using interactive mode, the following can be typed in
	 after entering packet mode. Packet mode
	 is indicated by the capitalized PPP in
	 the prompt:
delete ALL
add 0 0 HISADDR
Refer to the PPP
	 and Dynamic IP addresses section of the Handbook
	 for further details.

	14.5.
	Why does my connection drop after about 3
	 minutes?

		The default PPP timeout is 3 minutes. This can be
	 adjusted with the following line:
set timeout NNN
where NNN is the number of
	 seconds of inactivity before the connection is closed. If
	 NNN is zero, the connection is
	 never closed due to a timeout. It is possible to put this
	 command in ppp.conf, or to type it at
	 the prompt in interactive mode. It is also possible to
	 adjust it on the fly while the line is active by
	 connecting to ppp's server
	 socket using telnet(1) or pppctl(8). Refer to
	 the ppp(8) man page for further details.

	14.6.
	Why does my connection drop under heavy load?

		If Link Quality Reporting (LQR) is
	 configured, it is possible that too many
	 LQR packets are lost between the FreeBSD
	 system and the peer. ppp(8) deduces that the line
	 must therefore be bad, and disconnects.
	 LQR is disabled by default and can be
	 enabled with the following line:
enable lqr

	14.7.
	Why does my connection drop after a random amount of
	 time?

		Sometimes, on a noisy phone line or even on a line
	 with call waiting enabled, the modem may hang up because
	 it incorrectly thinks that it lost carrier.
There is a setting on most modems for determining how
	 tolerant it should be to temporary losses of carrier.
	 Refer to the modem manual for details.

	14.8.
	Why does my connection hang after a random amount of
	 time?

		Many people experience hung connections with no
	 apparent explanation. The first thing to establish is
	 which side of the link is hung.
When using an external modem, try
	 using ping(8) to see if the TD
	 light is flashing when data is transmitted. If it flashes
	 but the RD light does not, the
	 problem is with the remote end. If TD
	 does not flash, the problem is local. With an internal
	 modem, use the set
	 server command in
	 ppp.conf. When the hang occurs,
	 connect to ppp(8) using pppctl(8). If the
	 network connection suddenly revives due to the activity on
	 the diagnostic socket, or if it will not
	 connect but the set socket
	 command succeeded at startup time, the problem is local.
	 If it can connect but things are still hung, enable local
	 logging with set log local async
	 and use ping(8) from another window or terminal to
	 make use of the link. The async logging will show the
	 data being transmitted and received on the link. If data
	 is going out and not coming back, the problem is
	 remote.
Having established whether the problem is local or
	 remote, there are now two possibilities:
	If the problem is remote, read on entry Q: 14.9.

	If the problem is local, read on entry Q: 14.10.

	14.9.
	The remote end is not responding. What can I
	 do?

		There is very little that can be done about this.
	 Many ISPs will refuse to help users not running a
	 Microsoft® OS. Add enable lqr to
	 /etc/ppp/ppp.conf, allowing
	 ppp(8) to detect the remote failure and hang up.
	 This detection is relatively slow and therefore not that
	 useful.
First, try disabling all local compression by adding
	 the following to the configuration:
disable pred1 deflate deflate24 protocomp acfcomp shortseq vj
deny pred1 deflate deflate24 protocomp acfcomp shortseq vj
Then reconnect to ensure that this makes no
	 difference. If things improve or if the problem is solved
	 completely, determine which setting makes the difference
	 through trial and error. This is good information for
	 the ISP, although it may make
	 it apparent that it is not a Microsoft® system.
Before contacting the ISP, enable async logging
	 locally and wait until the connection hangs again. This
	 may use up quite a bit of disk space. The last data read
	 from the port may be of interest. It is usually ASCII
	 data, and may even describe the problem (Memory
	 fault, Core
	 dumped).
If the ISP is helpful, they should be able to enable
	 logging on their end, then when the next link drop occurs,
	 they may be able to tell why their side is having a
	 problem.

	14.10.
	ppp(8) has hung. What can I do?

		In this case, rebuild ppp(8) with
	 debugging information, and then use gdb(1) to grab a
	 stack trace from the ppp
	 process that is stuck. To rebuild the
	 ppp utility with debugging
	 information, type:
cd /usr/src/usr.sbin/ppp
env DEBUG_FLAGS='-g' make clean
env DEBUG_FLAGS='-g' make install
Then, restart ppp
	 and wait until it hangs again. When the debug build of
	 ppp hangs, start
	 gdb on the stuck process by
	 typing:
gdb ppp `pgrep ppp`
At the gdb prompt,
	 use the bt or where
	 commands to get a stack trace. Save the output of the
	 gdb session, and
	 “detach” from the running process by typing
	 quit.

	14.11.
	I keep seeing errors about magic being the same. What
	 does it mean?

		Occasionally, just after connecting, there may be
	 messages in the log that say Magic is
	 same. Sometimes, these messages are
	 harmless, and sometimes one side or the other exits. Most
	 PPP implementations cannot survive this problem, and even
	 if the link seems to come up, there will be repeated
	 configure requests and configure acknowledgments in the
	 log file until ppp(8) eventually gives up and closes
	 the connection.
This normally happens on server machines with slow
	 disks that are spawning a getty(8) on the port, and
	 executing ppp(8) from a login script or program after
	 login. There were reports of it happening consistently
	 when using slirp. The reason is that in the time taken
	 between getty(8) exiting and ppp(8) starting,
	 the client-side ppp(8) starts sending Line Control
	 Protocol (LCP) packets. Because ECHO is still switched on
	 for the port on the server, the client ppp(8) sees
	 these packets “reflect” back.
One part of the LCP negotiation is to establish a
	 magic number for each side of the link so that
	 “reflections” can be detected. The protocol
	 says that when the peer tries to negotiate the same magic
	 number, a NAK should be sent and a new magic number should
	 be chosen. During the period that the server port has
	 ECHO turned on, the client ppp(8) sends LCP packets,
	 sees the same magic in the reflected packet and NAKs it.
	 It also sees the NAK reflect (which also means ppp(8)
	 must change its magic). This produces a potentially
	 enormous number of magic number changes, all of which are
	 happily piling into the server's tty buffer. As soon as
	 ppp(8) starts on the server, it is flooded with magic
	 number changes and almost immediately decides it has tried
	 enough to negotiate LCP and gives up. Meanwhile, the
	 client, who no longer sees the reflections, becomes happy
	 just in time to see a hangup from the server.
This can be avoided by allowing the peer to start
	 negotiating with the following line in
	 ppp.conf:
set openmode passive
This tells ppp(8) to wait for the server to
	 initiate LCP negotiations. Some servers however may never
	 initiate negotiations. In this case, try
	 something like:
set openmode active 3
This tells ppp(8) to be passive for 3 seconds,
	 and then to start sending LCP requests. If the peer
	 starts sending requests during this period, ppp(8)
	 will immediately respond rather than waiting for the full
	 3 second period.

	14.12.
	LCP negotiations continue until the connection is
	 closed. What is wrong?

		There is currently an implementation mis-feature in
	 ppp(8) where it does not associate LCP, CCP &
	 IPCP responses with their original requests. As a result,
	 if one PPP implementation is more than 6 seconds slower
	 than the other side, the other side will send two
	 additional LCP configuration requests. This is
	 fatal.
Consider two implementations,
	 A and B.
	 A starts sending LCP requests
	 immediately after connecting and
	 B takes 7 seconds to start. When
	 B starts,
	 A has sent 3 LCP REQs. We are
	 assuming the line has ECHO switched off, otherwise we
	 would see magic number problems as described in the
	 previous section. B sends a REQ,
	 then an ACK to the first of A's
	 REQs. This results in A entering
	 the OPENED state and sending and ACK
	 (the first) back to B. In the
	 meantime, B sends back two more
	 ACKs in response to the two additional REQs sent by
	 A before
	 B started up.
	 B then receives the first ACK
	 from A and enters the
	 OPENED state.
	 A receives the second ACK from
	 B and goes back to the
	 REQ-SENT state, sending another (forth)
	 REQ as per the RFC. It then receives the third ACK and
	 enters the OPENED state. In the
	 meantime, B receives the forth
	 REQ from A, resulting in it
	 reverting to the ACK-SENT state and
	 sending another (second) REQ and (forth) ACK as per the
	 RFC. A gets the REQ, goes into
	 REQ-SENT and sends another REQ. It
	 immediately receives the following ACK and enters
	 OPENED.
This goes on until one side figures out that they are
	 getting nowhere and gives up.
The best way to avoid this is to configure one side to
	 be passive — that is, make one
	 side wait for the other to start negotiating. This can be
	 done with the following command:
set openmode passive
Care should be taken with this option. This command
	 can also be used to limit the amount of time that
	 ppp(8) waits for the peer to begin
	 negotiations:
set stopped N
Alternatively, the following command (where
	 N is the number of seconds to
	 wait before starting negotiations) can be used:
set openmode active N
Check the manual page for details.

	14.13.
	Why does ppp(8) lock up when I shell out to test
	 it?

		When using shell or
	 !, ppp(8) executes a shell
	 or the passed arguments. The
	 ppp program will wait for the
	 command to complete before continuing. Any attempt to
	 use the PPP link while running the command will appear as
	 a frozen link. This is because ppp(8) is
	 waiting for the command to complete.
To execute commands like this, use
	 !bg instead. This will execute the
	 given command in the background, and ppp(8) can
	 continue to service the link.

	14.14.
	Why does ppp(8) over a null-modem cable never
	 exit?

		There is no way for ppp(8) to automatically
	 determine that a direct connection has been dropped. This
	 is due to the lines that are used in a null-modem serial
	 cable. When using this sort of connection, LQR should
	 always be enabled with the following line:
enable lqr
LQR is accepted by default if negotiated by the
	 peer.

	14.15.
	Why does ppp(8) dial for no reason in
	 -auto mode?

		If ppp(8) is dialing unexpectedly,
	 determine the cause, and set up dial filters to
	 prevent such dialing.
To determine the cause, use the following line:
set log +tcp/ip
This will log all traffic through the connection. The
	 next time the line comes up unexpectedly, the
	 reason will be logged with a convenient timestamp next to
	 it.
Next, disable dialing under these circumstances.
	 Usually, this sort of problem arises due to DNS lookups.
	 To prevent DNS lookups from establishing a connection
	 (this will not prevent ppp(8)
	 from passing the packets through an established
	 connection), use the following:
set dfilter 1 deny udp src eq 53
set dfilter 2 deny udp dst eq 53
set dfilter 3 permit 0/0 0/0
This is not always suitable, as it will effectively
	 break demand-dial capabilities. Most programs
	 will need a DNS lookup before doing any other network
	 related things.
In the DNS case, try to determine what is actually
	 trying to resolve a host name. A lot of the time,
	 Sendmail is the culprit. Make
	 sure to configure Sendmail not
	 to do any DNS lookups in its configuration file. See the
	 section on using
	 email with a dialup connection in the FreeBSD
	 Handbook for details. You may
	 also want to add the following line to
	 .mc:
define(`confDELIVERY_MODE', `d')dnl
This will make Sendmail
	 queue everything until the queue is run, usually,
	 every 30 minutes, or until a sendmail
	 -q is done, perhaps from
	 /etc/ppp/ppp.linkup.

	14.16.
	What do these CCP errors mean?

		I keep seeing the following errors in my log
	 file:
CCP: CcpSendConfigReq
CCP: Received Terminate Ack (1) state = Req-Sent (6)
This is because ppp(8) is trying to negotiate
	 Predictor1 compression, but the peer does not want to
	 negotiate any compression at all. The messages are
	 harmless, but can be silenced by disabling the
	 compression:
disable pred1

	14.17.
	Why does ppp(8) not log my connection
	 speed?

		To log all lines of the modem
	 conversation, enable the
	 following:
set log +connect
This will make ppp(8) log everything up until the
	 last requested “expect” string.
To see the connect speed when using
	 PAP or CHAP,
	 make sure to configure ppp(8) to
	 expect the whole CONNECT line, using something
	 like this:
set dial "ABORT BUSY ABORT NO\\sCARRIER TIMEOUT 4 \
 \"\" ATZ OK-ATZ-OK ATDT\\T TIMEOUT 60 CONNECT \\c \\n"
This gets the CONNECT, sends nothing, then expects a
	 line-feed, forcing ppp(8) to read the whole CONNECT
	 response.

	14.18.
	Why does ppp(8) ignore the \
	 character in my chat script?

		The ppp utility parses each
	 line in its configuration files so that it can interpret
	 strings such as set phone "123 456 789"
	 correctly and realize that the number is actually only
	 one argument. To specify a
	 " character, escape it
	 using a backslash (\).
When the chat interpreter parses each argument, it
	 re-interprets the argument to find any special escape
	 sequences such as \P or
	 \T. As a result
	 of this double-parsing, remember to use the
	 correct number of escapes.
To actually send a \
	 character, do something
	 like:
set dial "\"\" ATZ OK-ATZ-OK AT\\\\X OK"
It will result in the following sequence:
ATZ
OK
AT\X
OK
Or:
set phone 1234567
set dial "\"\" ATZ OK ATDT\\T"
It will result in the following sequence:
ATZ
OK
ATDT1234567

	14.19.
	What are FCS errors?

		FCS stands for Frame Check Sequence. Each PPP packet
	 has a checksum attached to ensure that the data being
	 received is the data being sent. If the FCS of an
	 incoming packet is incorrect, the packet is dropped and
	 the HDLC FCS count is increased. The HDLC error values
	 can be displayed using the show hdlc
	 command.
If the link is bad or if the serial driver is dropping
	 packets, it will produce the occasional FCS error.
	 This is not usually worth worrying about although it does
	 slow down the compression protocols substantially.
If the link freezes as soon as it connects and
	 produces a large number of FCS errors, make sure the modem
	 is not using software flow control (XON/XOFF). If the
	 link must use software flow control, use
	 set accmap 0x000a0000 to
	 tell ppp(8) to escape the ^Q and
	 ^S characters.
Another reason for too many FCS errors may be
	 that the remote end has stopped talking
	 PPP. In this case, enable
	 async logging to
	 determine if the incoming data is actually a login or
	 shell prompt. If it is a shell prompt at the remote
	 end, it is possible to terminate ppp(8) without
	 dropping the line by using close lcp
	 followed by term) to reconnect to
	 the shell on the remote machine.
If nothing in the log file indicates why the link
	 was terminated, ask the remote
	 administrator or ISP why the session was
	 terminated.

	14.20.
	None of this helps — I am desperate! What can I
	 do?

		If all else fails, send the details of the error, the
	 configuration files, how ppp(8) is being started, the
	 relevant parts of the log file, and the
	 output of netstat -rn, before and after
	 connecting, to the FreeBSD general questions mailing list.

Chapter 15. Serial Communications
This section answers common questions about serial
 communications with FreeBSD. PPP is covered in the Networking section.
	15.1.
	Which multi-port serial cards are supported by
	 FreeBSD?

		There is a list of these in the Serial
	 Communications chapter of the Handbook.
Most multi-port PCI cards that are based on 16550 or
	 clones are supported with no extra effort.
Some unnamed clone cards have also been known to work,
	 especially those that claim to be AST compatible.
Check uart(4) and sio(4) to get more
	 information on configuring such cards.

	15.2.
	How do I get the boot: prompt to show on the serial
	 console?

		See this
	 section of the Handbook.

	15.3.
	How do I tell if FreeBSD found my serial ports or modem
	 cards?

		As the FreeBSD kernel boots, it will probe for the serial
	 ports for which the kernel is configured.
	 Either watch the boot messages closely
	 or run this command after the system is up and
	 running:
% grep -E '^(sio|uart)[0-9]' < /var/run/dmesg.boot
sio0: <16550A-compatible COM port> port 0x3f8-0x3ff irq 4 flags 0x10 on acpi0
sio0: type 16550A
sio1: <16550A-compatible COM port> port 0x2f8-0x2ff irq 3 on acpi0
sio1: type 16550A
This example shows two serial ports. The first is on
	 IRQ4, port address
	 0x3f8, and has a 16550A-type UART chip.
	 The second uses the same kind of chip but is on
	 IRQ3 and is at port address
	 0x2f8. Internal modem cards are
	 treated just like serial ports, except that they
	 always have a modem attached to the
	 port.
The GENERIC kernel includes
	 support for two serial ports using the same IRQ and port
	 address settings in the above example. If these settings
	 are not right for the system, or if there are more modem
	 cards or serial ports than the kernel is
	 configured for, reconfigure using the instructions in
	 building a kernel
	 for more details.

	15.4.
	How do I access the serial ports on FreeBSD?

		The third serial port, sio2,
	 or COM3,
	 is on /dev/cuad2 for dial-out
	 devices, and on /dev/ttyd2 for
	 dial-in devices. What is the difference between these two
	 classes of devices?
When
	 opening /dev/ttydX in blocking mode,
	 a process will wait for the corresponding
	 cuadX device to become inactive, and
	 then wait for the carrier detect line to go active. When
	 the cuadX device is opened, it makes
	 sure the serial port is not already in use by the
	 ttydX device. If the port is
	 available, it steals it from the
	 ttydX device. Also, the
	 cuadX device does not care about
	 carrier detect. With this scheme and an auto-answer
	 modem, remote users can log in and local users can still
	 dial out with the same modem and the system will take care
	 of all the conflicts.

	15.5.
	How do I enable support for a multi-port serial
	 card?

		The section on kernel configuration provides
	 information about configuring the kernel. For a
	 multi-port serial card, place an sio(4) line for each
	 serial port on the card in the device.hints(5) file.
	 But place the IRQ specifiers on only one of the entries.
	 All of the ports on the card should share one IRQ. For
	 consistency, use the last serial port to specify the IRQ.
	 Also, specify the following option in the kernel
	 configuration file:
options COM_MULTIPORT
The following /boot/device.hints
	 example is for an AST 4-port serial card on
	 IRQ 12:
hint.sio.4.at="isa"
hint.sio.4.port="0x2a0"
hint.sio.4.flags="0x701"
hint.sio.5.at="isa"
hint.sio.5.port="0x2a8"
hint.sio.5.flags="0x701"
hint.sio.6.at="isa"
hint.sio.6.port="0x2b0"
hint.sio.6.flags="0x701"
hint.sio.7.at="isa"
hint.sio.7.port="0x2b8"
hint.sio.7.flags="0x701"
hint.sio.7.irq="12"
The flags indicate that the master port has minor
	 number 7 (0x700),
	 and all the ports share an IRQ
	 (0x001).

	15.6.
	Can I set the default serial parameters for a
	 port?

		See the Serial
	 Communications section in the FreeBSD
	 Handbook.

	15.7.
	How can I enable dialup logins on my modem?

		Refer to the section about Dial-in
	 Services in the FreeBSD Handbook.

	15.8.
	How can I connect a dumb terminal to my FreeBSD
	 box?

		This information is in the Terminals
	 section of the FreeBSD Handbook.

	15.9.
	Why can I not run tip or
	 cu?

		The built-in tip(1) and
	 cu(1) utilities can only access the
	 /var/spool/lock directory via user
	 uucp and group
	 dialer.
	 Use the dialer group to control
	 who has access to the modem or remote systems by adding
	 user accounts to dialer.
Alternatively, everyone can be configured to run
	 tip(1) and cu(1) by typing:
chmod 4511 /usr/bin/cu
chmod 4511 /usr/bin/tip

Chapter 16. Miscellaneous Questions
	16.1.
	FreeBSD uses a lot of swap space even when the computer
	 has free memory left. Why?

		FreeBSD will proactively move entirely idle, unused pages
	 of main memory into swap in order to make more main memory
	 available for active use. This heavy use of swap is
	 balanced by using the extra free memory for
	 caching.
Note that while FreeBSD is proactive in this regard, it
	 does not arbitrarily decide to swap pages when the system
	 is truly idle. Thus, the system will not be all
	 paged out after leaving it
	 idle overnight.

	16.2.
	Why does top show very little free
	 memory even when I have very few programs running?

		The simple answer is that free memory is wasted
	 memory. Any memory that programs do not actively
	 allocate is used within the FreeBSD kernel as disk cache.
	 The values shown by top(1) labeled as
	 Inact, Cache, and
	 Buf are all cached data at different
	 aging levels. This cached data means the system does not
	 have to access a slow disk again for data it has accessed
	 recently, thus increasing overall performance. In
	 general, a low value shown for Free
	 memory in top(1) is good, provided it is not
	 very low.

	16.3.
	Why will chmod not change the
	 permissions on symlinks?

		Symlinks do not have permissions, and by default,
	 chmod(1) will follow symlinks to change the
	 permissions on the source file, if possible. For
	 the file, foo with a symlink named
	 bar, this command
	 will always succeed.
% chmod g-w bar
However, the permissions on bar
	 will not have changed.
When changing modes of the file hierarchies rooted in
	 the files instead of the files themselves, use
	 either -H or -L together
	 with -R to make this work. See
	 chmod(1) and symlink(7) for more
	 information.
Warning:
-R does a
	 recursive chmod(1). Be
	 careful about specifying directories or symlinks to
	 directories to chmod(1). To change the
	 permissions of a directory referenced by a symlink, use
	 chmod(1) without any options and follow the symlink
	 with a trailing slash (/). For
	 example, if foo is a symlink to
	 directory bar, to
	 change the permissions of foo
	 (actually bar), do
	 something like:
% chmod 555 foo/
With the trailing slash, chmod(1) will follow
	 the symlink, foo, to change the
	 permissions of the directory,
	 bar.

	16.4.
	Can I run DOS binaries under FreeBSD?

		Yes. A DOS emulation program,
	 emulators/doscmd, is available in the
	 FreeBSD Ports Collection.
If doscmd will not suffice,
	 emulators/pcemu
	 emulates an 8088 and enough BIOS services to run many DOS
	 text-mode applications. It requires the X Window
	 System.
The Ports Collection also has
	 emulators/dosbox. The main focus of
	 this application is emulating old DOS games using the
	 local file system for files.

	16.5.
	What do I need to do to translate a FreeBSD document into
	 my native language?

		See the Translation
	 FAQ in the FreeBSD Documentation Project
	 Primer.

	16.6.
	Why does my email to any address at FreeBSD.org
	 bounce?

		The FreeBSD.org mail
	 system implements some
	 Postfix checks on incoming mail
	 and rejects mail that is either from misconfigured relays
	 or otherwise appears likely to be spam. Some of the
	 specific requirements are:
	The IP address of the SMTP client must
		"reverse-resolve" to a forward confirmed
		hostname.

	The fully-qualified hostname given in the
		SMTP conversation (either HELO or EHLO) must resolve
		to the IP address of the client.

Other advice to help mail reach its destination
	 include:
	Mail should be sent in plain text, and messages
		sent to mailing lists should generally be no more than
		200KB in length.

	Avoid excessive cross posting. Choose
		one mailing list which seems most
		relevant and send it there.

If you still have trouble with email infrastructure at
	 FreeBSD.org,
	 send a note with the details to
	 <postmaster@freebsd.org>; Include a
	 date/time interval so that logs may be reviewed —
	 and note that we only keep one week's worth of mail logs.
	 (Be sure to specify the time zone or offset from
	 UTC.)

	16.7.
	Where can I find a free FreeBSD account?

		While FreeBSD does not provide open access to any of
	 their servers, others do provide open access UNIX®
	 systems. The charge varies and limited services may be
	 available.
Arbornet,
	 Inc, also known as M-Net,
	 has been providing open access to UNIX® systems since
	 1983. Starting on an Altos running System III, the site
	 switched to BSD/OS in 1991. In June of 2000, the site
	 switched again to FreeBSD. M-Net can be
	 accessed via telnet and
	 SSH and provides basic access
	 to the entire FreeBSD software suite. However, network
	 access is limited to members and patrons who donate to the
	 system, which is run as a non-profit organization.
	 M-Net also provides an bulletin board
	 system and interactive chat.

	16.8.
	What is the cute little red guy's name?

		He does not have one, and is just called “the
	 BSD daemon”. If you insist upon using a name,
	 call him “beastie”. Note that
	 “beastie” is pronounced
	 “BSD”.
More about the BSD daemon is available on his home
	 page.

	16.9.
	Can I use the BSD daemon image?

		Perhaps. The BSD daemon is copyrighted by Marshall
	 Kirk McKusick. Check his Statement
	 on the Use of the BSD Daemon Figure for detailed
	 usage terms.
In summary, the image can be used in a tasteful
	 manner, for personal use, so long as appropriate credit
	 is given. Before using the logo commercially, contact
	 Kirk McKusick <mckusick@FreeBSD.org> for permission. More details are
	 available on the BSD
	 Daemon's home page.

	16.10.
	Do you have any BSD daemon images I could use?

		Xfig and eps drawings are available under
	 /usr/share/examples/BSD_daemon/.

	16.11.
	I have seen an acronym or other term on the mailing
	 lists and I do not understand what it means. Where should
	 I look?

		Refer to the FreeBSD
	 Glossary.

	16.12.
	Why should I care what color the bikeshed is?

		The really, really short answer is that you should
	 not. The somewhat longer answer is that just because you
	 are capable of building a bikeshed does not mean you
	 should stop others from building one just because you do
	 not like the color they plan to paint it. This is a
	 metaphor indicating that you need not argue about every
	 little feature just because you know enough to do so.
	 Some people have commented that the amount of noise
	 generated by a change is inversely proportional to the
	 complexity of the change.
The longer and more complete answer is that after a
	 very long argument about whether sleep(1) should take
	 fractional second arguments, Poul-Henning Kamp <phk@FreeBSD.org> posted a long
	 message entitled “A
	 bike shed (any color will do) on greener
	 grass...”. The appropriate portions of
	 that message are quoted below.
	 	“What is it about this bike shed?”
	 Some of you have asked me.
It is a long story, or rather it is an old story,
	 but it is quite short actually. C. Northcote Parkinson
	 wrote a book in the early 1960s, called
	 “Parkinson's Law”, which contains a lot of
	 insight into the dynamics of management.
[snip a bit of commentary on the
		book]
In the specific example involving the bike shed, the
	 other vital component is an atomic power-plant, I guess
	 that illustrates the age of the book.
Parkinson shows how you can go into the board of
	 directors and get approval for building a multi-million
	 or even billion dollar atomic power plant, but if you
	 want to build a bike shed you will be tangled up in
	 endless discussions.
Parkinson explains that this is because an atomic
	 plant is so vast, so expensive and so complicated that
	 people cannot grasp it, and rather than try, they fall
	 back on the assumption that somebody else checked all
	 the details before it got this far. Richard P. Feynmann
	 gives a couple of interesting, and very much to the
	 point, examples relating to Los Alamos in his
	 books.
A bike shed on the other hand. Anyone can build one
	 of those over a weekend, and still have time to watch
	 the game on TV. So no matter how well prepared, no
	 matter how reasonable you are with your proposal,
	 somebody will seize the chance to show that he is doing
	 his job, that he is paying attention, that he is
	 here.
In Denmark we call it “setting your
		fingerprint”. It is about personal pride and
	 prestige, it is about being able to point somewhere and
	 say “There! I did
		that.” It is a strong trait in politicians, but
	 present in most people given the chance. Just think
	 about footsteps in wet cement.
	
	 	--Poul-Henning Kamp <phk@FreeBSD.org> on freebsd-hackers, October 2,
	 1999

Chapter 17. The FreeBSD Funnies
	17.1.
	How cool is FreeBSD?

		Q. Has anyone done any temperature testing while
	 running FreeBSD? I know Linux® runs cooler than DOS, but
	 have never seen a mention of FreeBSD. It seems to run really
	 hot.
A. No, but we have done numerous taste tests on
	 blindfolded volunteers who have also had 250 micrograms of
	 LSD-25 administered beforehand. 35% of the volunteers
	 said that FreeBSD tasted sort of orange, whereas Linux®
	 tasted like purple haze. Neither group mentioned any
	 significant variances in temperature. We eventually had
	 to throw the results of this survey out entirely anyway
	 when we found that too many volunteers were wandering out
	 of the room during the tests, thus skewing the results.
	 We think most of the volunteers are at Apple now, working
	 on their new “scratch and sniff” GUI. It is
	 a funny old business we are in!
Seriously, FreeBSD uses the HLT (halt)
	 instruction when the system is idle thus lowering its
	 energy consumption and therefore the heat it generates.
	 Also if you have ACPI (Advanced
	 Configuration and Power Interface) configured, then FreeBSD
	 can also put the CPU into a low power mode.

	17.2.
	Who is scratching in my memory banks??

		Q. Is there anything “odd” that FreeBSD
	 does when compiling the kernel which would cause the
	 memory to make a scratchy sound? When compiling (and for
	 a brief moment after recognizing the floppy drive upon
	 startup, as well), a strange scratchy sound emanates from
	 what appears to be the memory banks.
A. Yes! You will see frequent references to
	 “daemons” in the BSD documentation, and what
	 most people do not know is that this refers to genuine,
	 non-corporeal entities that now possess your computer.
	 The scratchy sound coming from your memory is actually
	 high-pitched whispering exchanged among the daemons as
	 they best decide how to deal with various system
	 administration tasks.
If the noise gets to you, a good fdisk
	 /mbr from DOS will get rid of them, but do not
	 be surprised if they react adversely and try to stop you.
	 In fact, if at any point during the exercise you hear the
	 satanic voice of Bill Gates coming from the built-in
	 speaker, take off running and do not ever look back!
	 Freed from the counterbalancing influence of the BSD
	 daemons, the twin demons of DOS and Windows® are often
	 able to re-assert total control over your machine to the
	 eternal damnation of your soul. Now that you know, given
	 a choice you would probably prefer to get used to the
	 scratchy noises, no?

	17.3.
	How many FreeBSD hackers does it take to change a
	 lightbulb?

		One thousand, one hundred and sixty-nine:
Twenty-three to complain to -CURRENT about the lights
	 being out;
Four to claim that it is a configuration problem, and
	 that such matters really belong on -questions;
Three to submit PRs about it, one of which is misfiled
	 under doc and consists only of “it's
	 dark”;
One to commit an untested lightbulb which breaks
	 buildworld, then back it out five minutes later;
Eight to flame the PR originators for not including
	 patches in their PRs;
Five to complain about buildworld being broken;
Thirty-one to answer that it works for them, and they
	 must have updated at a bad time;
One to post a patch for a new lightbulb to
	 -hackers;
One to complain that he had patches for this three
	 years ago, but when he sent them to -CURRENT they were
	 just ignored, and he has had bad experiences with the PR
	 system; besides, the proposed new lightbulb is
	 non-reflexive;
Thirty-seven to scream that lightbulbs do not belong
	 in the base system, that committers have no right to do
	 things like this without consulting the Community, and
	 WHAT IS -CORE DOING ABOUT IT!?
Two hundred to complain about the color of the bicycle
	 shed;
Three to point out that the patch breaks
	 style(9);
Seventeen to complain that the proposed new lightbulb
	 is under GPL;
Five hundred and eighty-six to engage in a flame war
	 about the comparative advantages of the GPL, the BSD
	 license, the MIT license, the NPL, and the personal
	 hygiene of unnamed FSF founders;
Seven to move various portions of the thread to -chat
	 and -advocacy;
One to commit the suggested lightbulb, even though it
	 shines dimmer than the old one;
Two to back it out with a furious flame of a commit
	 message, arguing that FreeBSD is better off in the dark than
	 with a dim lightbulb;
Forty-six to argue vociferously about the backing out
	 of the dim lightbulb and demanding a statement from
	 -core;
Eleven to request a smaller lightbulb so it will fit
	 their Tamagotchi if we ever decide to port FreeBSD to that
	 platform;
Seventy-three to complain about the SNR on -hackers
	 and -chat and unsubscribe in protest;
Thirteen to post “unsubscribe”,
	 “How do I unsubscribe?”, or “Please
	 remove me from the list”, followed by the usual
	 footer;
One to commit a working lightbulb while everybody is
	 too busy flaming everybody else to notice;
Thirty-one to point out that the new lightbulb would
	 shine 0.364% brighter if compiled with TenDRA (although it
	 will have to be reshaped into a cube), and that FreeBSD
	 should therefore switch to TenDRA instead of GCC;
One to complain that the new lightbulb lacks
	 fairings;
Nine (including the PR originators) to ask “what
	 is MFC?”;
Fifty-seven to complain about the lights being out two
	 weeks after the bulb has been changed.
Nik Clayton <nik@FreeBSD.org> adds:
I was laughing quite hard at
	 this.
And then I thought, “Hang on,
	 shouldn't there be '1 to document it.' in that list
	 somewhere?”
And then I was enlightened
	 :-)
Thomas Abthorpe <tabthorpe@FreeBSD.org> says:
	 “None, real FreeBSD hackers are
	 not afraid of the dark!”

	17.4.
	Where does data written to
	 /dev/null go?

		It goes into a special data sink in the CPU where it
	 is converted to heat which is vented through the heatsink
	 / fan assembly. This is why CPU cooling is increasingly
	 important; as people get used to faster processors, they
	 become careless with their data and more and more of it
	 ends up in /dev/null, overheating
	 their CPUs. If you delete /dev/null
	 (which effectively disables the CPU data sink) your CPU
	 may run cooler but your system will quickly become
	 constipated with all that excess data and start to behave
	 erratically. If you have a fast network connection you
	 can cool down your CPU by reading data out of
	 /dev/random and sending it off
	 somewhere; however you run the risk of overheating your
	 network connection and / or angering
	 your ISP, as most of the data will end up getting
	 converted to heat by their equipment, but they generally
	 have good cooling, so if you do not overdo it you should
	 be OK.
Paul Robinson adds:
There are other methods. As every good sysadmin
	 knows, it is part of standard practice to send data to the
	 screen of interesting variety to keep all the pixies that
	 make up your picture happy. Screen pixies (commonly
	 mis-typed or re-named as “pixels”) are
	 categorized by the type of hat they wear (red, green or
	 blue) and will hide or appear (thereby showing the color
	 of their hat) whenever they receive a little piece of
	 food. Video cards turn data into pixie-food, and then
	 send them to the pixies — the more expensive the
	 card, the better the food, so the better behaved the
	 pixies are. They also need constant stimulation —
	 this is why screen savers exist.
To take your suggestions further, you could just throw
	 the random data to console, thereby letting the pixies
	 consume it. This causes no heat to be produced at all,
	 keeps the pixies happy and gets rid of your data quite
	 quickly, even if it does make things look a bit messy on
	 your screen.
Incidentally, as an ex-admin of a large ISP who
	 experienced many problems attempting to maintain a stable
	 temperature in a server room, I would strongly discourage
	 people sending the data they do not want out to the
	 network. The fairies who do the packet switching and
	 routing get annoyed by it as well.

	17.5.
	My colleague sits at the computer too much, how
	 can I prank her?

		Install games/sl and
	 wait for her to mistype sl for
	 ls.

Chapter 18. Advanced Topics
	18.1.
	How can I learn more about FreeBSD's internals?

		See the FreeBSD
	 Architecture Handbook.
Additionally, much general UNIX® knowledge is
	 directly applicable to FreeBSD.

	18.2.
	How can I contribute to FreeBSD?

		See the article on Contributing
	 to FreeBSD for specific advice on how to do this.
	 Assistance is more than welcome!

	18.3.
	What are snapshots and releases?

		There are currently 3 active/semi-active
	 branches in the FreeBSD Subversion
	 Repository. (Earlier branches are only changed
	 very rarely, which is why there are only 3
	 active branches of development):
	stable/10/ AKA
		10-STABLE

	stable/11/ AKA
		11-STABLE

	head/ AKA
		-CURRENT AKA
		12-CURRENT

HEAD is not an actual branch tag.
	 It is a symbolic constant for
	 the current, non-branched development
		stream known as
	 -CURRENT.
Right now, -CURRENT is the
	 12.X development stream; the 11-STABLE
	 branch, stable/11/, forked off from
	 -CURRENT in April 2016 and the
	 10-STABLE branch, stable/10/, forked off from
	 -CURRENT in August 2015.

	18.4.
	I have written a kernel extension, who do I send it
	 to?

		Take a look at the article on Contributing
	 to FreeBSD to learn how to submit code.
And thanks for the thought!

	18.5.
	How can I make the most of the data I see when my
	 kernel panics?

		Here is typical kernel panic:
Fatal trap 12: page fault while in kernel mode
fault virtual address = 0x40
fault code = supervisor read, page not present
instruction pointer = 0x8:0xf014a7e5
stack pointer = 0x10:0xf4ed6f24
frame pointer = 0x10:0xf4ed6f28
code segment = base 0x0, limit 0xfffff, type 0x1b
 = DPL 0, pres 1, def32 1, gran 1
processor eflags = interrupt enabled, resume, IOPL = 0
current process = 80 (mount)
interrupt mask =
trap number = 12
panic: page fault
This message is not enough. While the instruction
	 pointer value is important, it is also configuration
	 dependent as it varies depending on the kernel image.
	 If it is a GENERIC kernel
	 image from one of the snapshots, it is possible for
	 somebody else to track down the offending function, but
	 for a custom kernel, only you can tell us where the fault
	 occurred.
To proceed:
	Write down the instruction pointer value. Note
		that the 0x8: part at the beginning
		is not significant in this case: it is the
		0xf0xxxxxx part that we
		want.

	When the system reboots, do the following:
% nm -n kernel.that.caused.the.panic | grep f0xxxxxx
where f0xxxxxx is the
		instruction pointer value. The odds are you will not
		get an exact match since the symbols in the kernel
		symbol table are for the entry points of functions and
		the instruction pointer address will be somewhere
		inside a function, not at the start. If you do not
		get an exact match, omit the last digit from the
		instruction pointer value and try again:
% nm -n kernel.that.caused.the.panic | grep f0xxxxx
If that does not yield any results, chop off
		another digit. Repeat until there is some sort of
		output. The result will be a possible list of
		functions which caused the panic. This is a less than
		exact mechanism for tracking down the point of
		failure, but it is better than nothing.

However, the best way to track down the cause of a
	 panic is by capturing a crash dump, then using
	 kgdb(1) to generate a stack trace on the crash
	 dump.
In any case, the method is this:
	Make sure that the following line is included in
		the kernel configuration file:
makeoptions DEBUG=-g # Build kernel with gdb(1) debug symbols

	Change to the /usr/src
		directory:
cd /usr/src

	Compile the kernel:
make buildkernel KERNCONF=MYKERNEL

	Wait for make(1) to finish compiling.

	# make installkernel KERNCONF=MYKERNEL

	Reboot.

Note:
If KERNCONF is not included,
	 the GENERIC kernel will instead
	 be built and installed.

The make(1) process will have built two kernels.
	 /usr/obj/usr/src/sys/MYKERNEL/kernel
	 and
	 /usr/obj/usr/src/sys/MYKERNEL/kernel.debug.
	 kernel was installed as
	 /boot/kernel/kernel, while
	 kernel.debug can be used as the
	 source of debugging symbols for kgdb(1).
To capture a crash dump, edit
	 /etc/rc.conf and set
	 dumpdev to point to either the swap
	 partition or AUTO. This will cause the
	 rc(8) scripts to use the dumpon(8) command to
	 enable crash dumps. This command can also be run
	 manually. After a panic, the crash dump can be recovered
	 using savecore(8); if dumpdev is
	 set in /etc/rc.conf, the rc(8)
	 scripts will run savecore(8) automatically and put
	 the crash dump in /var/crash.
Note:
FreeBSD crash dumps are usually the same size as
	 physical RAM. Therefore, make sure there is enough
	 space in /var/crash to hold the
	 dump. Alternatively, run savecore(8) manually
	 and have it recover the crash dump to another directory
	 with more room. It is possible to limit the
	 size of the crash dump by using options
		MAXMEM=N where
	 N is the size of kernel's
	 memory usage in KBs. For example, for 1 GB
	 of RAM, limit the kernel's memory usage to
	 128 MB, so that the crash dump size
	 will be 128 MB instead of 1 GB.

Once the crash dump has been recovered , get a
	 stack trace as follows:
% kgdb /usr/obj/usr/src/sys/MYKERNEL/kernel.debug /var/crash/vmcore.0
(kgdb) backtrace
Note that there may be several screens worth of
	 information. Ideally, use script(1) to
	 capture all of them. Using the unstripped kernel image
	 with all the debug symbols should show the exact line of
	 kernel source code where the panic occurred. The stack
	 trace is usually read from the bottom up to trace
	 the exact sequence of events that lead to the crash.
	 kgdb(1) can also be used to print out the contents of
	 various variables or structures to examine the system
	 state at the time of the crash.
Tip:
If a second computer is available, kgdb(1) can
	 be configured to do remote debugging, including setting
	 breakpoints and single-stepping through the kernel
	 code.

Note:
If DDB is enabled and the
	 kernel drops into the debugger, a panic
	 and a crash dump can be forced by typing
	 panic at the ddb
	 prompt. It may stop in the debugger again during the
	 panic phase. If it does, type
	 continue and it will finish the crash
	 dump.

	18.6.
	Why has dlsym() stopped working
	 for ELF executables?

		The ELF toolchain does not, by default, make the
	 symbols defined in an executable visible to the dynamic
	 linker. Consequently dlsym()
	 searches on handles obtained from calls to
	 dlopen(NULL, flags) will fail to find
	 such symbols.
To search, using
	 dlsym(), for symbols present in the
	 main executable of a process, link the
	 executable using the --export-dynamic
	 option to the ELF linker (ld(1)).

	18.7.
	How can I increase or reduce the kernel address space
	 on i386?

		By default, the kernel address space is 1 GB
	 (2 GB for PAE) for i386. When running a
	 network-intensive server or using
	 ZFS, this will probably not be
	 enough.
Add the following line to the kernel configuration
	 file to increase available space and rebuild the
	 kernel:
options KVA_PAGES=N
To find the correct value of
	 N, divide the desired address
	 space size (in megabytes) by four. (For example, it is
	 512 for 2 GB.)

Chapter 19. Acknowledgments
This innocent little Frequently Asked Questions document has
 been written, rewritten, edited, folded, spindled, mutilated,
 eviscerated, contemplated, discombobulated, cogitated,
 regurgitated, rebuilt, castigated, and reinvigorated over the
 last decade, by a cast of hundreds if not thousands.
 Repeatedly.
We wish to thank every one of the people responsible, and we
 encourage you to join
	them in making this FAQ even
 better.
Bibliography
[biblio-unleashed] FreeBSD Unleashed. Michael Urban and Brian Tiemann. Sams. 1st edition. 992 pages. October 2001. ISBN 0-67232-206-4.

[biblio-44sysman] 4.4BSD System Manager's Manual. Computer Systems Research Group, University of
	California, Berkeley. O'Reilly and Associates. 1st edition. June 1994. 804 pages. ISBN 1-56592-080-5.

[biblio-44userman] 4.4BSD User's Reference Manual. Computer Systems Research Group, University of
	California, Berkeley. O'Reilly and Associates. 1st edition. June 1994. 905 pages. ISBN 1-56592-075-9.

[biblio-44suppman] 4.4BSD User's Supplementary Documents. Computer Systems Research Group, University of
	California, Berkeley. O'Reilly and Associates. 1st edition. June 1994. 712 pages. ISBN 1-56592-076-7.

[biblio-44progman] 4.4BSD Programmer's Reference Manual. Computer Systems Research Group, University of
	California, Berkeley. O'Reilly and Associates. 1st edition. June 1994. 866 pages. ISBN 1-56592-078-3.

[biblio-44progsupp] 4.4BSD Programmer's Supplementary Documents. Computer Systems Research Group, University of
	California, Berkeley. O'Reilly and Associates. 1st edition. June 1994. 596 pages. ISBN 1-56592-079-1.

[biblio-44kernel] The Design and Implementation of the 4.4BSD Operating System. M. K. McKusick, Kirk Marshall, Keith Bostic, Michael J Karels, and John Quarterman. Addison-Wesley.
	 Reading
	 MA
	. 1996. ISBN 0-201-54979-4.

[biblio-freebsdkernel] The Design and Implementation of the FreeBSD Operating System. M. K. McKusick and George V. Neville-Neil. Addison-Wesley.
	 Boston
	 MA
	. 2004. ISBN 0-201-70245-2.

[biblio-nemeth3rd] Unix System Administration Handbook. Evi Nemeth, Garth Snyder, Scott Seebass, Trent R. Hein, and John Quarterman. Prentice-Hall. 3rd edition. 2000. ISBN 0-13-020601-6.

[lehey3rd] The Complete FreeBSD. Greg Lehey. Walnut Creek. 3rd edition. June 1999. 773 pages. ISBN 1-57176-246-9.

[McKusick et al, 1994] Berkeley Software Architecture Manual, 4.4BSD
 Edition. M. K. McKusick, M. J. Karels, S. J. Leffler, W. N. Joy, and R. S. Faber. 5:1-42.

[biblio-ja-fbsdpc98] FreeBSD for PC 98'ers (in Japanese). SHUWA System Co, LTD.. ISBN 4-87966-468-5 C3055 P2900E.

[biblio-ja-fbsd] FreeBSD (in Japanese). CUTT. ISBN 4-906391-22-2.

[biblio-ja-compintro] Complete Introduction to FreeBSD (in Japanese). Shoeisha Co., Ltd. ISBN 4-88135-473-6 P3600E.

[biblio-ja-unixstarterkit] Personal UNIX Starter Kit FreeBSD (in Japanese). ASCII. ISBN 4-7561-1733-3 P3000E.

[biblio-ja-fbsdhb] FreeBSD Handbook (Japanese translation). ASCII. ISBN 4-7561-1580-2 P3800E.

[biblio-ge-fbsdmitmeth] FreeBSD mit Methode (in German). Computer und Literature Verlag/Vertrieb Hanser. 1998. ISBN 3-932311-31-0.

[biblio-ja-fbsdinstandutil] FreeBSD install and Utilization Manual (in Japanese). Mainichi Communications Inc..

[biblio-indo-intserv] Building Internet Server with FreeBSD (in Indonesia Language). Elex Media Komputindo. Onno W Purbo, Dodi Maryanto, Syahrial Hubbany, and Widjil Widodo.

[biblio-fbsdcorpnetguide] The FreeBSD Corporate Networker's Guide. Addison-Wesley.

[biblio-unixnutshell] UNIX in a Nutshell. O'Reilly & Associates, Inc.. 1990. ISBN 093717520X.

[biblio-cantfindadmin] What You Need To Know When You Can't Find Your Unix System Administrator. O'Reilly & Associates, Inc.. 1995. Linda Mui. ISBN 1-56592-104-6.

[biblio-ja-fbsdusrrefman] FreeBSD User's Reference Manual (Japanese translation). Mainichi Communications Inc.. Jpman Project, Japan FreeBSD Users Group. 1998. ISBN 4-8399-0088-4 P3800E.

[biblio-newcomeunix] “Online Guide
 for newcomers to the UNIX environment”. Edinburgh University.

[biblio-dnsandbind] DNS and BIND. O'Reilly & Associates, Inc. ISBN 1-56592-512-2. Paul Albitz Albitz and Cricket Liu. 1998. 3rd edition.

[biblio-sendmail] Sendmail. O'Reilly & Associates, Inc. 1997. 2nd edition. Brian Costales. ISBN 1-56592-222-0.

[biblio-esssysadmin] Essential System Administration. Æleen Frisch. 2nd edition. O'Reilly & Associates. 1995. ISBN 1-56592-127-5.

[biblio-tcpipnetworkadministration] TCP/IP Network Administration. Craig Hunt. 2nd edition. O'Reilly & Associates, Inc. 1997. ISBN 1-56592-322-7.

[biblio-managingnfsandnis] Managing NFS and NIS. Hal Stern. O'Reilly & Associates, Inc. 1991. ISBN 0-937175-75-7.

[biblio-jpmanprojectjfug]
 FreeBSD System Administration's Manual. Jpman Project, Japan FreeBSD
 Users Group. Mainichi Communications
 Inc.. 1998. ISBN 4-8399-0109-0 P3300E.

[biblio-xwinsystoolkit] X Window System Toolkit. Digital Press. Paul Asente. ISBN 1-55558-051-3.

[biblio-carefman] C: A Reference Manual. Prentice Hall. 1995. 4th edition. Samuel P. Harbison and Guy L. Jr. Steele. ISBN 0-13-326224-3.

[biblio-thecproglang] The C Programming Language. Prentice Hall. 1998. Brian Kernighan and Dennis Ritchie. ISBN 0-13-110362-9.

[biblio-portingunixsoft] Porting UNIX Software. Greg Lehey. O'Reilly & Associates, Inc.. 1995. ISBN 1-56592-126-7.

[biblio-thestandardclibrary] The Standard C Library. Prentice Hall. 1992. P. J. Plauger. ISBN 0-13-131509-9.

[biblio-advprogintheunixenv] Advanced Programming in the UNIX Environment. Addison-Wesley. 1992. W. Richard Stevens. ISBN 0-201-56317-7.

[biblio-unixnetprog] UNIX Network Programming. W. Richard Stevens. Prentice Hall. 1998. 2nd edition. ISBN 0-13-490012-X.

[biblio-writeserialdriverforunix] Writing Serial Drivers for UNIX. Bill Wells. December 1994. Dr. Dobb's Journal. pp68-71, pp97-99.

[biblio-unixsysarch] UNIX System Architecture. Prentice-Hall, Inc. 1990. Prabhat K. Andleigh. ISBN 0-13-949843-5.

[biblio-portingunixtothe386] Porting UNIX to the 386. William Jolitz. Dr. Dobb's Journal. January 1991-July 1992.

[biblio-tcpipillv1theprotocols] TCP/IP Illustrated, Volume 1: The Protocols. W. Richard Stevens. Addison-Wesley. 1996. ISBN 0-201-63346-9.

[biblio-unixsysformodrnarch] Unix Systems for Modern Architectures. Addison-Wesley. Curt Schimmel. 1994. ISBN 0-201-63338-8.

[biblio-tcpipillvol3] TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP and the UNIX Domain Protocols. Addison-Wesley. 1996. W. Richard Stevens. ISBN 0-201-63495-3.

[biblio-unixinternthenewfrontiers] UNIX Internals -- The New Frontiers. Uresh Vahalia. Prentice Hall. 1996. ISBN 0-13-101908-2.

[biblio-tcpipillvol2theimplementation] TCP/IP Illustrated, Volume 2: The Implementation. Gary R. Wright and W. Richard Stevens. 1995. Addison-Wesley. ISBN 0-201-63354-X.

[biblio-firewallsandinternetsecurity] Firewalls and Internet Security: Repelling the Wily Hacker. William R. CHeswick and Steven M. Bellovin. Addison-Wesley. 1995. ISBN 0-201-63357-4.

[biblio-practicalunixsecurity] Practical UNIX Security. Simson Garfinkel and Gene Spafford. 1996. 2nd edition. O'Reilly & Associates, Inc. ISBN 1-56592-148-8.

[biblio-pgpprettygoodprivacy] PGP Pretty Good Privacy. Simson Garfinkel. O'Reilly & Associates, Inc. 1995. ISBN 1-56592-098-8.

[biblio-pentiumprocarch] Pentium Processor System Architecture. Don Anderson and Tom Shanley. Addison-Wesley. 1995. 2nd edition. ISBN 0-201-40992-5.

[biblio-progguidetothesvgacards] Programmer's Guide to the EGA, VGA, and Super VGA Cards. Richard F. Ferraro. 3rd edition. Addison-Wesley. 1995. ISBN 0-201-62490-7.

[biblio-80486] 80486 System Architecture. Tom Shanley. Addison-Wesley. 1995. 3rd edition. ISBN 0-201-40994-1.

[biblio-isasysarch] ISA System Architecture. Tom Shanley. Addison-Wesley. 3rd edition. 1995. ISBN 0-201-40996-8.

[biblio-pcisysarch] PCI System Architecture. Tom Shanley. Addison-Wesley. 1995. 3rd edition. ISBN 0-201-40993-3.

[biblio-theundocumentedpc] The Undocumented PC. Frank Van Gilluwe. Addison-Wesley. 1994. ISBN 0-201-62277-7.

[biblio-bellsystemtechnicaljournal] Bell System Technical Journal, Unix Time-Sharing System. American Telephone & Telegraph Company. July-August 1978. Vol 57, No 6, Part 2. ISSN0005-8580.

[biblio-commentaryonunix] Lion's Commentary on UNIX. John Lion. ITP Media Group. 1996. 6th edition. ISBN 1573980137.

[biblio-newhackerdict] The New Hacker's Dictionary. Eric S. Raymond. MIT Press. 1996. 3rd edition. ISBN 0-262-68092-0.

[biblio-aqtrcentofunix] A quarter century of UNIX. Peter H. Salus. Addison-Wesley. 1994. ISBN 0-201-54777-5.

[biblio-unixhatershandbook] The UNIX-HATERS Handbook. Steven Strassman, Daniel Weise, and Simon Garfinkel. IDG Books Worldwide, Inc. 1994. ISBN 1-56884-203-1.

[biblio-lifewithunix] Life with UNIX — special edition. Don Libes and Sandy Ressler. Prentice-Hall. 1989. ISBN 0-13-536657-7.

[biblio-bsdfamilytree]
	
 The BSD Family Tree. 1997.

[absolutebsd] Absolute BSD. Michael Lucas. No Starch Press. June 2002. ISBN 1-886411-74-3.

[biblio-ccppusersjournal] The C/C++ Users Journal. R&D Publications Inc.. ISSN 1075-2838.

[biblio-sysadminthejournalforunixsysadmins] Sys Admin — The Journal for UNIX System Administrators. Miller Freeman, Inc. ISSN 1061-2688.

OEBPS/legalnotice.xhtml
Copyright

Redistribution and use in source (XML DocBook) and 'compiled'
 forms (XML, HTML, PDF, PostScript, RTF and so forth) with or without
 modification, are permitted provided that the following conditions are
 met:

		Redistributions of source code (XML DocBook) must retain the
 above copyright notice, this list of conditions and the following
 disclaimer as the first lines of this file unmodified.

		Redistributions in compiled form (transformed to other DTDs,
 converted to PDF, PostScript, RTF and other formats) must
 reproduce the above copyright notice, this list of conditions and
 the following disclaimer in the documentation and/or other
 materials provided with the distribution.

Important:

THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION
 PROJECT "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
 BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
 THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT,
 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
 DAMAGE.

OEBPS/trademarks.xhtml
FreeBSD is a registered trademark of
 the FreeBSD Foundation.

Adobe, Acrobat, Acrobat Reader, Flash and
 PostScript are either registered trademarks or trademarks of Adobe
 Systems Incorporated in the United States and/or other
 countries.

IBM, AIX, OS/2,
 PowerPC, PS/2, S/390, and ThinkPad are
 trademarks of International Business Machines Corporation in the
 United States, other countries, or both.

IEEE, POSIX, and 802 are registered
 trademarks of Institute of Electrical and Electronics Engineers,
 Inc. in the United States.

Intel, Celeron, Centrino, Core, EtherExpress, i386,
 i486, Itanium, Pentium, and Xeon are trademarks or registered
 trademarks of Intel Corporation or its subsidiaries in the United
 States and other countries.

Linux is a registered trademark of
 Linus Torvalds.

Microsoft, IntelliMouse, MS-DOS,
 Outlook, Windows, Windows Media and Windows NT are either
 registered trademarks or trademarks of Microsoft Corporation in the
 United States and/or other countries.

NetBSD is a registered trademark of
 the NetBSD Foundation.

Motif, OSF/1, and UNIX are
 registered trademarks and IT DialTone and The Open Group are
 trademarks of The Open Group in the United States and other
 countries.

Silicon Graphics, SGI, and OpenGL are
 registered trademarks of Silicon Graphics, Inc., in the United
 States and/or other countries worldwide.

Sun, Sun Microsystems, Java, Java
 Virtual Machine, JDK, JRE, JSP, JVM, Netra, OpenJDK,
 Solaris, StarOffice, SunOS
 and VirtualBox are trademarks or registered trademarks of
 Sun Microsystems, Inc. in the United States and other countries.

Many of the designations used by
 manufacturers and sellers to distinguish their products are claimed
 as trademarks. Where those designations appear in this document,
 and the FreeBSD Project was aware of the trademark claim, the
 designations have been followed by the “™” or the
 “®” symbol.

