GNU Linear Programming Kit

Reference Manual

for GLPK Version 4.45

(DRAFT, December 2010)

The GLPK package is part of the GNU Project released under the aegis of
GNU.

Copyright (© 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
2010 Andrew Makhorin, Department for Applied Informatics, Moscow Avi-
ation Institute, Moscow, Russia. All rights reserved.

Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301, USA.

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on
all copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided also that the entire
resulting derived work is distributed under the terms of a permission notice
identical to this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions.

Contents

1 Introduction

1.1 LPproblem
1.2 MIP problem
1.3 Using the package,

2

1.3.1
1.3.2
1.3.3

Brief exampleo
Compiling
Linking o oo

Basic API Routines
2.1 Problem object o
2.2 Problem creating and modifying routines

2.2.1
2.2.2
2.2.3

2.24

2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10
2.2.11

2.2.12

2.2.13

glp_create_prob—create problem object
glp_set_prob_name—assign (change) problem name . .
glp_set_obj_name—assign (change) objective function
NAME . . o v o v e e e e e e
glp_set_obj_dir—set (change) optimization direction
flag
glp_add_rows—add new rows to problem object
glp_add_cols—add new columns to problem object
glp_set_row_name—assign (change) row name
glp_set_col_name—assign (change) column name
glp_set_row_bnds—set (change) row bounds
glp_set_col_bnds—set (change) column bounds.
glp_set_obj_coef—set (change) objective coefficient or
constant term 0oL 0oL 0oL
glp_set_mat_row—set (replace) row of the constraint
matrix
glp_set_mat_col—set (replace) column of the constr-
aint matrix oo

12
12
13
14
14
17
17

19
20
24
24
24

24

2.3

24

2.5

2.2.14

2.2.15

2.2.16
2.2.17
2.2.18
2.2.19
2.2.20
2.2.21

glp_load_matrix—load (replace) the whole constraint
matrix
glp_check_dup—-check for duplicate elements in sparse
matrix
glp_sort_matrix—sort elements of the constraint matrix
glp_del rows—delete rows from problem object
glp_del_cols—delete columns from problem object . . .
glp_copy_prob—copy problem object content
glp_erase_prob—erase problem object content
glp_delete_prob—delete problem object

Problem retrieving routineso

2.3.1
2.3.2
2.3.3
234
2.3.5
2.3.6
2.3.7
2.3.8
2.3.9
2.3.10
2.3.11
2.3.12
2.3.13
2.3.14

2.3.15

2.3.16
2.3.17

glp_get_prob_name—retrieve problem name
glp_get_obj_name—retrieve objective function name
glp_get_obj_dir—retrieve optimization direction flag
glp_get_num_rows—retrieve number of rows
glp_get_num_cols—retrieve number of columns
glp_get_row_name—retrieve row name
glp_get_col_name—retrieve column name
glp_get_row_type—retrieve row type
glp_get_row_lb—retrieve row lower bound
glp_get_row_ub—retrieve row upper bound
glp_get_col_type—retrieve column type
glp_get_col_lb—retrieve column lower bound
glp_get_col_ub—retrieve column upper bound
glp_get_obj_coef—retrieve objective coefficient or
constant termo
glp_get_num_nz—retrieve number of constraint coeffi-
cients Lo
glp_get_mat_row—retrieve row of the constraint matrix
glp_get_mat_col—retrieve column of the constraint
matrix

Row and column searching routines

24.1
2.4.2
2.4.3
244

glp_create_index—create the name index
glp_find_row—find row by its name
glp_find_col—find column by its name
glp_delete_index—delete the name index

Problem scaling routines

2.5.1
2.5.2
2.5.3

Background L Lo
glp_set_rii—set (change) row scale factor
glp_set_sjj—set (change) column scale factor

31
31
32
32
33
33
34
34
34

35
35
35
35
36
36
36
37
37
37

38

38
38

2.6

2.7

2.8

2.5.4
2.5.5
2.5.6
2.5.7

glp_get_rii—retrieve row scale factor
glp_get_sjj—retrieve column scale factor
glp_scale_prob—scale problem data
glp_unscale_prob—unscale problem data

LP basis constructing routines

2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6

Background oL
glp_set_row_stat—set (change) row status
glp_set_col_stat—set (change) column status
glp_std_basis—construct standard initial LP basis . . .
glp_adv_basis—construct advanced initial LP basis . .
glp_cpx_basis—construct Bixby’s initial LP basis . . .

Simplex method routines

2.71

2.7.2
2.7.3

2.74

2.7.5

2.7.6
2.7.7
2.7.8
2.7.9
2.7.10
2.7.11
2.7.12
2.7.13
2.7.14

glp_simplex—solve LP problem with the primal or dual
simplex method 0L,
glp_exact—solve LP problem in exact arithmetic . . .
glp_init_smcp—initialize simplex solver control param-
eterso
glp_get_status—determine generic status of basic so-
lution Lo
glp_get_prim_stat—retrieve status of primal basic so-
lution L
glp_get_dual_stat—retrieve status of dual basic solution
glp_get_obj_val—retrieve objective value
glp_get_row_stat—retrieve row status
glp_get_row_prim—retrieve row primal value
glp_get_row_dual—retrieve row dual value
glp_get_col_stat—retrieve column status
glp_get_col_prim—retrieve column primal value
glp_get_col_dual—retrieve column dual value
glp_get_unbnd_ray—determine variable causing
unboundedness

Interior-point method routines

2.8.1

2.8.2

2.8.3
2.84
2.8.5
2.8.6

glp_interior—solve LP problem with the interior-point

method
glp_init_iptcp—initialize interior-point solver control

parameterso Lo o oL
glp_ipt_status—determine solution status
glp_ipt_obj_val—retrieve objective value
glp_ipt_row_prim—retrieve row primal value
glp_ipt_row_dual—retrieve row dual value

49
56

o7

o7

58

2.9

2.8.7
2.8.8

glp_ipt_col_prim—retrieve column primal value
glp_ipt_col_dual—retrieve column dual value

Mixed integer programming routines

29.1
2.9.2
2.9.3
2.94
2.9.5

2.9.6

2.9.7
2.9.8
2.9.9
2.9.10

glp_set_col_kind—set (change) column kind
glp_get_col_kind—retrieve column kind
glp_get_num_int—retrieve number of integer columns .
glp_get_num_bin—retrieve number of binary columns .
glp_intopt—solve MIP problem with the branch-and-
cut method Lo
glp_init_iocp—initialize integer optimizer control pa-
rameters Lo oL
glp_mip_status—determine status of MIP solution
glp_mip_obj_val—retrieve objective value
glp_mip_row_val—retrieve row value
glp_mip_col_val—retrieve column value

2.10 Additional routines

2.10.1

Ipx_check_kkt—check Karush-Kuhn-Tucker optimality
conditions oL

3 Utility API routines
3.1 Problem data reading/writing routines

3.2

3.3

3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6

glp_read_mps—read problem data in MPS format . . .
glp_write_mps—write problem data in MPS format . .
glp_read_lp—read problem data in CPLEX LP format
glp_write_lp—write problem data in CPLEX LP format
glp_read_prob—read problem data in GLPK format
glp_write_prob—write problem data in GLPK format .

Routines for processing MathProg models

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6

3.2.7
3.2.8

Introduction L.
glp_mpl_alloc_wksp—allocate the translator workspace
glp_mpl read_model—read and translate model section
glp_mpl_read_data—read and translate data section . .
glp_mpl_generate—generate the model
glp_mpl_build_prob—build problem instance from the

model
glp_mpl_postsolve—postsolve the model
glp_mpl_free_wksp—free the translator workspace . . .

Problem solution reading/writing routines
glp_print_sol—write basic solution in printable format 100

3.3.1
3.3.2

glp_read_sol—read basic solution from text file

69
69
70
70
70
70
71

71

76
76
7
7
7
78

78

100

. 100

3.3.3 glp_write_sol—write basic solution to text file 101
3.3.4 glp_print_ipt—write interior-point solution in print-
able format, . 102
3.3.5 glp_read_ipt—read interior-point solution from text file 102
3.3.6 glp_write_ipt—write interior-point solution to text file 103
3.3.7 glp_print_mip—write MIP solution in printable format 104
3.3.8 glp_read_mip—read MIP solution from text file 105
3.3.9 glp_write_mip—write MIP solution to text file. 105
3.4 Post-optimal analysis routines 107
3.4.1 glp_print_ranges—print sensitivity analysis report . . . 107
4 Advanced API Routines 115
4.1 Backgroundo 115
4.2 LP basisroutines, 122
4.2.1 glp_bf_exists—check if the basis factorization exists . . 122
4.2.2 glp_factorize—compute the basis factorization 123
4.2.3 glp_bf_updated—check if the basis factorization has
been updated 124
4.2.4 glp_get_bfcp—retrieve basis factorization control pa-
rameters oL e e 125
4.2.5 glp_set_bfcp—change basis factorization control param-
eterso L 125
4.2.6 glp_get_bhead—retrieve the basis header information . 129
4.2.7 glp_get_row_bind—retrieve row index in the basis
header 130
4.2.8 glp_get_col_bind—retrieve column index in the basis
header 130
4.2.9 glp_ftran—perform forward transformation 131
4.2.10 glp_btran—perform backward transformation 131
4.2.11 glp-warm_up—“warm up” LP basis. 132
4.3 Simplex tableau routines 133
4.3.1 glp_eval_tab_row—compute row of the tableau. 133
4.3.2 glp_eval_tab_col-—compute column of the tableau . . . 134
4.3.3 glp_transform_row—transform explicitly specified
TOW o v v v v e e e e e e e e e e e e e e 136
4.3.4 glp_transform_col—transform explicitly specified
column Lo 137
4.3.5 glp_prim_rtest—perform primal ratio test 138
4.3.6 glp_dual_rtest—perform dual ratio test 139
4.4 Post-optimal analysis routines 141

4.4.1

4.4.2

glp_analyze_bound—analyze active bound of non-basic
variable L o o
glp_analyze_coef—analyze objective coefficient at ba-
sicvariable L L Lo oo

5 Branch-and-Cut API Routines
5.1 Introduction.o

5.2

5.3

5.1.1
5.1.2
5.1.3
5.14
5.1.5
5.1.6

Using the callback routine
Branch-and-cut algorithm
The search treeo
Current subproblem
Thecut pool
Reasons for calling the callback routine

Basicroutines

5.2.1

5.2.2
5.2.3
5.2.4
5.2.5
5.2.6

5.2.7
5.2.8

5.2.9
5.2.10

glp_ios_reason—determine reason for calling the call-
back routine o o oo
glp_ios_get_prob—access the problem object
glp_ios_row_attr—determine additional row attributes
glp_ios_mip_gap—compute relative MIP gap
glp_ios_node_data—access application-specific data . .
glp_ios_select_node—select subproblem to continue the
search
glp_ios_heur_sol—provide solution found by heuristic .
glp_ios_can_branch—check if can branch upon speci-
fied variable L.
glp_ios_branch_upon—choose variable to branch upon
glp_ios_terminate—terminate the solution process . . .

The search tree exploring routines

5.3.1
5.3.2

9.3.3
5.3.4

5.3.5
5.3.6
5.3.7

5.3.8

glp_ios_tree_size—determine size of the search tree
glp_ios_curr_node—determine current active subprob-
lem
glp_ios_next_node—determine next active subproblem
glp_ios_prev_node—determine previous active subprob-
lem
glp_ios_up_node—determine parent subproblem
glp_ios_node_level—determine subproblem level
glp_ios_node_bound—determine subproblem local
bound
glp_ios_best_node—find active subproblem with best
local bound o oL

5.4 The cut pool routines 164

5.4.1 glp_ios_pool_size—determine current size of the cut
pool 164
5.4.2 glp_ios_add_row—add constraint to the cut pool 164
5.4.3 glp_ios_del_row—remove constraint from the cut pool . 166
5.4.4 glp_ios_clear_pool—remove all constraints from the cut
pool 167
6 Miscellaneous API Routines 168
6.1 GLPK environment routines 168
6.1.1 glp_long—64-bit integer data type 168
6.1.2 glp_init_env—initialize GLPK environment 168
6.1.3 glp_version—determine library version 169
6.1.4 glp_free_env—free GLPK environment 169
6.1.5 glp_printf—write formatted output to terminal 170
6.1.6 glp_vprintf—write formatted output to terminal . . . 170
6.1.7 glp_term_out—enable/disable terminal output 171
6.1.8 glp_term_hook—intercept terminal output 171
6.1.9 glp_open_tee—start copying terminal output 172
6.1.10 glp_close_tee—stop copying terminal output 173
6.1.11 glp_error—display error message and terminate exe-
cution L 173
6.1.12 glp_assert—check logical condition 173
6.1.13 glp_error_hook—install hook to intercept abnormal ter-
minationo Lo oL 174
6.1.14 glp_malloc—allocate memory block 174
6.1.15 glp_calloc—allocate memory block 175
6.1.16 glp_free—free memory block 176
6.1.17 glp_mem_usage—get memory usage information 176
6.1.18 glp_mem_limit—set memory usage limit 177
6.1.19 glp_time—determine current universal time 177
6.1.20 glp_difftime—compute difference between two time val-
UES .« v v v e e e e e e e e e 177
6.2 Plain data file reading routines L. 178
6.2.1 Introduction 178
6.2.2 glp_sdf open_file—open plain data file 180
6.2.3 glp_sdf_set_jump—set up error handling 181
6.2.4 glp_sdf_error—print error message 181
6.2.5 glp_sdf_warning—print warning message 182
6.2.6 glp_sdf read_int—read integer number 182

6.2.7
6.2.8
6.2.9
6.2.10
6.2.11

glp_sdf_read_num—read floating-point number . . .
glp_sdf_read_item—read data item
glp_sdf_read_text—read text until end of line
glp_sdf_line—determine current line number
glp_sdf_close_file—close plain data file

A Installing GLPK on Your Computer
A.1 Downloading the distribution tarball
A.2 Unpacking the distribution tarball
A.3 Configuring the package
A.4 Compiling the package
A.5 Checking the package
A.6 Installing the package
A.7 Uninstalling the package

B MPS Format
B.1 Fixed MPS Format
B.2 Free MPS Format.
B.3 NAME indicator card
B4 ROWSsection
B.5 COLUMNS section
B.6 RHSsection
B.7 RANGES section
B.8 BOUNDSsection
B.9 ENDATA indicatorcard
B.10 Specifying objective function
B.11 Example of MPSfile
B.12 MIP features,

C CPLEX LP Format
C.1 Prelude
C.2 Objective function definition
C.3 Constraints section oL
C.4 Boundssection
C.5 General, integer, and binary sections
C.6 End keyword
C.7 Example of CPLEX LP file

D Stand-alone LP/MIP Solver

10

. 183

183
184
184
184

185
185
185
186
188
189
189
190

191
191
192
193
193
194
195
195
196
197
197
198
200

204
204
206
207
208
209
210
210

212

E External Software Modules Used In GLPK
E.1 AMD

E.2 COLAMD/SYMAMD

GNU General Public License

11

Chapter 1

Introduction

GLPK (GNU Linear Programming Kit) is a set of routines written in the
ANSI C programming language and organized in the form of a callable
library. It is intended for solving linear programming (LP), mixed integer
programming (MIP), and other related problems.

1.1

LP problem

GLPK assumes the following formulation of linear programming (LP) prob-

lem:

minimize (or maximize)
Z=C1Tm+1 T C2Tm+42 + ...+ CnTm+n + Co
subject to linear constraints

T1 = 011Tm+1 + A12Tm+2 + .-+ AnPmin
T2 = G21Tm+1 T 022Tm+2 + ...+ A2nTmtn

Tm = Gm1Tm+1 + Am2Tm+2 +...+ AmnTm+n
and bounds of variables

h< 21 <y
o< 29 <wo

lm-‘,—n S Tm+n S Um+n

12

(1.1)

(1.2)

where: x1,x9,...,%,, are auxiliary variables; Zp41,Tm+42,.-.,Tmin are
structural variables; z is the objective function; ci,co,...,c, are objec-
tive coefficients; ¢ is the constant term (“shift”) of the objective function;
a11,ai2, . - . , Amn are constraint coeflicients; l1,lo, . .., I+ are lower bounds
of variables; u1, ug, . .., Umiy are upper bounds of variables.

Auxiliary variables are also called rows, because they correspond to rows
of the constraint matrix (i.e. a matrix built of the constraint coefficients).
Similarly, structural variables are also called columns, because they corre-
spond to columns of the constraint matrix.

Bounds of variables can be finite as well as infinite. Besides, lower and
upper bounds can be equal to each other. Thus, the following types of
variables are possible:

Bounds of variable Type of variable

—00 < z < 00 Free (unbounded) variable
Iy <z < 400 Variable with lower bound

—00 < T < ug Variable with upper bound
I < xp < uy Double-bounded variable
lp, = xp, = ug Fixed variable

Note that the types of variables shown above are applicable to structural as
well as to auxiliary variables.

To solve the LP problem (1.1)—(1.3) is to find such values of all struc-
tural and auxiliary variables, which:

e satisfy to all the linear constraints (1.2), and

e are within their bounds (1.3), and

e provide the smallest (in case of minimization) or the largest (in case
of maximization) value of the objective function (1.1).

1.2 MIP problem

Mized integer linear programming (MIP) problem is LP problem in which
some variables are additionally required to be integer.

GLPK assumes that MIP problem has the same formulation as ordi-
nary (pure) LP problem (1.1)—(1.3), i.e. includes auxiliary and structural
variables, which may have lower and/or upper bounds. However, in case of
MIP problem some variables may be required to be integer. This additional
constraint means that a value of each integer variable must be only integer
number. (Should note that GLPK allows only structural variables to be of
integer kind.)

13

1.3 Using the package

1.3.1 Brief example

In order to understand what GLPK is from the user’s standpoint, consider
the following simple LP problem:

maximize
z = 10zx1 + 622 + 4x3

subject to
1+ x2+ 3 <100
10x1 + 429 + 5x3 < 600
2x1 + 2x9 + 623 < 300

where all variables are non-negative
1'1207 ':UQZOa .%'320

At first this LP problem should be transformed to the standard form
(1.1)——(1.3). This can be easily done by introducing auxiliary variables,
by one for each original inequality constraint. Thus, the problem can be
reformulated as follows:

maximize
z =10xz1 + 625 + 4z3

subject to
p= T1+ 22+ I3
q = 10x1 4 429 + dx3
r= 2x1 4+ 2x9 + 623

and bounds of variables

—oo0 < p <100 0<2 <+
—o0 < g <600 0< 29 <40
—o0 < r <300 0< 23 <+

where p, ¢, r are auxiliary variables (rows), and x1, x2, x3 are structural vari-
ables (columns).

The example C program shown below uses GLPK API routines in order
to solve this LP problem.!

'If you just need to solve LP or MIP instance, you may write it in MPS or CPLEX LP
format and then use the GLPK stand-alone solver to obtain a solution. This is much less
time-consuming than programming in C with GLPK API routines.

14

/* sample.c */

#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

int main(void)
{ glp_prob *1p;
int ia[1+1000], ja[1+1000];
double ar[1+1000], =z, x1, x2, x3;
sl: 1lp = glp_create_prob();
s2: glp_set_prob_name(lp, "sample");
s3: glp_set_obj_dir(lp, GLP_MAX);
s4: glp_add_rows(lp, 3);
sb: glp_set_row_name(lp, 1, "p");
s6: glp_set_row_bnds(lp, 1, GLP_UP, 0.0, 100.0);
s7: glp_set_row_name(lp, 2, "q");
s8: glp_set_row_bnds(lp, 2, GLP_UP, 0.0, 600.0);
s9: glp_set_row_name(lp, 3, "r");
s10: glp_set_row_bnds(lp, 3, GLP_UP, 0.0, 300.0);
s11: glp_add_cols(lp, 3);

s12: glp_set_col_name(lp, 1, "x1");

s13: glp_set_col_bnds(lp, 1, GLP_LO, 0.0, 0.0);
sl4: glp_set_obj_coef(lp, 1, 10.0);

s16: glp_set_col_name(lp, 2, "x2");

s16: glp_set_col_bnds(lp, 2, GLP_LO, 0.0, 0.0);
s17: glp_set_obj_coef(lp, 2, 6.0);

s18: glp_set_col_name(lp, 3, "x3");

s19: glp_set_col_bnds(lp, 3, GLP_LO, 0.0, 0.0);
s20: glp_set_obj_coef(1lp, 3, 4.0);

s21: ial1] =1, ja[1]l =1, ar[1] = 1.0; /* al1,1]
s22: ial2] =1, jal[2] = 2, ar[2] = 1.0; /* a[1,2]
s23: ial3] =1, jal[3] = 3, ar[3] = 1.0; /* al1,3]
s24: ial4] = 2, jal4] =1, ar[4] = 10.0; /* a[2,1]
s26: ia[5] = 3, jalb] =1, ar[5] = 2.0; /* a[3,1]
s26: ial[6] = 2, jal6] = 2, ar[6] = 4.0; /* al[2,2]
s27: ial7] = 3, jal7] = 2, ar[7] = 2.0; /* a[3,2]
s28: ial8] = 2, jal8] = 3, ar[8] = 5.0; /* a[2,3]
s29: ial9] = 3, jal9] = 3, ar[9] = 6.0; /* al3,3]

s30: glp_load_matrix(lp, 9, ia, ja, ar);

15

= e

D OO NN

s31: glp_simplex(lp, NULL);
s32: z = glp_get_obj_val(lp);

s33: x1 = glp_get_col_prim(lp, 1);
s34: x2 = glp_get_col_prim(lp, 2);
s35: x3 = glp_get_col_prim(lp, 3);

s36: printf("\nz = %g; x1 = %g; x2 = %g; x3 = Jg\n",
z, x1, x2, x3);
s37: glp_delete_prob(lp);
return O;

/* eof x/

The statement s1 creates a problem object. Being created the object is
initially empty. The statement s2 assigns a symbolic name to the problem
object.

The statement s3 calls the routine glp_set_obj_dir in order to set the
optimization direction flag, where GLP_MAX means maximization.

The statement s4 adds three rows to the problem object.

The statement s5 assigns the symbolic name ‘p’ to the first row, and
the statement s6 sets the type and bounds of the first row, where GLP_UP
means that the row has an upper bound. The statements s7, s8, s9, s10
are used in the same way in order to assign the symbolic names ‘q’ and ‘r’
to the second and third rows and set their types and bounds.

The statement s11 adds three columns to the problem object.

The statement s12 assigns the symbolic name ‘x1’ to the first column,
the statement s13 sets the type and bounds of the first column, where
GLP_LO means that the column has an lower bound, and the statement s14
sets the objective coefficient for the first column. The statements s15—s20
are used in the same way in order to assign the symbolic names ‘x2’ and ‘x3’
to the second and third columns and set their types, bounds, and objective
coeflicients.

The statements s21—s29 prepare non-zero elements of the constraint
matrix (i.e. constraint coefficients). Row indices of each element are stored
in the array ia, column indices are stored in the array ja, and numerical
values of corresponding elements are stored in the array ar. Then the state-
ment s30 calls the routine glp_load_matrix, which loads information from
these three arrays into the problem object.

Now all data have been entered into the problem object, and therefore
the statement s31 calls the routine glp_simplex, which is a driver to the

16

simplex method, in order to solve the LP problem. This routine finds an
optimal solution and stores all relevant information back into the problem
object.

The statement s32 obtains a computed value of the objective function,
and the statements s33—s35 obtain computed values of structural variables
(columns), which correspond to the optimal basic solution found by the
solver.

The statement s36 writes the optimal solution to the standard output.
The printout may look like follows:

0.000000000e+00 (0)

* 0: objval = 0.000000000e+00 infeas
= 0.000000000e+00 (0)

* 2: objval = 7.333333333e+02 infeas
OPTIMAL SOLUTION FOUND

z = 733.333; x1 = 33.3333; x2 = 66.6667; x3 = 0

Finally, the statement s37 calls the routine glp_delete_prob, which
frees all the memory allocated to the problem object.

1.3.2 Compiling

The GLPK package has the only header file glpk.h, which should be avail-
able on compiling a C (or C++) program using GLPK API routines.

If the header file is installed in the default location /usr/local/include,
the following typical command may be used to compile, say, the example C
program described above with the GNU C compiler:

$ gcc -c sample.c

If glpk.h is not in the default location, the corresponding directory
containing it should be made known to the C compiler through -I option,
for example:

$ gcc -I/foo/bar/glpk-4.15/include -c sample.c
In any case the compilation results in an object file sample.o.

1.3.3 Linking

The GLPK library is a single file 1ibglpk.a. (On systems which sup-
port shared libraries there may be also a shared version of the library
libglpk.so.)

17

If the library is installed in the default location /usr/local/lib, the
following typical command may be used to link, say, the example C program
described above against with the library:

$ gcc sample.o -1glpk -1m

If the GLPK library is not in the default location, the corresponding
directory containing it should be made known to the linker through -L
option, for example:

$ gcc -L/foo/bar/glpk-4.15 sample.o -1lglpk -1m

Depending on configuration of the package linking against with the
GLPK library may require the following optional libraries:

-lgmp the GNU MP bignum library;
-1z the zlib data compression library;
-11tdl the GNU ltdl shared support library.

in which case corresponding libraries should be also made known to the
linker, for example:

$ gcc sample.o -1lglpk -1z -11tdl -1lm

For more details about configuration options of the GLPK package see
Appendix A, page 185.

18

Chapter 2

Basic APl Routines

This chapter describes GLPK API routines intended for using in application
programs.

Library header

All GLPK API data types and routines are defined in the header file glpk.h.
It should be included in all source files which use GLPK API, either directly
or indirectly through some other header file as follows:

#include <glpk.h>

Error handling

If some GLPK API routine detects erroneous or incorrect data passed by
the application program, it writes appropriate diagnostic messages to the
terminal and then abnormally terminates the application program. In most
practical cases this allows to simplify programming by avoiding numerous
checks of return codes. Thus, in order to prevent crashing the application
program should check all data, which are suspected to be incorrect, before
calling GLPK API routines.

Should note that this kind of error handling is used only in cases of
incorrect data passed by the application program. If, for example, the ap-
plication program calls some GLPK API routine to read data from an input
file and these data are incorrect, the GLPK API routine reports about error
in the usual way by means of the return code.

19

Thread safety

Currently GLPK API routines are non-reentrant and therefore cannot be
used in multi-threaded programs.

Array indexing

Normally all GLPK API routines start array indexing from 1, not from 0
(except the specially stipulated cases). This means, for example, that if some
vector x of the length n is passed as an array to some GLPK API routine,
the latter expects vector components to be placed in locations x[1], x[2],
.., x[n], and the location x[0] normally is not used.
In order to avoid indexing errors it is most convenient and most reliable
to declare the array x as follows:

double x[1+n];
or to allocate it as follows:

double *x;
x = calloc(1l+n, sizeof(double));

In both cases one extra location x[0] is reserved that allows passing the
array to GLPK routines in a usual way.

2.1 Problem object

All GLPK API routines deal with so called problem object, which is a pro-
gram object of type glp_prob and intended to represent a particular LP or
MIP instance.

The type glp_prob is a data structure declared in the header file glpk.h
as follows:

typedef struct { ... } glp_prob;

Problem objects (i.e. program objects of the glp_prob type) are allo-
cated and managed internally by the GLPK API routines. The application
program should never use any members of the glp_prob structure directly
and should deal only with pointers to these objects (that is, glp_prob *
values).

20

The problem object consists of five segments, which are:
e problem segment,

e basis segment,

e interior point segment,

e MIP segment, and

e control parameters and statistics segment.

Problem segment

The problem segment contains original LP/MIP data, which corresponds to
the problem formulation (1.1)—(1.3) (see Section 1.1, page 12). It includes
the following components:

e rows (auxiliary variables),

e columns (structural variables),

e objective function, and

e constraint matrix.

Rows and columns have the same set of the following attributes:

e ordinal number,

e symbolic name (1 up to 255 arbitrary graphic characters),

e type (free, lower bound, upper bound, double bound, fixed),

e numerical values of lower and upper bounds,

e scale factor.

Ordinal numbers are intended for referencing rows and columns. Row
ordinal numbers are integers 1,2,...,m, and column ordinal numbers are
integers 1,2,...,n, where m and n are, respectively, the current number of
rows and columns in the problem object.

Symbolic names are intended for informational purposes. They also can
be used for referencing rows and columns.

Types and bounds of rows (auxiliary variables) and columns (structural
variables) are explained above (see Section 1.1, page 12).

Scale factors are used internally for scaling rows and columns of the
constraint matrix.

Information about the objective function includes numerical values of
objective coefficients and a flag, which defines the optimization direction
(i.e. minimization or maximization).

The constraint matriz is a m X n rectangular matrix built of constraint
coefficients a;j, which defines the system of linear constraints (1.2) (see Sec-
tion 1.1, page 12). This matrix is stored in the problem object in both
row-wise and column-wise sparse formats.

21

Once the problem object has been created, the application program can
access and modify any components of the problem segment in arbitrary
order.

Basis segment

The basis segment of the problem object keeps information related to the
current basic solution. It includes:

e row and column statuses,

e basic solution statuses,

e factorization of the current basis matrix, and

e basic solution components.

The row and column statuses define which rows and columns are basic
and which are non-basic. These statuses may be assigned either by the
application program of by some API routines. Note that these statuses are
always defined independently on whether the corresponding basis is valid or
not.

The basic solution statuses include the primal status and the dual sta-
tus, which are set by the simplex-based solver once the problem has been
solved. The primal status shows whether a primal basic solution is feasible,
infeasible, or undefined. The dual status shows the same for a dual basic
solution.

The factorization of the basis matriz is some factorized form (like LU-
factorization) of the current basis matrix (defined by the current row and
column statuses). The factorization is used by the simplex-based solver
and kept when the solver terminates the search. This feature allows ef-
ficiently reoptimizing the problem after some modifications (for example,
after changing some bounds or objective coefficients). It also allows per-
forming the post-optimal analysis (for example, computing components of
the simplex table, etc.).

The basic solution components include primal and dual values of all aux-
iliary and structural variables for the most recently obtained basic solution.

Interior point segment

The interior point segment is automatically allocated after the problem has
been solved using the interior point solver. It contains interior point solution
components, which include the solution status, and primal and dual values
of all auxiliary and structural variables.

22

MIP segment

The MIP segment is used only for MIP problems. This segment includes:

e column kinds,

e MIP solution status, and

e MIP solution components.

The column kinds define which columns (i.e. structural variables) are
integer and which are continuous.

The MIP solution status is set by the MIP solver and shows whether a
MIP solution is integer optimal, integer feasible (non-optimal), or undefined.

The MIP solution components are computed by the MIP solver and in-
clude primal values of all auxiliary and structural variables for the most
recently obtained MIP solution.

Note that in case of MIP problem the basis segment corresponds to the
optimal solution of LP relaxation, which is also available to the application
program.

Currently the search tree is not kept in the MIP segment. Therefore if
the search has been terminated, it cannot be continued.

23

2.2 Problem creating and modifying routines

2.2.1 glp_create_prob—-create problem object
Synopsis

glp_prob *glp_create_prob(void);

Description

The routine glp_create_prob creates a new problem object, which initially
is “empty”, i.e. has no rows and columns.

Returns

The routine returns a pointer to the created object, which should be used
in any subsequent operations on this object.

2.2.2 glp_set_prob_name—assign (change) problem name
Synopsis

void glp_set_prob_name(glp_prob *1lp, const char *name);

Description

The routine glp_set_prob_name assigns a given symbolic name (1 up to 255
characters) to the specified problem object.

If the parameter name is NULL or empty string, the routine erases an
existing symbolic name of the problem object.

2.2.3 glp_set_obj name—assign (change) objective function
name

Synopsis

void glp_set_obj_name(glp_prob *1lp, const char *name);

Description

The routine glp_set_obj_name assigns a given symbolic name (1 up to 255
characters) to the objective function of the specified problem object.

If the parameter name is NULL or empty string, the routine erases an
existing symbolic name of the objective function.

24

2.2.4 glp_set_obj_dir—set (change) optimization direction
flag

Synopsis

void glp_set_obj_dir(glp_prob *1lp, int dir);

Description

The routine glp_set_obj_dir sets (changes) the optimization direction flag
(i.e. “sense” of the objective function) as specified by the parameter dir:
GLP_MIN minimization;
GLP_MAX maximization.
(Note that by default the problem is minimization.)

2.2.5 glp_add_rows—add new rows to problem object

Synopsis

int glp_add_rows(glp_prob *1lp, int nrs);

Description

The routine glp_add_rows adds nrs rows (constraints) to the specified prob-
lem object. New rows are always added to the end of the row list, so the
ordinal numbers of existing rows are not changed.

Being added each new row is initially free (unbounded) and has empty
list of the constraint coefficients.

Returns

The routine glp_add_rows returns the ordinal number of the first new row
added to the problem object.

25

2.2.6 glp_add_cols—add new columns to problem object
Synopsis

int glp_add_cols(glp_prob *1p, int ncs);

Description

The routine glp_add_cols adds ncs columns (structural variables) to the
specified problem object. New columns are always added to the end of the
column list, so the ordinal numbers of existing columns are not changed.

Being added each new column is initially fixed at zero and has empty
list of the constraint coefficients.

Returns

The routine glp_add_cols returns the ordinal number of the first new col-
umn added to the problem object.

2.2.7 glp_set_row_name—assign (change) row name

Synopsis

void glp_set_row_name(glp_prob *lp, int i, const char *name);

Description

The routine glp_set_row_name assigns a given symbolic name (1 up to 255

characters) to i-th row (auxiliary variable) of the specified problem object.
If the parameter name is NULL or empty string, the routine erases an

existing name of i-th row.

2.2.8 glp_set_col_ name—assign (change) column name

Synopsis

void glp_set_col_name(glp_prob *1lp, int j, const char *name);

Description

The routine glp_set_col_name assigns a given symbolic name (1 up to 255
characters) to j-th column (structural variable) of the specified problem
object.

26

If the parameter name is NULL or empty string, the routine erases an
existing name of j-th column.

2.2.9 glp_set_row_bnds—set (change) row bounds
Synopsis

void glp_set_row_bnds(glp_prob *1lp, int i, int type,
double 1b, double ub);

Description

The routine glp_set_row_bnds sets (changes) the type and bounds of i-th
row (auxiliary variable) of the specified problem object.

The parameters type, 1b, and ub specify the type, lower bound, and
upper bound, respectively, as follows:

Type Bounds Comment
GLP_FR —o0o < z < +oo Free (unbounded) variable
GLP_LO Ib<x < +4+oo Variable with lower bound
GLP_UP —oo<z <ub Variable with upper bound
GLP_DB b<z<ub Double-bounded variable
GLP_FX b=z =ub Fixed variable

where z is the auxiliary variable associated with i-th row.

If the row has no lower bound, the parameter 1b is ignored. If the row
has no upper bound, the parameter ub is ignored. If the row is an equality
constraint (i.e. the corresponding auxiliary variable is of fixed type), only
the parameter 1b is used while the parameter ub is ignored.

Being added to the problem object each row is initially free, i.e. its type
is GLP_FR.

27

2.2.10 glp_set_col bnds—set (change) column bounds
Synopsis

void glp_set_col_bnds(glp_prob *1lp, int j, int type,
double 1b, double ub);

Description

The routine glp_set_col_bnds sets (changes) the type and bounds of j-th
column (structural variable) of the specified problem object.

The parameters type, 1b, and ub specify the type, lower bound, and
upper bound, respectively, as follows:

Type Bounds Comment
GLP_FR —o0o < z < +oo Free (unbounded) variable
GLP_LO Ib<x < 400 Variable with lower bound
GLP_UP —oo<z <ub Variable with upper bound
GLP_DB b<z<ub Double-bounded variable
GLP_FX b=z =ub Fixed variable

where z is the structural variable associated with j-th column.

If the column has no lower bound, the parameter 1b is ignored. If the
column has no upper bound, the parameter ub is ignored. If the column
is of fixed type, only the parameter 1b is used while the parameter ub is
ignored.

Being added to the problem object each column is initially fixed at zero,
i.e. its type is GLP_FX and both bounds are 0.

2.2.11 glp_set_obj_coef—set (change) objective coefficient or
constant term

Synopsis

void glp_set_obj_coef(glp_prob *1lp, int j, double coef);

Description

The routine glp_set_obj_coef sets (changes) the objective coefficient at
j-th column (structural variable). A new value of the objective coefficient
is specified by the parameter coef.

If the parameter j is 0, the routine sets (changes) the constant term
(“shift”) of the objective function.

28

2.2.12 glp_set_mat_row—set (replace) row of the constraint
matrix

Synopsis

void glp_set_mat_row(glp_prob *1p, int i, int len,
const int ind[], const double valll);

Description

The routine glp_set_mat_row stores (replaces) the contents of i-th row of
the constraint matrix of the specified problem object.

Column indices and numerical values of new row elements must be placed
in locations ind[1], ..., ind[len] and val[1], ..., val[len], respectively,
where 0 < len < n is the new length of i-th row, n is the current number
of columns in the problem object. Elements with identical column indices
are not allowed. Zero elements are allowed, but they are not stored in the
constraint matrix.

If the parameter len is 0, the parameters ind and/or val can be specified
as NULL.

2.2.13 glp_set_mat_col—set (replace) column of the constr-
aint matrix

Synopsis

void glp_set_mat_col(glp_prob *1lp, int j, int len,
const int ind[], const double valll);

Description

The routine glp_set_mat_col stores (replaces) the contents of j-th column
of the constraint matrix of the specified problem object.

Row indices and numerical values of new column elements must be placed
in locations ind[1], ..., ind[len] and val[1], ..., val[len], respectively,
where 0 < len < m is the new length of j-th column, m is the current
number of rows in the problem object. Elements with identical row indices
are not allowed. Zero elements are allowed, but they are not stored in the
constraint matrix.

If the parameter len is 0, the parameters ind and/or val can be specified
as NULL.

29

2.2.14 glp_load _matrix—Iload (replace) the whole constraint
matrix

Synopsis

void glp_load_matrix(glp_prob *1lp, int ne, const int iafl],
const int jal[l, const double ar[]);

Description

The routine glp_load_matrix loads the constraint matrix passed in the
arrays ia, ja, and ar into the specified problem object. Before loading the
current contents of the constraint matrix is destroyed.

Constraint coefficients (elements of the constraint matrix) must be spec-
ified as triplets (ialk], jalk]l, ar[k]) for & = 1,...,ne, where ialk] is
the row index, jalk] is the column index, and ar[k] is a numeric value of
corresponding constraint coefficient. The parameter ne specifies the total
number of (non-zero) elements in the matrix to be loaded. Coefficients with
identical indices are not allowed. Zero coefficients are allowed, however, they
are not stored in the constraint matrix.

If the parameter ne is 0, the parameters ia, ja, and/or ar can be spec-
ified as NULL.

2.2.15 glp_check_dup——check for duplicate elements in sparse
matrix

Synopsis

int glp_check_dup(int m, int n, int ne, comst int ial],
const int jall);

Description

The routine glp_check_dup checks for duplicate elements (that is, ele-
ments with identical indices) in a sparse matrix specified in the coordinate
format.

The parameters m and n specifies, respectively, the number of rows and
columns in the matrix, m > 0, n > 0.

The parameter ne specifies the number of (structurally) non-zero ele-
ments in the matrix, ne > 0.

Elements of the matrix are specified as doublets (ia[k], jalk]) for k =
1,...,ne, where ialk| is a row index, ja[k] is a column index.

30

The routine glp_check_dup can be used prior to a call to the routine
glp_load_matrix to check that the constraint matrix to be loaded has no
duplicate elements.

Returns

The routine glp_check_dup returns one of the following values:
0 — the matrix has no duplicate elements;

—k — indices ia[k] or/and ja[k| are out of range;

+k — element (ialk], ja[k]) is duplicate.

2.2.16 glp_sort_matrix—sort elements of the constraint ma-
trix

Synopsis

void glp_sort_matrix(glp_prob *P);

Description

The routine glp_sort_matrix sorts elements of the constraint matrix re-
building its row and column linked lists. On exit from the routine the
constraint matrix is not changed, however, elements in the row linked lists
become ordered by ascending column indices, and the elements in the col-
umn linked lists become ordered by ascending row indices.

2.2.17 glp_del rows—delete rows from problem object
Synopsis

void glp_del_rows(glp_prob *lp, int nrs, const int numl[]);

Description

The routine glp_del_rows deletes rows from the specified problem ob-
ject. Ordinal numbers of rows to be deleted should be placed in locations
num[1], ..., num[nrs], where nrs > 0.

Note that deleting rows involves changing ordinal numbers of other rows
remaining in the problem object. New ordinal numbers of the remaining
rows are assigned under the assumption that the original order of rows is
not changed. Let, for example, before deletion there be five rows a, b, ¢, d,
e with ordinal numbers 1, 2, 3, 4, 5, and let rows b and d have been deleted.

31

Then after deletion the remaining rows a, ¢, e are assigned new oridinal
numbers 1, 2, 3.

2.2.18 glp_del_cols—delete columns from problem object
Synopsis

void glp_del_cols(glp_prob *1lp, int ncs, const int num[]);

Description

The routine glp_del_cols deletes columns from the specified problem ob-
ject. Ordinal numbers of columns to be deleted should be placed in locations
num([1], ..., num[ncs], where ncs > 0.

Note that deleting columns involves changing ordinal numbers of other
columns remaining in the problem object. New ordinal numbers of the
remaining columns are assigned under the assumption that the original order
of columns is not changed. Let, for example, before deletion there be six
columns p, q, r, s, t, u with ordinal numbers 1, 2, 3, 4, 5, 6, and let columns
P, q, s have been deleted. Then after deletion the remaining columns r, ¢, u
are assigned new ordinal numbers 1, 2, 3.

2.2.19 glp_copy_prob——copy problem object content

Synopsis

void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names);

Description

The routine glp_copy_prob copies the content of the problem object prob
to the problem object dest.

The parameter names is a flag. If it is GLP_ON, the routine also copies all
symbolic names; otherwise, if it is GLP_OFF, no symbolic names are copied.

32

2.2.20 glp_erase _prob—erase problem object content
Synopsis
void glp_erase_prob(glp_prob *lp);

Description

The routine glp_erase_prob erases the content of the specified problem
object. The effect of this operation is the same as if the problem object
would be deleted with the routine glp_delete_prob and then created anew
with the routine glp_create_prob, with the only exception that the handle
(pointer) to the problem object remains valid.

2.2.21 glp_delete_prob—delete problem object
Synopsis
void glp_delete_prob(glp_prob *1p);

Description

The routine glp_delete_prob deletes a problem object, which the param-
eter 1p points to, freeing all the memory allocated to this object.

33

2.3 Problem retrieving routines

2.3.1 glp_get_prob_name—retrieve problem name
Synopsis

const char *glp_get_prob_name(glp_prob *1p);

Returns

The routine glp_get_prob_name returns a pointer to an internal buffer,
which contains symbolic name of the problem. However, if the problem has
no assigned name, the routine returns NULL.

2.3.2 glp_get_obj name—retrieve objective function name

Synopsis

const char *glp_get_obj_name(glp_prob *1p);

Returns

The routine glp_get_obj_name returns a pointer to an internal buffer, which
contains symbolic name assigned to the objective function. However, if the
objective function has no assigned name, the routine returns NULL.

2.3.3 glp_get_obj_dir—retrieve optimization direction flag

Synopsis

int glp_get_obj_dir(glp_prob *1p);

Returns

The routine glp_get_obj_dir returns the optimization direction flag (i.e.
“sense” of the objective function):

GLP_MIN minimization;

GLP_MAX maximization.

34

2.3.4 glp_get_ num rows—retrieve number of rows
Synopsis

int glp_get_num_rows(glp_prob *lp);

Returns

The routine glp_get_num_rows returns the current number of rows in the
specified problem object.

2.3.5 glp_get_ num _cols—retrieve number of columns
Synopsis

int glp_get_num_cols(glp_prob *lp);

Returns

The routine glp_get_num_cols returns the current number of columns the
specified problem object.

2.3.6 glp_get_row_name—retrieve row name

Synopsis

const char *glp_get_row_name(glp_prob *lp, int i);

Returns

The routine glp_get_row_name returns a pointer to an internal buffer, which
contains a symbolic name assigned to i-th row. However, if the row has no
assigned name, the routine returns NULL.

2.3.7 glp_get_col name—retrieve column name

Synopsis

const char *glp_get_col_name(glp_prob *1lp, int j);

Returns

The routine glp_get_col_name returns a pointer to an internal buffer, which
contains a symbolic name assigned to j-th column. However, if the column
has no assigned name, the routine returns NULL.

35

2.3.8 glp_get_row_type—retrieve row type
Synopsis

int glp_get_row_type(glp_prob *1lp, int i);

Returns

The routine glp_get_row_type returns the type of i-th row, i.e. the type
of corresponding auxiliary variable, as follows:
GLP_FR free (unbounded) variable;
GLP_LO variable with lower bound,;
GLP_UP variable with upper bound;
GLP_DB double-bounded variable;
GLP_FX fixed variable.
2.3.9 glp_get row_lb—retrieve row lower bound
Synopsis

double glp_get_row_lb(glp_prob *1lp, int i);

Returns

The routine glp_get_row_1b returns the lower bound of i-th row, i.e. the
lower bound of corresponding auxiliary variable. However, if the row has no
lower bound, the routine returns -DBL_MAX.

2.3.10 glp_get_ row_ub—retrieve row upper bound

Synopsis

double glp_get_row_ub(glp_prob *1lp, int i);

Returns

The routine glp_get_row_ub returns the upper bound of i-th row, i.e. the
upper bound of corresponding auxiliary variable. However, if the row has
no upper bound, the routine returns +DBL_MAX.

36

2.3.11 glp_get_col type—retrieve column type
Synopsis
int glp_get_col_type(glp_prob *1lp, int j);

Returns

The routine glp_get_col_type returns the type of j-th column, i.e. the
type of corresponding structural variable, as follows:

GLP_FR free (unbounded) variable;

GLP_LO variable with lower bound,;

GLP_UP variable with upper bound;

GLP_DB double-bounded variable;

GLP_FX fixed variable.
2.3.12 glp_get_col lb—retrieve column lower bound
Synopsis

double glp_get_col_lb(glp_prob *1lp, int j);

Returns

The routine glp_get_col_1b returns the lower bound of j-th column, i.e.
the lower bound of corresponding structural variable. However, if the column
has no lower bound, the routine returns -DBL_MAX.

2.3.13 glp_get_col ub—retrieve column upper bound
Synopsis

double glp_get_col_ub(glp_prob *1lp, int j);

Returns

The routine glp_get_col_ub returns the upper bound of j-th column, i.e.
the upper bound of corresponding structural variable. However, if the col-
umn has no upper bound, the routine returns +DBL_MAX.

37

2.3.14 glp_get_obj_coef—retrieve objective coefficient or
constant term

Synopsis

double glp_get_obj_coef (glp_prob *1lp, int j);

Returns

The routine glp_get_obj_coef returns the objective coefficient at j-th
structural variable (column).

If the parameter j is 0, the routine returns the constant term (“shift”)
of the objective function.

2.3.15 glp_get num nz—retrieve number of constraint coef-
ficients

Synopsis

int glp_get_num_nz(glp_prob *1p);

Returns

The routine glp_get_num_nz returns the number of non-zero elements in
the constraint matrix of the specified problem object.

2.3.16 glp_get_mat row—retrieve row of the constraint ma-
trix

Synopsis

int glp_get_mat_row(glp_prob *lp, int i, int ind[],
double valll);

Description

The routine glp_get_mat_row scans (non-zero) elements of i-th row of the
constraint matrix of the specified problem object and stores their column
indices and numeric values to locations ind[1], ..., ind[len] and val[1],
.., val[len], respectively, where 0 < len < n is the number of elements
in i-th row, n is the number of columns.
The parameter ind and/or val can be specified as NULL, in which case
corresponding information is not stored.

38

Returns

The routine glp_get_mat_row returns the length len, i.e. the number of
(non-zero) elements in i-th row.

2.3.17 glp_get_mat_col—retrieve column of the constraint
matrix

Synopsis

int glp_get_mat_col(glp_prob *1p, int j, int ind[],
double valll);

Description

The routine glp_get_mat_col scans (non-zero) elements of j-th column of
the constraint matrix of the specified problem object and stores their row
indices and numeric values to locations ind[1], ..., ind[1len] and vall[1],
.., val[len], respectively, where 0 < len < m is the number of elements
in j-th column, m is the number of rows.
The parameter ind and/or val can be specified as NULL, in which case
corresponding information is not stored.

Returns

The routine glp_get_mat_col returns the length len, i.e. the number of
(non-zero) elements in j-th column.

39

2.4 Row and column searching routines

2.4.1 glp_create_index—create the name index
Synopsis

void glp_create_index(glp_prob *1p);

Description

The routine glp_create_index creates the name index for the specified
problem object. The name index is an auxiliary data structure, which is
intended to quickly (i.e. for logarithmic time) find rows and columns by
their names.

This routine can be called at any time. If the name index already exists,
the routine does nothing.

2.4.2 glp_find_row—find row by its name

Synopsis

int glp_find_row(glp_prob *1lp, const char *name);

Returns

The routine glp_find_row returns the ordinal number of a row, which is
assigned (by the routine glp_set_row_name) the specified symbolic name.
If no such row exists, the routine returns 0.

2.4.3 glp_find_col—find column by its name

Synopsis

int glp_find_col(glp_prob *1p, const char *name);

Returns

The routine glp_find_col returns the ordinal number of a column, which
is assigned (by the routine glp_set_col_name) the specified symbolic name.
If no such column exists, the routine returns 0.

40

2.4.4 glp_delete_index—delete the name index
Synopsis

void glp_delete_index(glp_prob *1p);

Description

The routine glp_delete_index deletes the name index previously created
by the routine glp_create_index and frees the memory allocated to this
auxiliary data structure.

This routine can be called at any time. If the name index does not exist,
the routine does nothing.

41

2.5 Problem scaling routines

2.5.1 Background

In GLPK the scaling means a linear transformation applied to the constraint
matrix to improve its numerical properties.’
The main equality is the following:

A= RAS, (2.1)

where A = (a;;) is the original constraint matrix, R = (r4;) > 0 is a diagonal
matrix used to scale rows (constraints), S = (s;;) > 0 is a diagonal matrix
used to scale columns (variables), A is the scaled constraint matrix.

From (2.1) it follows that in the scaled problem instance each original
constraint coefficient a;; is replaced by corresponding scaled constraint co-
efficient:

Eij = TQ55S55- (2.2)

Note that the scaling is performed internally and therefore transparently
to the user. This means that on API level the user always deal with unscaled
data.

Scale factors r; and sj; can be set or changed at any time either directly
by the application program in a problem specific way (with the routines
glp_set_rii and glp_set_sjj), or by some API routines intended for au-
tomatic scaling.

2.5.2 glp_set_rii—set (change) row scale factor

Synopsis

void glp_set_rii(glp_prob *1lp, int i, double rii);

Description

The routine glp_set_rii sets (changes) the scale factor ry; for i-th row of
the specified problem object.

'In many cases a proper scaling allows making the constraint matrix to be better
conditioned, i.e. decreasing its condition number, that makes computations numerically
more stable.

42

2.5.3 glp_set_sjj—set (change) column scale factor
Synopsis

void glp_set_sjj(glp_prob *1lp, int j, double sjj);

Description

The routine glp_set_sjj sets (changes) the scale factor s;; for j-th column
of the specified problem object.

2.5.4 glp_get_rii—retrieve row scale factor

Synopsis

double glp_get_rii(glp_prob *1lp, int i);

Returns

The routine glp_get_rii returns current scale factor r; for i-th row of the
specified problem object.

2.5.5 glp_get_sjj—retrieve column scale factor

Synopsis

double glp_get_sjj(glp_prob *lp, int j);

Returns

The routine glp_get_sjj returns current scale factor s;; for j-th column of
the specified problem object.

2.5.6 glp_scale_prob—scale problem data

Synopsis

void glp_scale_prob(glp_prob *lp, int flags);

Description

The routine glp_scale_prob performs automatic scaling of problem data
for the specified problem object.

43

The parameter flags specifies scaling options used by the routine. The
options can be combined with the bitwise OR operator and may be the

following;:
GLP_SF_GM perform geometric mean scaling;
GLP_SF_EQ perform equilibration scaling;
GLP_SF_2N round scale factors to nearest power of two;

GLP_SF_SKIP skip scaling, if the problem is well scaled.

The parameter flags may be specified as GLP_SF_AUTO, in which case
the routine chooses the scaling options automatically.
2.5.7 glp_unscale_prob—unscale problem data
Synopsis
void glp_unscale_prob(glp_prob *1p);

The routine glp_unscale_prob performs unscaling of problem data for
the specified problem object.

“Unscaling” means replacing the current scaling matrices R and S by
unity matrices that cancels the scaling effect.

44

2.6 LP basis constructing routines

2.6.1 Background

To start the search the simplex method needs a valid initial basis. In GLPK
the basis is completely defined by a set of statuses assigned to all (auxiliary
and structural) variables, where the status may be one of the following:

GLP_BS basic variable;

GLP_NL non-basic variable having active lower bound;

GLP_NU non-basic variable having active upper bound;

GLP_NF non-basic free variable;

GLP_NS non-basic fixed variable.

The basis is valid, if the basis matrix, which is a matrix built of columns
of the augmented constraint matrix (I|—A) corresponding to basic variables,
is non-singular. This, in particular, means that the number of basic variables
must be the same as the number of rows in the problem object. (For more
details see Section 4.2, page 122.)

Any initial basis may be constructed (or restored) with the API rou-
tines glp_set_row_stat and glp_set_col_stat by assigning appropriate
statuses to auxiliary and structural variables. Another way to construct an
initial basis is to use API routines like glp_adv_basis, which implement
so called crashing.? Note that on normal exit the simplex solver remains
the basis valid, so in case of reoptimization there is no need to construct an
initial basis from scratch.

2.6.2 glp_set_row_stat—set (change) row status

Synopsis

void glp_set_row_stat(glp_prob *1lp, int i, int stat);

Description

The routine glp_set_row_stat sets (changes) the current status of i-th row
(auxiliary variable) as specified by the parameter stat:

GLP_BS make the row basic (make the constraint inactive);

GLP_NL make the row non-basic (make the constraint active);

2This term is from early linear programming systems and means a heuristic to construct
a valid initial basis.

45

GLP_NU make the row non-basic and set it to the upper bound; if the
row is not double-bounded, this status is equivalent to GLP_NL
(only in the case of this routine);

GLP_NF the same as GLP_NL (only in the case of this routine);

GLP_NS the same as GLP_NL (only in the case of this routine).

2.6.3 glp_set_col stat—set (change) column status
Synopsis

void glp_set_col_stat(glp_prob *1lp, int j, int stat);

Description

The routine glp_set_col_stat sets (changes) the current status of j-th
column (structural variable) as specified by the parameter stat:
GLP_BS make the column basic;
GLP_NL make the column non-basic;
GLP_NU make the column non-basic and set it to the upper bound; if
the column is not double-bounded, this status is equivalent to
GLP_NL (only in the case of this routine);
GLP_NF the same as GLP_NL (only in the case of this routine);
GLP_NS the same as GLP_NL (only in the case of this routine).

2.6.4 glp_std_basis——construct standard initial LP basis

Synopsis

void glp_std_basis(glp_prob *1p);

Description

The routine glp_std_basis constructs the “standard” (trivial) initial LP
basis for the specified problem object.

In the “standard” LP basis all auxiliary variables (rows) are basic, and
all structural variables (columns) are non-basic (so the corresponding basis
matrix is unity).

46

2.6.5 glp_adv_basis——construct advanced initial LP basis
Synopsis

void glp_adv_basis(glp_prob *1lp, int flags);

Description

The routine glp_adv_basis constructs an advanced initial LP basis for the
specified problem object.

The parameter flags is reserved for use in the future and must be spec-
ified as zero.

In order to construct the advanced initial LP basis the routine does the
following;:

1) includes in the basis all non-fixed auxiliary variables;

2) includes in the basis as many non-fixed structural variables as possible
keeping the triangular form of the basis matrix;

3) includes in the basis appropriate (fixed) auxiliary variables to complete
the basis.

As a result the initial LP basis has as few fixed variables as possible and
the corresponding basis matrix is triangular.

2.6.6 glp_cpx_basis—construct Bixby’s initial LP basis

Synopsis

void glp_cpx_basis(glp_prob *1p);

Description

The routine glp_cpx_basis constructs an initial basis for the specified prob-
lem object with the algorithm proposed by R. Bixby.?

3Robert E. Bixby, “Implementing the Simplex Method: The Initial Basis.” ORSA
Journal on Computing, Vol. 4, No. 3, 1992, pp. 267-84.

47

2.7 Simplex method routines

The simplexr method is a well known efficient numerical procedure to solve
LP problems.

On each iteration the simplex method transforms the original system of
equaility constraints (1.2) resolving them through different sets of variables
to an equivalent system called the simplex table (or sometimes the simplex
tableau), which has the following form:

(zn)1 + E22(zN)2 ++ &on(TN)n (2.3)

(fEB)m = §m1 (xN)l + m2(-73N)2 +...+ gmn(xN)n

where: (xp)1, (B)2,. .., (zB)m are basic variables; (xn)1, (N)2,- -, (TN)n
are non-basic variables; dy, ds, ..., d, are reduced costs; £11,&12, - - - , Emn are
coefficients of the simplex table. (May note that the original LP problem
(1.1)——(1.3) also has the form of a simplex table, where all equalities are
resolved through auxiliary variables.)

From the linear programming theory it is known that if an optimal so-
lution of the LP problem (1.1)—(1.3) exists, it can always be written in the
form (2.3), where non-basic variables are set on their bounds while values
of the objective function and basic variables are determined by the corre-
sponding equalities of the simplex table.

A set of values of all basic and non-basic variables determined by the
simplex table is called basic solution. If all basic variables are within their
bounds, the basic solution is called (primal) feasible, otherwise it is called
(primal) infeasible. A feasible basic solution, which provides a smallest (in
case of minimization) or a largest (in case of maximization) value of the
objective function is called optimal. Therefore, for solving LP problem the
simplex method tries to find its optimal basic solution.

Primal feasibility of some basic solution may be stated by simple checking
if all basic variables are within their bounds. Basic solution is optimal if
additionally the following optimality conditions are satisfied for all non-basic
variables:

Status of (zy); Minimization Maximization
(xN); is free d; =0 d; =0
(zn); is on its lower bound d;j >0 dj <0
(xn); is on its upper bound dj <0 d; >0

48

In other words, basic solution is optimal if there is no non-basic variable,
which changing in the feasible direction (i.e. increasing if it is free or on its
lower bound, or decreasing if it is free or on its upper bound) can improve
(i.e. decrease in case of minimization or increase in case of maximization)
the objective function.

If all non-basic variables satisfy to the optimality conditions shown above
(independently on whether basic variables are within their bounds or not),
the basic solution is called dual feasible, otherwise it is called dual infeasible.

It may happen that some LP problem has no primal feasible solution
due to incorrect formulation—this means that its constraints conflict with
each other. It also may happen that some LP problem has unbounded
solution again due to incorrect formulation—this means that some non-basic
variable can improve the objective function, i.e. the optimality conditions
are violated, and at the same time this variable can infinitely change in the
feasible direction meeting no resistance from basic variables. (May note that
in the latter case the LP problem has no dual feasible solution.)

2.7.1 glp_simplex—solve LP problem with the primal or dual
simplex method

Synopsis

int glp_simplex(glp_prob *1p, const glp_smcp *parm);

Description

The routine glp_simplex is a driver to the LP solver based on the simplex
method. This routine retrieves problem data from the specified problem
object, calls the solver to solve the problem instance, and stores results of
computations back into the problem object.

The simplex solver has a set of control parameters. Values of the control
parameters can be passed in the structure glp_smcp, which the parameter
parm points to. For detailed description of this structure see paragraph
“Control parameters” below. Before specifying some control parameters
the application program should initialize the structure glp_smcp by default
values of all control parameters using the routine glp_init_smcp (see the
next subsection). This is needed for backward compatibility, because in the
future there may appear new members in the structure glp_smcp.

The parameter parm can be specified as NULL, in which case the solver
uses default settings.

49

Returns
0

GLP_EBADB

GLP_ESING

GLP_ECOND

GLP_EBOUND

GLP_EFAIL

GLP_EOBJLL

GLP_EOBJUL

GLP_EITLIM

GLP_ETMLIM

GLP_ENOPFS

GLP_ENODFS

The LP problem instance has been successfully solved.
(This code does not necessarily mean that the solver has
found optimal solution. It only means that the solution
process was successful.)

Unable to start the search, because the initial basis speci-
fied in the problem object is invalid—the number of basic
(auxiliary and structural) variables is not the same as the
number of rows in the problem object.

Unable to start the search, because the basis matrix corre-
sponding to the initial basis is singular within the working
precision.

Unable to start the search, because the basis matrix cor-
responding to the initial basis is ill-conditioned, i.e. its
condition number is too large.

Unable to start the search, because some double-bounded
(auxiliary or structural) variables have incorrect bounds.
The search was prematurely terminated due to the solver
failure.

The search was prematurely terminated, because the ob-
jective function being maximized has reached its lower
limit and continues decreasing (the dual simplex only).
The search was prematurely terminated, because the ob-
jective function being minimized has reached its upper
limit and continues increasing (the dual simplex only).
The search was prematurely terminated, because the sim-
plex iteration limit has been exceeded.

The search was prematurely terminated, because the time
limit has been exceeded.

The LP problem instance has no primal feasible solution
(only if the LP presolver is used).

The LP problem instance has no dual feasible solution
(only if the LP presolver is used).

Built-in LP presolver

The simplex solver has built-in LP presolver. It is a subprogram that trans-
forms the original LP problem specified in the problem object to an equiva-
lent LP problem, which may be easier for solving with the simplex method
than the original one. This is attained mainly due to reducing the prob-

50

lem size and improving its numeric properties (for example, by removing
some inactive constraints or by fixing some non-basic variables). Once the
transformed LP problem has been solved, the presolver transforms its basic
solution back to the corresponding basic solution of the original problem.

Presolving is an optional feature of the routine glp_simplex, and by de-
fault it is disabled. In order to enable the LP presolver the control parameter
presolve should be set to GLP_ON (see paragraph “Control parameters” be-
low). Presolving may be used when the problem instance is solved for the
first time. However, on performing re-optimization the presolver should be
disabled.

The presolving procedure is transparent to the API user in the sense
that all necessary processing is performed internally, and a basic solution
of the original problem recovered by the presolver is the same as if it were
computed directly, i.e. without presolving.

Note that the presolver is able to recover only optimal solutions. If a
computed solution is infeasible or non-optimal, the corresponding solution of
the original problem cannot be recovered and therefore remains undefined.
If you need to know a basic solution even if it is infeasible or non-optimal,
the presolver should be disabled.

Terminal output

Solving large problem instances may take a long time, so the solver reports
some information about the current basic solution, which is sent to the
terminal. This information has the following format:

nnn: obj = xxx infeas = yyy (ddd)

where: ‘nnn’ is the iteration number, ‘xxx’ is the current value of the objec-
tive function (it is is unscaled and has correct sign); ‘yyy’ is the current sum
of primal or dual infeasibilities (it is scaled and therefore may be used only
for visual estimating), ‘ddd’ is the current number of fixed basic variables.

The symbol preceding the iteration number indicates which phase of the
simplex method is in effect:

Blank means that the solver is searching for primal feasible solution using
the primal simplex or for dual feasible solution using the dual simplex;

Asterisk () means that the solver is searching for optimal solution using
the primal simplex;

Vertical dash (1) means that the solver is searching for optimal solution
using the dual simplex.

o1

Control parameters

This paragraph describes all control parameters currently used in the sim-
plex solver. Symbolic names of control parameters are names of correspond-
ing members in the structure glp_smcp.

int msg_lev (default: GLP_MSG_ALL)
Message level for terminal output:
GLP_MSG_QOFF—mo output;
GLP_MSG_ERR—error and warning messages only;
GLP_MSG_ON —normal output;
GLP_MSG_ALL—full output (including informational messages).

int meth (default: GLP_PRIMAL)
Simplex method option:
GLP_PRIMAL—use two-phase primal simplex;
GLP_DUAL —use two-phase dual simplex;
GLP_DUALP —use two-phase dual simplex, and if it fails, switch to the
primal simplex.

int pricing (default: GLP_PT_PSE)
Pricing technique:
GLP_PT_STD—standard (textbook);
GLP_PT_PSE—projected steepest edge.

int r_test (default: GLP_RT_HAR)
Ratio test technique:
GLP_RT_STD—standard (textbook);
GLP_RT_HAR—Harris’ two-pass ratio test.

double tol_bnd (default: 1e-7)
Tolerance used to check if the basic solution is primal feasible. (Do not
change this parameter without detailed understanding its purpose.)

double tol.dj (default: 1e-7)
Tolerance used to check if the basic solution is dual feasible. (Do not
change this parameter without detailed understanding its purpose.)

double tol piv (default: 1e-10)
Tolerance used to choose elighle pivotal elements of the simplex table.
(Do not change this parameter without detailed understanding its pur-
pose.)

52

double obj_11 (default: -DBL_MAX)
Lower limit of the objective function. If the objective function reaches
this limit and continues decreasing, the solver terminates the search.
(Used in the dual simplex only.)

double obj_ul (default: +DBL_MAX)
Upper limit of the objective function. If the objective function reaches
this limit and continues increasing, the solver terminates the search.
(Used in the dual simplex only.)

int it_lim (default: INT_MAX)
Simplex iteration limit.

int tm_lim (default: INT_MAX)
Searching time limit, in milliseconds.

int out_frq (default: 500)
Output frequency, in iterations. This parameter specifies how frequently
the solver sends information about the solution process to the terminal.

int out_dly (default: 0)
Output delay, in milliseconds. This parameter specifies how long the
solver should delay sending information about the solution process to
the terminal.

int presolve (default: GLP_OFF)
LP presolver option:
GLP_ON —enable using the LP presolver;
GLP_OFF—disable using the LP presolver.

Example 1

The following main program reads LP problem instance in fixed MPS format
from file 25fv47 .mps,? constructs an advanced initial basis, solves the in-
stance with the primal simplex method (by default), and writes the solution
to file 25fv47.txt.

4This instance in fixed MPS format can be found in the Netlib LP collection; see
ftp://ftp.netlib.org/lp/data/.

93

/* spxsampl.c */

#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

int main(void)
{ glp_prob *P;
P = glp_create_prob();
glp_read_mps(P, GLP_MPS_DECK, NULL, "25fv47.mps");
glp_adv_basis(P, 0);
glp_simplex (P, NULL);
glp_print_sol(P, "25fv47.txt");
glp_delete_prob(P);
return O;

}

/* eof */

Below here is shown the terminal output from this example program.

Reading problem data from ‘25fv47.mps’...
Problem: 25FV47

Objective: R0O000

822 rows, 1571 columns, 11127 non-zeros
6919 records were read

Crashing. ..

Size of triangular part = 799

0: obj = 1.627307307e+04 infeas = 5.194e+04 (23)

200: obj = 1.474901610e+04 infeas = 1.233e+04 (19)
400: obj = 1.343909995e+04 infeas = 3.648e+03 (13)
600: obj = 1.756052217e+04 infeas = 4.179e+02 (7)

* T775: obj = 1.789251591e+04 infeas = 4.982e-14 (1)
* 800: obj = 1.663354510e+04 infeas = 2.857e-14 (1)
* 1000: obj = 1.024935068e+04 infeas = 1.958e-12 (1)
* 1200: obj = 7.860174791e+03 infeas = 2.810e-29 (1)
* 1400: obj = 6.642378184e+03 infeas = 2.036e-16 (1)
* 1600: obj = 6.037014568e+03 infeas = 0.000e+00 (1)
* 1800: obj = 5.662171307e+03 infeas = 6.447e-15 (1)
* 2000: obj = 5.528146165e+03 infeas = 9.764e-13 (1)
x 2125: obj = 5.501845888e+03 infeas = 0.000e+00 (1)

OPTIMAL SOLUTION FOUND
Writing basic solution to ‘25fv47.txt’...

54

Example 2

The following main program solves the same LP problem instance as in
Example 1 above, however, it uses the dual simplex method, which starts
from the standard initial basis.

/* spxsamp2.c */

#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

int main(void)

{ glp_prob *P;
glp_smcp parm;
P = glp_create_prob();
glp_read_mps (P, GLP_MPS_DECK, NULL, "25fv47.mps");
glp_init_smcp(&parm) ;
parm.meth = GLP_DUAL;
glp_simplex (P, &parm);
glp_print_sol(P, "25fv47.txt");
glp_delete_prob(P);
return O;

}

/* eof */

Below here is shown the terminal output from this example program.

Reading problem data from ‘25fv47.mps’...
Problem: 25FV47

Objective: R0O000

822 rows, 1571 columns, 11127 non-zeros
6919 records were read

0: infeas = 1.223e+03 (516)

200: infeas = 7.000e+00 (471)
240: infeas = 1.106e-14 (461)

| 400: obj = -5.394267152e+03 infeas = 5.571e-16 (391)
| 600: obj = -4.586395752e+03 infeas = 1.389e-15 (340)
| 800: obj = -4.158268146e+03 infeas = 1.640e-15 (264)
| 1000: obj = =-3.725320045e+03 infeas = 5.181le-15 (245)
| 1200: obj = -3.104802163e+03 infeas = 1.019e-14 (210)
| 1400: obj = -2.584190499e+03 infeas = 8.865e-15 (178)
| 1600: obj = =-2.073852927e+03 infeas = 7.867e-15 (142)
| 1800: obj = -1.164037407e+03 infeas = 8.792e-15 (109)
| 2000: obj = -4.370590250e+02 infeas = 2.591e-14 (85)
| 2200: obj = 1.068240144e+03 infeas = 1.025e-13 (70)
| 2400: obj = 1.607481126e+03 infeas = 3.272e-14 (67)

95

| 2600:
| 2800:
| 3000:
| 3060:
OPTIMAL

obj
obj
obj
obj

3.038230551e+03 infeas = 4.850e-14 (52)
4.316238187e+03 infeas = 2.622e-14 (36)
5.443842629e+03 infeas = 3.976e-15 (11)
5.501845888e+03 infeas = 8.806e-15 (2)

SOLUTION FOUND

Writing basic solution to ‘25fv47.txt’...

2.7.2 glp_exact—solve LP problem in exact arithmetic

Synopsis

int glp_exact(glp_prob *lp, const glp_smcp *parm);

Description

The routine glp_exact is a tentative implementation of the primal two-
phase simplex method based on exact (rational) arithmetic. It is similar
to the routine glp_simplex, however, for all internal computations it uses
arithmetic of rational numbers, which is exact in mathematical sense, i.e.
free of round-off errors unlike floating-point arithmetic.

Note that the routine glp_exact uses only two control parameters passed
in the structure glp_smcp, namely, it_lim and tm_lim.

Returns
0

GLP_EBADB

GLP_ESING

GLP_EBOUND

GLP_EFAIL
GLP_EITLIM

GLP_ETMLIM

The LP problem instance has been successfully solved.
(This code does not necessarily mean that the solver has
found optimal solution. It only means that the solution
process was successful.)

Unable to start the search, because the initial basis speci-
fied in the problem object is invalid—the number of basic
(auxiliary and structural) variables is not the same as the
number of rows in the problem object.

Unable to start the search, because the basis matrix cor-
responding to the initial basis is exactly singular.

Unable to start the search, because some double-bounded
(auxiliary or structural) variables have incorrect bounds.
The problem instance has no rows/columns.

The search was prematurely terminated, because the sim-
plex iteration limit has been exceeded.

The search was prematurely terminated, because the time
limit has been exceeded.

56

Comments

Computations in exact arithmetic are very time consuming, so solving LP
problem with the routine glp_exact from the very beginning is not a good
idea. It is much better at first to find an optimal basis with the routine
glp_simplex and only then to call glp_exact, in which case only a few
simplex iterations need to be performed in exact arithmetic.

2.7.3 glp_init_smcp—initialize simplex solver control param-
eters

Synopsis

int glp_init_smcp(glp_smcp *parm);

Description

The routine glp_init_smcp initializes control parameters, which are used
by the simplex solver, with default values.

Default values of the control parameters are stored in a glp_smcp struc-
ture, which the parameter parm points to.

2.7.4 glp_get_status—determine generic status of basic solu-
tion

Synopsis

int glp_get_status(glp_prob *1p);

Returns

The routine glp_get_status reports the generic status of the current basic
solution for the specified problem object as follows:

GLP_QPT solution is optimal;

GLP_FEAS solution is feasible;

GLP_INFEAS solution is infeasible;

GLP_NOFEAS problem has no feasible solution;

GLP_UNBND problem has unbounded solution;

GLP_UNDEF solution is undefined.

More detailed information about the status of basic solution can be re-
trieved with the routines glp_get_prim_stat and glp_get_dual_stat.

o7

2.7.5 glp_get prim stat—retrieve status of primal basic so-
lution

Synopsis

int glp_get_prim_stat(glp_prob *1lp);

Returns

The routine glp_get_prim_stat reports the status of the primal basic so-
lution for the specified problem object as follows:

GLP_UNDEF primal solution is undefined;

GLP_FEAS primal solution is feasible;

GLP_INFEAS primal solution is infeasible;

GLP_NOFEAS no primal feasible solution exists.

2.7.6 glp_get_dual stat—retrieve status of dual basic solu-
tion
Synopsis

int glp_get_dual_stat(glp_prob *1lp);

Returns

The routine glp_get_dual_stat reports the status of the dual basic solution
for the specified problem object as follows:
GLP_UNDEF dual solution is undefined;
GLP_FEAS dual solution is feasible;
GLP_INFEAS dual solution is infeasible;
GLP_NOFEAS no dual feasible solution exists.
2.7.7 glp_get_obj_val—retrieve objective value
Synopsis

double glp_get_obj_val(glp_prob *1p);

Returns

The routine glp_get_obj_val returns current value of the objective func-
tion.

o8

2.7.8 glp_get row_stat—retrieve row status
Synopsis

int glp_get_row_stat(glp_prob *1lp, int i);

Returns

The routine glp_get_row_stat returns current status assigned to the aux-
iliary variable associated with i-th row as follows:
GLP_BS basic variable;
GLP_NL non-basic variable on its lower bound;
GLP_NU non-basic variable on its upper bound;
GLP_NF non-basic free (unbounded) variable;
GLP_NS non-basic fixed variable.
2.7.9 glp_get row _prim—retrieve row primal value
Synopsis

double glp_get_row_prim(glp_prob *1lp, int i);

Returns

The routine glp_get_row_prim returns primal value of the auxiliary vari-
able associated with i-th row.

2.7.10 glp_get_row_dual—retrieve row dual value

Synopsis

double glp_get_row_dual(glp_prob *1lp, int i);

Returns

The routine glp_get_row_dual returns dual value (i.e. reduced cost) of the
auxiliary variable associated with i-th row.

99

2.7.11 glp_get_col stat—retrieve column status
Synopsis

int glp_get_col_stat(glp_prob *1lp, int j);

Returns

The routine glp_get_col_stat returns current status assigned to the struc-
tural variable associated with j-th column as follows:

GLP_BS basic variable;

GLP_NL non-basic variable on its lower bound;

GLP_NU non-basic variable on its upper bound;

GLP_NF non-basic free (unbounded) variable;

GLP_NS non-basic fixed variable.
2.7.12 glp_get_col prim—retrieve column primal value
Synopsis

double glp_get_col_prim(glp_prob *1lp, int j);

Returns

The routine glp_get_col_prim returns primal value of the structural vari-
able associated with j-th column.

2.7.13 glp_get_col dual—retrieve column dual value
Synopsis

double glp_get_col_dual(glp_prob *lp, int j);

Returns

The routine glp_get_col_dual returns dual value (i.e. reduced cost) of the
structural variable associated with j-th column.

60

2.7.14 glp_get_unbnd_ray—determine variable causing
unboundedness

Synopsis
int glp_get_unbnd_ray(glp_prob *1lp);

Returns

The routine glp_get_unbnd_ray returns the number k of a variable, which
causes primal or dual unboundedness. If 1 < k < m, it is k-th auxiliary
variable, and if m +1 < k < m + n, it is (kK — m)-th structural variable,
where m is the number of rows, n is the number of columns in the problem
object. If such variable is not defined, the routine returns 0.

Comments

If it is not exactly known which version of the simplex solver detected un-
boundedness, i.e. whether the unboundedness is primal or dual, it is suffi-
cient to check the status of the variable with the routine glp_get_row_stat
or glp_get_col_stat. If the variable is non-basic, the unboundedness is
primal, otherwise, if the variable is basic, the unboundedness is dual (the
latter case means that the problem has no primal feasible dolution).

61

2.8 Interior-point method routines

Interior-point methods (also known as barrier methods) are more modern
and powerful numerical methods for large-scale linear programming. Such
methods are especially efficient for very sparse LP problems and allow solv-
ing such problems much faster than the simplex method.

In brief, the GLPK interior-point solver works as follows.

At first, the solver transforms the original LP to a working LP in the
standard format:

minimize
Z=C1Tmi1 + C2Tma2 + ... + CnTman + Co (2.4)
subject to linear constraints

A1 Tm41 + @12Tm42 + ...+ AGpTmgn = b1
21 Tm41 + 22Tmq2 + ...+ A2 Tpn = b2 (2.5)

Am1Tm+1 + Om2Tm42 + ... + ApTmtn = bm

and non-negative variables

x1>0, 29>0, ..., 2, >0 (2.6)
where: z is the objective function; x1, ..., x, are variables; c1, ..., ¢,
are objective coefficients; ¢y is a constant term of the objective function;
aii, - - -, Qmn are constraint coefficients; by, ..., b,, are right-hand sides.

Using vector and matrix notations the working LP (2.4)—(2.6) can be
written as follows:

z=c'z+cy — min, (2.7)
Az = b, (2.8)
x>0, (2.9)

where: x = (x;) is n-vector of variables, ¢ = (¢;) is n-vector of objective
coefficients, A = (a;;) is m x n-matrix of constraint coefficients, and b = (b;)
is m~vector of right-hand sides.

Karush-Kuhn—Tucker optimality conditions for LP (2.7)—(2.9) are the
following:

62

Az = b, (2.10
ATr+ X =g, (2.11
Mz =0, (

>0, A>0, (2.13

)
)
2.12)
)
where: 7 is m-vector of Lagrange multipliers (dual variables) for equality
constraints (2.8), A is n-vector of Lagrange multipliers (dual variables) for
non-negativity constraints (2.9), (2.10) is the primal feasibility condition,
(2.11) is the dual feasibility condition, (2.12) is the primal-dual complemen-
tarity condition, and (2.13) is the non-negativity conditions.

The main idea of the primal-dual interior-point method is based on find-
ing a point in the primal-dual space (i.e. in the space of all primal and dual
variables z, 7, and \), which satisfies to all optimality conditions (2.10)—
(2.13). Obviously, z-component of such point then provides an optimal
solution to the working LP (2.7)—(2.9).

To find the optimal point (z*, 7%, A*) the interior-point method attempts
to solve the system of equations (2.10)—(2.12), which is closed in the sense
that the number of variables z;, 7;, and A; and the number equations are the
same and equal to m + 2n. Due to condition (2.12) this system of equations
is non-linear, so it can be solved with a version of Newton’s method provided
with additional rules to keep the current point within the positive orthant
as required by the non-negativity conditions (2.13).

Finally, once the optimal point (z*, 7", *) has been found, the solver
performs inverse transformations to recover corresponding solution to the
original LP passed to the solver from the application program.

2.8.1 glp_interior—solve LP problem with the interior-point
method
Synopsis

int glp_interior(glp_prob *P, const glp_iptcp *parm);

Description

The routine glp_interior is a driver to the LP solver based on the primal-
dual interior-point method. This routine retrieves problem data from the
specified problem object, calls the solver to solve the problem instance, and
stores results of computations back into the problem object.

63

The interior-point solver has a set of control parameters. Values of the
control parameters can be passed in the structure glp_iptcp, which the pa-
rameter parm points to. For detailed description of this structure see para-
graph “Control parameters” below. Before specifying some control parame-
ters the application program should initialize the structure glp_iptcp by de-
fault values of all control parameters using the routine glp_init_iptcp (see
the next subsection). This is needed for backward compatibility, because in
the future there may appear new members in the structure glp_iptcp.

The parameter parm can be specified as NULL, in which case the solver
uses default settings.

Returns

0 The LP problem instance has been successfully solved.
(This code does not necessarily mean that the solver has
found optimal solution. It only means that the solution
process was successful.)

GLP_EFAIL The problem has no rows/columns.

GLP_ENOCVG Very slow convergence or divergence.

GLP_EITLIM Tteration limit exceeded.
GLP_EINSTAB Numerical instability on solving Newtonian system.

Comments

The routine glp_interior implements an easy version of the primal-dual
interior-point method based on Mehrotra’s technique.’

Note that currently the GLPK interior-point solver does not include
many important features, in particular:

e it is not able to process dense columns. Thus, if the constraint matrix
of the LP problem has dense columns, the solving process may be inefficient;

e it has no features against numerical instability. For some LP problems
premature termination may happen if the matrix ADA”T becomes singular
or ill-conditioned;

e it is not able to identify the optimal basis, which corresponds to the
interior-point solution found.

53. Mehrotra. On the implementation of a primal-dual interior point method. SIAM
J. on Optim., 2(4), pp. 575-601, 1992.

64

Terminal output

Solving large LP problems may take a long time, so the solver reports some
information about every interior-point iteration,® which is sent to the ter-
minal. This information has the following format:

nnn: obj = fff; rpi = ppp; rdi = ddd; gap = ggg

where: nnn is iteration number, ££f is the current value of the objective
function (in the case of maximization it has wrong sign), ppp is the current
relative primal infeasibility (cf. (2.10)):

[Az —b|

, (2.14)
1+ [|o]
ddd is the current relative dual infeasibility (cf. (2.11)):

|AT7®) 4 AE) —¢||
L+ el

: (2.15)

ggg is the current primal-dual gap (cf. (2.12)):

|cT k) — T (k)|

L+ |[z®]

(2.16)

and [z®), 7(®) X\(*)] is the current point on k-th iteration, k = 0,1,2,... .
Note that all solution components are internally scaled, so information sent
to the terminal is suitable only for visual inspection.

Control parameters

This paragraph describes all control parameters currently used in the interior-
point solver. Symbolic names of control parameters are names of correspond-
ing members in the structure glp_iptcp.

int msg_lev (default: GLP_MSG_ALL)
Message level for terminal output:
GLP_MSG_0OFF—mno output;
GLP_MSG_ERR—error and warning messages only;
GLP_MSG_ON —normal output;
GLP_MSG_ALL—full output (including informational messages).

SUnlike the simplex method the interior point method usually needs 30—50 iterations
(independently on the problem size) in order to find an optimal solution.

65

int ord_alg (default: GLP_ORD_AMD)
Ordering algorithm used prior to Cholesky factorization:
GLP_ORD_NONE —use natural (original) ordering;
GLP_ORD_QMD —quotient minimum degree (QMD);
GLP_ORD_AMD —approximate minimum degree (AMD);
GLP_ORD_SYMAMD—approximate minimum degree (SYMAMD).

Example

The following main program reads LP problem instance in fixed MPS format
from file 25£v47 .mps,” solves it with the interior-point solver, and writes the
solution to file 25fv47.txt.

/* iptsamp.c */

#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

int main(void)

{ glp_prob *P;
P = glp_create_prob();
glp_read_mps(P, GLP_MPS_DECK, NULL, "25fv47.mps");
glp_interior(P, NULL);
glp_print_ipt (P, "25fv47.txt");
glp_delete_prob(P);
return O;

}

/* eof */

Below here is shown the terminal output from this example program.

Reading problem data from ‘25fv47.mps’...

Problem: 25FV47

Objective: R0O000

822 rows, 1571 columns, 11127 non-zeros

6919 records were read

Original LP has 822 row(s), 1571 column(s), and 11127 non-zero(s)
Working LP has 821 row(s), 1876 column(s), and 10705 non-zero(s)
Matrix A has 10705 non-zeros

Matrix S = AxA’ has 11895 non-zeros (upper triangle)

Minimal degree ordering...

Computing Cholesky factorization S = L’xL...

"This instance in fixed MPS format can be found in the Netlib LP collection; see
ftp://ftp.netlib.org/lp/data/.

66

Matrix L has 35411 non-zeros
Guessing initial point...
Optimization begins...

0: obj = 1.823377629e+05; rpi = 1.3e+01; rdi = 1.4e+01; gap = 9.3e-01
1: obj = 9.260045192e+04; rpi = 5.3e+00; rdi = 5.6e+00; gap = 6.8e+00
2: obj = 3.596999742e+04; rpi = 1.5e+00; rdi = 1.2e+00; gap = 1.8e+01
3: obj = 1.989627568e+04; rpi = 4.7e-01; rdi = 3.0e-01; gap = 1.9e+01
4: obj = 1.430215557e+04; rpi = 1.1e-01; rdi = 8.6e-02; gap = 1.4e+01
5: obj = 1.155716505e+04; rpi = 2.3e-02; rdi = 2.4e-02; gap = 6.8e+00
6: obj = 9.660273208e+03; rpi = 6.7e-03; rdi = 4.6e-03; gap = 3.9e+00
7: obj = 8.694348283e+03; rpi = 3.7e-03; rdi = 1.7e-03; gap = 2.0e+00
8: obj = 8.019543639e+03; rpi = 2.4e-03; rdi = 3.9e-04; gap = 1.0e+00
9: obj = 7.122676293e+03; rpi = 1.2e-03; rdi = 1.5e-04; gap = 6.6e-01
10: obj = 6.514534518e+03; rpi = 6.1e-04; rdi = 4.3e-05; gap = 4.1e-01
11: obj = 6.361572203e+03; rpi = 4.8e-04; rdi = 2.2e-05; gap = 3.0e-01
12: obj = 6.203355508e+03; rpi = 3.2e-04; rdi = 1.7e-05; gap = 2.6e-01
13: obj = 6.032943411e+03; rpi = 2.0e-04; rdi = 9.3e-06; gap = 2.1e-01
14: obj = 5.796553021e+03; rpi = 9.8e-05; rdi = 3.2e-06; gap = 1.0e-01
15: obj = 5.667032431e+03; rpi = 4.4e-05; rdi = 1.1e-06; gap = 5.6e-02
16: obj = 5.613911867e+03; rpi = 2.5e-05; rdi = 4.1e-07; gap = 3.5e-02
17: obj = 5.560572626e+03; rpi = 9.9e-06; rdi = 2.3e-07; gap = 2.1e-02
18: obj = 5.537276001e+03; rpi = b5.5e-06; rdi = 8.4e-08; gap = 1.1e-02
19: obj = 5.522746942e+03; rpi = 2.2e-06; rdi = 4.0e-08; gap = 6.7e-03
20: obj = 5.509956679e+03; rpi = 7.5e-07; rdi = 1.8e-08; gap = 2.9e-03
21: obj = 5.504571733e+03; rpi = 1.6e-07; rdi = 5.8e-09; gap = 1.1e-03
22: obj = 5.502576367e+03; rpi = 3.4e-08; rdi = 1.0e-09; gap = 2.5e-04
23: obj = 5.502057119e+03; rpi = 8.1e-09; rdi = 3.0e-10; gap = 7.7e-05
24: obj = 5.501885996e+03; rpi = 9.4e-10; rdi = 1.2e-10; gap = 2.4e-05
25: obj = 5.501852464e+03; rpi = 1.4e-10; rdi = 1.2e-11; gap = 3.0e-06
26: obj = 5.501846549e+03; rpi = 1.4e-11; rdi = 1.2e-12; gap = 3.0e-07
27: obj = 5.501845954e+03; rpi = 1.4e-12; rdi = 1.2e-13; gap = 3.0e-08
28: obj = 5.501845895e+03; rpi = 1.5e-13; rdi = 1.2e-14; gap = 3.0e-09

OPTIMAL SOLUTION FOUND
Writing interior-point solution to ‘25fv47.txt’...

2.8.2 glp_init_iptcp—initialize interior-point solver control pa-
rameters
Synopsis

int glp_init_iptcp(glp_iptcp *parm);

Description

The routine glp_init_iptcp initializes control parameters, which are used
by the interior-point solver, with default values.

67

Default values of the control parameters are stored in the structure
glp_iptcp, which the parameter parm points to.
2.8.3 glp_ipt_status—determine solution status
Synopsis

int glp_ipt_status(glp_prob *1p);

Returns

The routine glp_ipt_status reports the status of a solution found by the
interior-point solver as follows:

GLP_UNDEF interior-point solution is undefined.
GLP_OPT interior-point solution is optimal.
GLP_INFEAS interior-point solution is infeasible.
GLP_NOFEAS no feasible primal-dual solution exists.

2.8.4 glp_ipt_obj val—retrieve objective value
Synopsis
double glp_ipt_obj_val(glp_prob *1p);

Returns

The routine glp_ipt_obj_val returns value of the objective function for
interior-point solution.

2.8.5 glp_ipt_row_prim—retrieve row primal value

Synopsis

double glp_ipt_row_prim(glp_prob *1lp, int i);

Returns

The routine glp_ipt_row_prim returns primal value of the auxiliary vari-
able associated with i-th row.

68

2.8.6 glp_ipt_row_dual—retrieve row dual value
Synopsis

double glp_ipt_row_dual(glp_prob *1lp, int i);

Returns

The routine glp_ipt_row_dual returns dual value (i.e. reduced cost) of the
auxiliary variable associated with i-th row.

2.8.7 glp_ipt_col_prim—retrieve column primal value
Synopsis

double glp_ipt_col_prim(glp_prob *1lp, int j);

Returns

The routine glp_ipt_col_prim returns primal value of the structural vari-
able associated with j-th column.

2.8.8 glp_ipt_col_dual—retrieve column dual value

Synopsis

double glp_ipt_col_dual(glp_prob *1lp, int j);

Returns

The routine glp_ipt_col_dual returns dual value (i.e. reduced cost) of the
structural variable associated with j-th column.

69

2.9 Mixed integer programming routines

2.9.1 glp_set_col kind—set (change) column kind
Synopsis

void glp_set_col_kind(glp_prob *mip, int j, int kind);

Description

The routine glp_set_col_kind sets (changes) the kind of j-th column
(structural variable) as specified by the parameter kind:

GLP_CV continuous variable;

GLP_IV integer variable;

GLP_BV binary variable.

Setting a column to GLP_BV has the same effect as if it were set to GLP_IV,
its lower bound were set 0, and its upper bound were set to 1.

2.9.2 glp_get_col kind—retrieve column kind
Synopsis

int glp_get_col_kind(glp_prob *mip, int j);

Returns

The routine glp_get_col_kind returns the kind of j-th column (structural
variable) as follows:

GLP_CV continuous variable;

GLP_IV integer variable;

GLP_BV binary variable.
2.9.3 glp_get_num_int—retrieve number of integer columns
Synopsis

int glp_get_num_int(glp_prob *mip);

Returns

The routine glp_get_num_int returns the number of columns (structural
variables), which are marked as integer. Note that this number does include
binary columns.

70

2.9.4 glp_get num _bin—retrieve number of binary columns
Synopsis

int glp_get_num_bin(glp_prob *mip);

Returns

The routine glp_get_num_bin returns the number of columns (structural
variables), which are marked as integer and whose lower bound is zero and
upper bound is one.

2.9.5 glp_intopt—solve MIP problem with the branch-and-
cut method

Synopsis

int glp_intopt(glp_prob *mip, const glp_iocp *parm);

Description

The routine glp_intopt is a driver to the MIP solver based on the branch-
and-cut method, which is a hybrid of branch-and-bound and cutting plane
methods.

If the presolver is disabled (see paragraph “Control parameters” below),
on entry to the routine glp_intopt the problem object, which the parameter
mip points to, should contain optimal solution to LP relaxation (it can be
obtained, for example, with the routine glp_simplex). Otherwise, if the
presolver is enabled, it is not necessary.

The MIP solver has a set of control parameters. Values of the control
parameters can be passed in the structure glp_iocp, which the parameter
parm points to. For detailed description of this structure see paragraph
“Control parameters” below. Before specifying some control parameters
the application program should initialize the structure glp_iocp by default
values of all control parameters using the routine glp_init_iocp (see the
next subsection). This is needed for backward compatibility, because in the
future there may appear new members in the structure glp_iocp.

The parameter parm can be specified as NULL, in which case the solver
uses default settings.

Note that the GLPK branch-and-cut solver is not perfect, so it is unable
to solve hard or very large scale MIP instances for a reasonable time.

71

Returns
0

GLP_EBOUND

GLP_EROOT

GLP_ENOPFS

GLP_ENODFS

GLP_EFAIL

GLP_EMIPGAP

GLP_ETMLIM

GLP_ESTOP

The MIP problem instance has been successfully solved.
(This code does not necessarily mean that the solver has
found optimal solution. It only means that the solution
process was successful.)

Unable to start the search, because some double-bounded
variables have incorrect bounds or some integer variables
have non-integer (fractional) bounds.

Unable to start the search, because optimal basis for initial
LP relaxation is not provided. (This code may appear only
if the presolver is disabled.)

Unable to start the search, because LP relaxation of the
MIP problem instance has no primal feasible solution.
(This code may appear only if the presolver is enabled.)
Unable to start the search, because LP relaxation of the
MIP problem instance has no dual feasible solution. In
other word, this code means that if the LP relaxation has
at least one primal feasible solution, its optimal solution is
unbounded, so if the MIP problem has at least one integer
feasible solution, its (integer) optimal solution is also un-
bounded. (This code may appear only if the presolver is
enabled.)

The search was prematurely terminated due to the solver
failure.

The search was prematurely terminated, because the rela-
tive mip gap tolerance has been reached.

The search was prematurely terminated, because the time
limit has been exceeded.

The search was prematurely terminated by application.
(This code may appear only if the advanced solver inter-
face is used.)

Built-in MIP presolver

The branch-and-cut solver has built-in MIP presolver. It is a subprogram
that transforms the original MIP problem specified in the problem object
to an equivalent MIP problem, which may be easier for solving with the
branch-and-cut method than the original one. For example, the presolver
can remove redundant constraints and variables, whose optimal values are
known, perform bound and coefficient reduction, etc. Once the transformed

72

MIP problem has been solved, the presolver transforms its solution back to
corresponding solution of the original problem.

Presolving is an optional feature of the routine glp_intopt, and by de-
fault it is disabled. In order to enable the MIP presolver, the control param-
eter presolve should be set to GLP_ON (see paragraph “Control parameters”
below).

Advanced solver interface

The routine glp_intopt allows the user to control the branch-and-cut search
by passing to the solver a user-defined callback routine. For more details
see Chapter “Branch-and-Cut API Routines”.

Terminal output

Solving a MIP problem may take a long time, so the solver reports some
information about best known solutions, which is sent to the terminal. This
information has the following format:

+nnn: mip = xxx <rho> yyy gap (ppp; 999)

where: ‘nnn’ is the simplex iteration number; ‘xxx’ is a value of the objective
function for the best known integer feasible solution (if no integer feasible
solution has been found yet, ‘xxx’ is the text ‘not found yet’); ‘rho’ is the
string ‘>=’ (in case of minimization) or ‘<=’ (in case of maximization); ‘yyy’
is a global bound for exact integer optimum (i.e. the exact integer optimum
is always in the range from ‘xxx’ to ‘yyy’); ‘gap’ is the relative mip gap,
in percents, computed as gap = |zxzz — yyy|/(|]zxx| + DBL_EPSILON) - 100%
(if gap is greater than 999.9%, it is not printed); ‘ppp’ is the number of
subproblems in the active list, ‘qqq’ is the number of subproblems which
have been already fathomed and therefore removed from the branch-and-
bound search tree.

Control parameters

This paragraph describes all control parameters currently used in the MIP
solver. Symbolic names of control parameters are names of corresponding
members in the structure glp_iocp.

73

int msg_lev (default: GLP_MSG_ALL)
Message level for terminal output:
GLP_MSG_OFF—mno output;
GLP_MSG_ERR—error and warning messages only;
GLP_MSG_ON —normal output;
GLP_MSG_ALL—full output (including informational messages).

int br_tech (default: GLP_BR_DTH)
Branching technique option:
GLP_BR_FFV—first fractional variable;
GLP_BR_LFV—Ilast fractional variable;
GLP_BR_MFV—most fractional variable;
GLP_BR_DTH—heuristic by Driebeck and Tomlin;
GLP_BR_PCH—hybrid pseudocost heuristic.

int bt_tech (default: GLP_BT_BLB)
Backtracking technique option:
GLP_BT_DFS—depth first search;
GLP_BT_BFS—breadth first search;
GLP_BT_BLB—best local bound,;
GLP_BT_BPH—best projection heuristic.

int pp_tech (default: GLP_PP_ALL)
Preprocessing technique option:
GLP_PP_NONE—disable preprocessing;
GLP_PP_ROOT—perform preprocessing only on the root level;
GLP_PP_ALL —perform preprocessing on all levels.

int fp_heur (default: GLP_OFF)
Feasibility pump heuristic option:
GLP_ON —enable applying the feasibility pump heuristic;
GLP_OFF—disable applying the feasibility pump heuristic.

int gmi_cuts (default: GLP_OFF)
Gomory’s mixed integer cut option:
GLP_ON —enable generating Gomory’s cuts;
GLP_OFF—disable generating Gomory’s cuts.

int mir_cuts (default: GLP_OFF)
Mixed integer rounding (MIR) cut option:
GLP_ON —enable generating MIR cuts;
GLP_OFF—disable generating MIR cuts.

74

int cov_cuts (default: GLP_OFF)
Mixed cover cut option:
GLP_ON —enable generating mixed cover cuts;
GLP_OFF—disable generating mixed cover cuts.

int clqg_cuts (default: GLP_OFF)
Clique cut option:
GLP_ON —enable generating clique cuts;
GLP_OFF—disable generating clique cuts.

double tol_int (default: 1e-5)
Absolute tolerance used to check if optimal solution to the current LP
relaxation is integer feasible. (Do not change this parameter without
detailed understanding its purpose.)

double tol_obj (default: 1e-7)
Relative tolerance used to check if the objective value in optimal solution
to the current LP relaxation is not better than in the best known inte-
ger feasible solution. (Do not change this parameter without detailed
understanding its purpose.)

double mip_gap (default: 0.0)
The relative mip gap tolerance. If the relative mip gap for currently
known best integer feasible solution falls below this tolerance, the solver
terminates the search. This allows obtainig suboptimal integer feasible
solutions if solving the problem to optimality takes too long time.

int tm_lim (default: INT_MAX)
Searching time limit, in milliseconds.

int out_frq (default: 5000)
Output frequency, in milliseconds. This parameter specifies how fre-
quently the solver sends information about the solution process to the
terminal.

int out_dly (default: 10000)
Output delay, in milliseconds. This parameter specifies how long the
solver should delay sending information about solution of the current
LP relaxation with the simplex method to the terminal.

void (*cb_func) (glp_tree *tree, void *info) (default: NULL)
Entry point to the user-defined callback routine. NULL means the ad-
vanced solver interface is not used. For more details see Chapter
“Branch-and-Cut API Routines”.

75

void *cb_info (default: NULL)
Transit pointer passed to the routine cb_func (see above).

int cb_size (default: 0)
The number of extra (up to 256) bytes allocated for each node of the
branch-and-bound tree to store application-specific data. On creating a
node these bytes are initialized by binary zeros.

int presolve (default: GLP_OFF)
MIP presolver option:
GLP_ON —enable using the MIP presolver;
GLP_OFF—disable using the MIP presolver.

int binarize (default: GLP_OFF)
Binarization option (used only if the presolver is enabled):
GLP_ON —replace general integer variables by binary ones;
GLP_OFF—do not use binarization.

2.9.6 glp_init_iocp—initialize integer optimizer control pa-
rameters
Synopsis

void glp_init_iocp(glp_iocp *parm);

Description

The routine glp_init_iocp initializes control parameters, which are used
by the branch-and-cut solver, with default values.

Default values of the control parameters are stored in a glp_iocp struc-
ture, which the parameter parm points to.

2.9.7 glp_mip_status—determine status of MIP solution
Synopsis

int glp_mip_status(glp_prob *mip);

Returns

The routine glp_mip_status reports the status of a MIP solution found by
the MIP solver as follows:

76

GLP_UNDEF MIP solution is undefined.

GLP_OPT MIP solution is integer optimal.

GLP_FEAS MIP solution is integer feasible, however, its optimality
(or non-optimality) has not been proven, perhaps due
to premature termination of the search.

GLP_NOFEAS problem has no integer feasible solution (proven by the
solver).

2.9.8 glp_mip_obj_val—retrieve objective value
Synopsis

double glp_mip_obj_val(glp_prob *mip);

Returns

The routine glp_mip_obj_val returns value of the objective function for
MIP solution.

2.9.9 glp mip_row_val—retrieve row value

Synopsis

double glp_mip_row_val(glp_prob *mip, int i);

Returns

The routine glp_mip_row_val returns value of the auxiliary variable asso-
ciated with i-th row for MIP solution.

2.9.10 glp_mip_col val—retrieve column value

Synopsis

double glp_mip_col_val(glp_prob *mip, int j);

Returns

The routine glp_mip_col_val returns value of the structural variable asso-
ciated with j-th column for MIP solution.

7

2.10 Additional routines

2.10.1 1px_check_kkt—check Karush-Kuhn-Tucker optimal-
ity conditions

Synopsis

void lpx_check_kkt(glp_prob *1p, int scaled, LPXKKT *kkt);

Description

The routine 1px_check_kkt checks Karush-Kuhn-Tucker optimality condi-
tions for basic solution. It is assumed that both primal and dual components
of basic solution are valid.

If the parameter scaled is zero, the optimality conditions are checked
for the original, unscaled LP problem. Otherwise, if the parameter scaled
is non-zero, the routine checks the conditions for an internally scaled LP
problem.

The parameter kkt is a pointer to the structure LPXKKT, to which the
routine stores results of the check. Members of this structure are shown in
the table below.

The routine performs all computations using only components of the
given LP problem and the current basic solution.

Background
The first condition checked by the routine is:

xR — Azg =0, (KKT.PE)

where z is the subvector of auxiliary variables (rows), xg is the subvector
of structural variables (columns), A is the constraint matrix. This condition
expresses the requirement that all primal variables must satisfy to the system
of equality constraints of the original LP problem. In case of exact arithmetic
this condition would be satisfied for any basic solution; however, in case of
inexact (floating-point) arithmetic, this condition shows how accurate the
primal basic solution is, that depends on accuracy of a representation of the
basis matrix used by the simplex method routines.

The second condition checked by the routine is:

Iy <zp<wup forallk=1,...,m+n, (KKT.PB)

78

Condition

Member

Comment

(KKT.PE) | pe_ae_max | Largest absolute error
pe_ae_row | Number of row with largest absolute error
pe_re_max | Largest relative error
pe_re_row | Number of row with largest relative error
pe_quality | Quality of primal solution

(KKT.PB) | pb_ae_max | Largest absolute error
pb_ae_ind | Number of variable with largest absolute error
pb_re_max | Largest relative error
pb_re_ind | Number of variable with largest relative error
pb_quality | Quality of primal feasibility

(KKT.DE) | de_ae_max | Largest absolute error
de_ae_col | Number of column with largest absolute error
de_re_max | Largest relative error
de_re_col | Number of column with largest relative error
de_quality | Quality of dual solution

(KKT.DB) | db_ae_max | Largest absolute error
db_ae_ind | Number of variable with largest absolute error
db_re_max | Largest relative error
db_re_ind | Number of variable with largest relative error
db_quality | Quality of dual feasibility

where xy, is auxiliary (1 < k& < m) or structural (m+1 < k < m+n) variable,
lr, and wy are, respectively, lower and upper bounds of the variable xj (in-
cluding cases of infinite bounds). This condition expresses the requirement
that all primal variables must satisfy to bound constraints of the original LP
problem. Since in case of basic solution all non-basic variables are placed
on their bounds, actually the condition (KKT.PB) needs to be checked for
basic variables only. If the primal basic solution has sufficient accuracy, this
condition shows primal feasibility of the solution.

The third condition checked by the routine is:

grad Z = ¢ = (A)Tr + d,

where Z is the objective function, c¢ is the vector of objective coefficients,
(A)T is a matrix transposed to the expanded constraint matrix A = (I|—A),
7 is a vector of Lagrange multipliers that correspond to equality constraints
of the original LP problem, d is a vector of Lagrange multipliers that cor-
respond to bound constraints for all (auxiliary and structural) variables of

79

the original LP problem. Geometrically the third condition expresses the
requirement that the gradient of the objective function must belong to the
orthogonal complement of a linear subspace defined by the equality and ac-
tive bound constraints, i.e. that the gradient must be a linear combination
of normals to the constraint planes, where Lagrange multipliers 7 and d are
coefficients of that linear combination.

To eliminate the vector 7 the third condition can be rewritten as:

()= () + (),

T+ dR = CR,
—ATr +dg = cg.

or, equivalently:

Then substituting the vector 7w from the first equation into the second one
we have:

AT(dp — cg) + (ds — ¢cs) = 0, (KKT.DE)

where dp is the subvector of reduced costs of auxiliary variables (rows),
dgs is the subvector of reduced costs of structural variables (columns), cp
and cg are subvectors of objective coefficients at, respectively, auxiliary and
structural variables, AT is a matrix transposed to the constraint matrix of
the original LP problem. In case of exact arithmetic this condition would be
satisfied for any basic solution; however, in case of inexact (floating-point)
arithmetic, this condition shows how accurate the dual basic solution is,
that depends on accuracy of a representation of the basis matrix used by
the simplex method routines.
The last, fourth condition checked by the routine is (KKT.DB):

di =0, if x;, is basic or free non-basic variable
0 < di < 400 if z} is non-basic on its lower (minimization)
or upper (maximization) bound
—oo < dp <0 if xj, is non-basic on its upper (minimization)
or lower (maximization) bound
—00 < dj, < +oo if xj is non-basic fixed variable

for all k = 1,...,m + n, where d, is a reduced cost (Lagrange multiplier)
of auxiliary (1 < k < m) or structural (m +1 < k < m + n) variable xy.
Geometrically this condition expresses the requirement that constraints of
the original problem must "hold” the point preventing its movement along
the anti-gradient (in case of minimization) or the gradient (in case of maxi-
mization) of the objective function. Since in case of basic solution reduced

80

costs of all basic variables are placed on their (zero) bounds, actually the
condition (KKT.DB) needs to be checked for non-basic variables only. If
the dual basic solution has sufficient accuracy, this condition shows dual
feasibility of the solution.

Should note that the complete set of Karush-Kuhn-Tucker optimality
conditions also includes the fifth, so called complementary slackness condi-
tion, which expresses the requirement that at least either a primal variable
xy, or its dual counterpart di must be on its bound for all k =1,..., m+n.
However, being always satisfied by definition for any basic solution that
condition is not checked by the routine.

To check the first condition (KKT.PE) the routine computes a vector of
residuals:

g =zg — Axg,

determines component of this vector that correspond to largest absolute and
relative errors:

e_ae_maxXx — Inax i
P R |93

93|
e_re_max = max ————
P 1<i%m 1+ [()il
and stores these quantities and corresponding row indices to the structure
LPXKKT.
To check the second condition (KKT.PB) the routine computes a vector

of residuals:
0, if I < ap < uy

hy = rp — U, if xp <
T — ug, if Ty > uk

for all k = 1,...,m + n, determines components of this vector that corre-
spond to largest absolute and relative errors:

b = h
po-se.max =, ., Il

_ ||
pb_re_max = max ————

1<k<m+n 1 4+ ‘.%'k|,

and stores these quantities and corresponding variable indices to the struc-
ture LPXKKT.
To check the third condition (KKT.DE) the routine computes a vector
of residuals:
uw=A"(dg — cg) + (ds — cg),

81

determines components of this vector that correspond to largest absolute
and relative errors:

de_ae_max = max |ujl,
1<j<n

e]

1<j<n 1+ |(ds); — (cs);’

and stores these quantities and corresponding column indices to the struc-
ture LPXKKT.

To check the fourth condition (KKT.DB) the routine computes a vector
of residuals:

de_re_max =

o — 0, if di has correct sign
F7\ di, if dy has wrong sign

for all k = 1,...,m + n, determines components of this vector that corre-
spond to largest absolute and relative errors:
db_ae_max = max |uvgl,
1<k<m+n
|vk|
db_re_max = max ——————,
1<k<m+n 1+ |dj, — ¢k

and stores these quantities and corresponding variable indices to the struc-
ture LPXKKT.

Using the relative errors for all the four conditions listed above the rou-
tine 1px_check_kkt also estimates a ”quality” of the basic solution from the
standpoint of these conditions and stores corresponding quality indicators
to the structure LPXKKT:

pe_quality—quality of primal solution;

pb_quality—quality of primal feasibility;

de_quality—quality of dual solution;

db_quality—quality of dual feasibility.

Fach of these indicators is assigned to one of the following four values:

’H’> means high quality,

’M’ means medium quality,

’L’> means low quality, or

7?2 means wrong or infeasible solution.

If all the indicators show high or medium quality (for an internally
scaled LP problem, i.e. when the parameter scaled in a call to the routine
1px_check_kkt is non-zero), the user can be sure that the obtained basic
solution is quite accurate.

82

If some of the indicators show low quality, the solution can still be con-
sidered as relevant, though an additional analysis is needed depending on
which indicator shows low quality.

If the indicator pe_quality is assigned to ’7’, the primal solution is
wrong. If the indicator de_quality is assigned to ’7’, the dual solution is
wrong.

If the indicator db_quality is assigned to ’?7’ while other indicators
show a good quality, this means that the current basic solution being primal
feasible is not dual feasible. Similarly, if the indicator pb_quality is assigned
to ’?’ while other indicators are not, this means that the current basic
solution being dual feasible is not primal feasible.

83

Chapter 3

Utility API routines

3.1 Problem data reading/writing routines

3.1.1 glp_read mps—read problem data in MPS format
Synopsis

int glp_read_mps(glp_prob *1p, int fmt, const void *parm,
const char *fname);

Description

The routine glp_read_mps reads problem data in MPS format from a text
file. (The MPS format is described in Appendix B, page 191.)

The parameter fmt specifies the MPS format version as follows:

GLP_MPS_DECK fixed (ancient) MPS format;

GLP_MPS_FILE free (modern) MPS format.

The parameter parm is reserved for use in the future and must be speci-
fied as NULL.

The character string fname specifies a name of the text file to be read in.
(If the file name ends with suffix ‘. gz’, the file is assumed to be compressed,
in which case the routine glp_read_mps decompresses it “on the fly”.)

Note that before reading data the current content of the problem object
is completely erased with the routine glp_erase_prob.

Returns

If the operation was successful, the routine glp_read_mps returns zero. Oth-
erwise, it prints an error message and returns non-zero.

84

3.1.2 glp_write_mps—write problem data in MPS format
Synopsis

int glp_write_mps(glp_prob *lp, int fmt, const void *parm,
const char *fname);

Description

The routine glp_write_mps writes problem data in MPS format to a text
file. (The MPS format is described in Appendix B, page 191.)

The parameter fmt specifies the MPS format version as follows:

GLP_MPS_DECK fixed (ancient) MPS format;

GLP_MPS_FILE free (modern) MPS format.

The parameter parm is reserved for use in the future and must be speci-
fied as NULL.

The character string fname specifies a name of the text file to be writ-
ten out. (If the file name ends with suffix ‘.gz’, the file is assumed to be
compressed, in which case the routine glp_write_mps performs automatic
compression on writing it.)

Returns

If the operation was successful, the routine glp_write_mps returns zero.
Otherwise, it prints an error message and returns non-zero.

3.1.3 glp_read lp—read problem data in CPLEX LP format
Synopsis

int glp_read_lp(glp_prob *1lp, const void *parm,
const char *fname);

Description

The routine glp_read_lp reads problem data in CPLEX LP format from a
text file. (The CPLEX LP format is described in Appendix C, page 204.)
The parameter parm is reserved for use in the future and must be speci-
fied as NULL.
The character string fname specifies a name of the text file to be read in.
(If the file name ends with suffix ‘. gz’, the file is assumed to be compressed,
in which case the routine glp_read_lp decompresses it “on the fly”.)

85

Note that before reading data the current content of the problem object
is completely erased with the routine glp_erase_prob.

Returns

If the operation was successful, the routine glp_read_1p returns zero. Oth-
erwise, it prints an error message and returns non-zero.

3.1.4 glp_write_lp—write problem data in CPLEX LP for-
mat

Synopsis

int glp_write_lp(glp_prob *lp, const void *parm,
const char *fname);

Description

The routine glp_write_lp writes problem data in CPLEX LP format to a
text file. (The CPLEX LP format is described in Appendix C, page 204.)

The parameter parm is reserved for use in the future and must be speci-
fied as NULL.

The character string fname specifies a name of the text file to be writ-
ten out. (If the file name ends with suffix ‘. gz’, the file is assumed to be
compressed, in which case the routine glp_write_lp performs automatic
compression on writing it.)

Returns

If the operation was successful, the routine glp_write_1lp returns zero. Oth-
erwise, it prints an error message and returns non-zero.

3.1.5 glp_read_prob—read problem data in GLPK format
Synopsis

int glp_read_prob(glp_prob *P, int flags, const char *fname);

Description

The routine glp_read_prob reads problem data in the GLPK LP/MIP for-
mat from a text file. (For description of the GLPK LP/MIP format see
below.)

86

The parameter flags is reserved for use in the future and should be
specified as zero.

The character string fname specifies a name of the text file to be read in.
(If the file name ends with suffix ‘. gz’, the file is assumed to be compressed,
in which case the routine glp_read_prob decompresses it “on the fly”.)

Note that before reading data the current content of the problem object
is completely erased with the routine glp_erase_prob.

Returns

If the operation was successful, the routine glp_read_prob returns zero.
Otherwise, it prints an error message and returns non-zero.

GLPK LP/MIP format

The GLPK LP/MIP format is a DIMACS-like format.! The file in this
format is a plain ASCII text file containing lines of several types described
below. A line is terminated with the end-of-line character. Fields in each
line are separated by at least one blank space. Each line begins with a
one-character designator to identify the line type.

The first line of the data file must be the problem line (except optional
comment lines, which may precede the problem line). The last line of the
data file must be the end line. Other lines may follow in arbitrary order,
however, duplicate lines are not allowed.

Comment lines. Comment lines give human-readable information about
the data file and are ignored by GLPK routines. Comment lines can appear
anywhere in the data file. Each comment line begins with the lower-case
character c.

c This is an example of comment line

Problem line. There must be exactly one problem line in the data file.
This line must appear before any other lines except comment lines and has
the following format:

p CLASS DIR ROWS COLS NONZ

1The DIMACS formats were developed by the Center for Discrete Mathematics and
Theoretical Computer Science (DIMACS) to facilitate exchange of problem data. For
details see: <http://dimacs.rutgers.edu/Challenges/>.

87

The lower-case letter p specifies that this is the problem line.

The CLASS field defines the problem class and can contain either the
keyword 1p (that means linear programming problem) or mip (that means
mixed integer programming problem).

The DIR field defines the optimization direction (that is, the objective
function sense) and can contain either the keyword min (that means mini-
mization) or max (that means maximization).

The ROWS, COLS, and NONZ fields contain non-negative integer values spec-
ifying, respectively, the number of rows (constraints), columns (variables),
and non-zero constraint coefficients in the problem instance. Note that NONZ
value does not account objective coefficients.

Row descriptors. There must be at most one row descriptor line in the
data file for each row (constraint). This line has one of the following formats:

ROW £

ROW 1 RHS

ROW u RHS

ROW d RHS1 RHS2
ROW s RHS

He e e e

The lower-case letter i specifies that this is the row descriptor line.

The ROW field specifies the row ordinal number, an integer between 1 and
m, where m is the number of rows in the problem instance.

The next lower-case letter specifies the row type as follows:

f — free (unbounded) row: —oo < Y ajz; < +00;

1 — inequality constraint of ‘>’ type: > a;x; > b;

u — inequality constraint of ‘<’ type: Y ajz; < b;

d — double-sided inequality constraint: by <) ajz; < bo;

s — equality constraint:) ajz; = b.

The RHS field contains a floaing-point value specifying the row right-
hand side. The RHS1 and RHS2 fields contain floating-point values specifying,
respectively, the lower and upper right-hand sides for the double-sided row.

If for some row its descriptor line does not appear in the data file, by
default that row is assumed to be an equality constraint with zero right-hand
side.

Column descriptors. There must be at most one column descriptor line

in the data file for each column (variable). This line has one of the following
formats depending on the problem class specified in the problem line:

88

LP class MIP class

j COL f j COL KIND f

j COL 1 BND COL KIND 1 BND

j COL u BND COL KIND u BND

j COL d BND1 BND2 COL KIND d BND1 BND2
j COL s BND COL KIND s BND

The lower-case letter j specifies that this is the column descriptor line.

The COL field specifies the column ordinal number, an integer between 1
and n, where n is the number of columns in the problem instance.

The KIND field is used only for MIP problems and specifies the column
kind as follows:

¢ — continuous column;

i — integer column;

b — binary column (in this case all remaining fields must be omitted).

The next lower-case letter specifies the column type as follows:

f — free (unbounded) column: —oco < z < +00;

1 — column with lower bound: z > [;

u — column with upper bound: z < u;

d — double-bounded column: | < x < u;

s — fixed column: z = s.

The BND field contains a floating-point value that specifies the column
bound. The BND1 and BND2 fields contain floating-point values specifying,
respectively, the lower and upper bounds for the double-bounded column.

If for some column its descriptor line does not appear in the file, by
default that column is assumed to be non-negative (in case of LP class) or
binary (in case of MIP class).

Coefficient descriptors. There must be exactly one coefficient descriptor
line in the data file for each non-zero objective or constraint coefficient. This
line has the following format:

a ROW COL VAL

The lower-case letter a specifies that this is the coefficient descriptor line.

For objective coefficients the ROW field must contain 0. For constraint
coefficients the ROW field specifies the row ordinal number, an integer between
1 and m, where m is the number of rows in the problem instance.

The COL field specifies the column ordinal number, an integer between 1
and n, where n is the number of columns in the problem instance.

89

If both the ROW and COL fields contain 0, the line specifies the constant
term (“shift”) of the objective function rather than objective coefficient.

The VAL field contains a floating-point coefficient value (it is allowed to
specify zero value in this field).

The number of constraint coefficient descriptor lines must be exactly the
same as specified in the field NONZ of the problem line.

Symbolic name descriptors. There must be at most one symbolic name
descriptor line for the problem instance, objective function, each row (con-
straint), and each column (variable). This line has one of the following
formats:

n p NAME
n z NAME
n i ROW NAME
n j COL NAME

The lower-case letter n specifies that this is the symbolic name descriptor
line.

The next lower-case letter specifies which object should be assigned a
symbolic name:

p — problem instance;

z — objective function;

i — row (constraint);

j — column (variable).

The ROW field specifies the row ordinal number, an integer between 1 and
m, where m is the number of rows in the problem instance.

The COL field specifies the column ordinal number, an integer between 1
and n, where n is the number of columns in the problem instance.

The NAME field contains the symbolic name, a sequence from 1 to 255
arbitrary graphic ASCII characters, assigned to corresponding object.

End line. There must be exactly one end line in the data file. This line
must appear last in the file and has the following format:

e

The lower-case letter e specifies that this is the end line. Anything that
follows the end line is ignored by GLPK routines.

90

Example of data file in GLPK LP/MIP format

The following example of a data file in GLPK LP/MIP format specifies the

same LP problem as in Subsection “Example of MPS file”.

0] O AN H N MM 0ONOANS A NNNM A [Te) [Te} QN O NN o N
[32] —H O OOO0OO0OO0OO0OO0OO0ODO0OO0ODO0OO0OO0OO0OO0OO0OO0OOONMNMOWMNMOWONOOO OO’
O = = ="+ "1 O0OO0OO0O0O0OO0O0OO0O0ODO0ODO0ODO0ODO0ODO0OO0OO0OO0OO0ODO0ODO0ODO0ODO0OO0OO0OO0OO0OO0OO0OOO OO0 OO
M N O NN ONNANNHILOANNIO A NWANMHLDOANOMFH WO N~
H AN AN AN ANANANNOOOONOOHOOM I I OWWWLW OO ON~DNMDMNNIDNSDODOWOW W W 00 0 o
W 8 d @ 8 d d 8 d & 8 d d 8 d d 8 d d 6 d 8 6 d d 6 d d 6 d d 6 d d O Jd Jd S J d T F O
[e0]
<
o o o =
N~ o o o o o o
€3] [a] ™ o o 0 ~ o O
[o0] 2 O 4 o o - 1 AN [22] 455WI3872518387251
M — O M o o o N=2N=20=20=w3 H OO A A1 ANMOO A+ — AN
g =D < OHOMHMODO=ZO0OUWJLWwH [H O HOH e I e I S R S R
MMM SN O A0S MOEdsANNOMOMIEMTMOM<TCNO OO0OO0O0OO0O0O0O0O0 O OO0
PPVfl nANSMmSY 3w SO ANTOT A TNTNM T HFTWONM-HNNMHIWLON-HNMI WO
A N AN A A AW AOANAO A A NN A PN MM MO OO0 0000 A H A A A
g g daAddAdgdgAddAddgdAddAdAdmmdmmdmmdmmdmmsddd o0 c d o d dod oo o d ® o

91

3.1.6 glp_write_prob—write problem data in GLPK format
Synopsis

int glp_write_prob(glp_prob *P, int flags, const char *fname);

Description

The routine glp_write_prob writes problem data in the GLPK LP/MIP
format to a text file. (For description of the GLPK LP/MIP format see
Subsection “Read problem data in GLPK format”.)

The parameter flags is reserved for use in the future and should be
specified as zero.

The character string fname specifies a name of the text file to be writ-
ten out. (If the file name ends with suffix ‘.gz’, the file is assumed to be
compressed, in which case the routine glp_write_prob performs automatic
compression on writing it.)

Returns

If the operation was successful, the routine glp_read_prob returns zero.
Otherwise, it prints an error message and returns non-zero.

92

3.2 Routines for processing MathProg models

3.2.1 Introduction

GLPK supports the GNU MathProg modeling language.’ As a rule, models
written in MathProg are solved with the GLPK LP/MIP stand-alone solver
glpsol (see Appendix D) and do not need any programming with API rou-
tines. However, for various reasons the user may need to process MathProg
models directly in his/her application program, in which case he/she may
use API routines described in this section. These routines provide an inter-
face to the MathProg translator, a component of GLPK, which translates
MathProg models into an internal code and then interprets (executes) this
code.

The processing of a model written in GNU MathProg includes several
steps, which should be performed in the following order:

1. Allocating the workspace. The translator allocates the workspace, an
internal data structure used on all subsequent steps.

2. Reading model section. The translator reads model section and, op-
tionally, data section from a specified text file and translates them
into the internal code. If necessary, on this step data section may be
ignored.

3. Reading data section(s). The translator reads one or more data sec-
tions from specified text file(s) and translates them into the internal
code.

4. Generating the model. The translator executes the internal code to
evaluate the content of the model objects such as sets, parameters,
variables, constraints, and objectives. On this step the execution is
suspended at the solve statement.

5. Building the problem object. The translator obtains all necessary in-
formation from the workspace and builds the standard problem object
(that is, the program object of type glp_prob).

6. Solving the problem. On this step the problem object built on the
previous step is passed to a solver, which solves the problem instance
and stores its solution back to the problem object.

2The GNU MathProg modeling language is a subset of the AMPL language. For its
detailed description see the document “Modeling Language GNU MathProg: Language
Reference” included in the GLPK distribution.

93

7. Postsolving the model. The translator copies the solution from the
problem object to the workspace and then executes the internal code
from the solve statement to the end of the model. (If model has no
solve statement, the translator does nothing on this step.)

8. Freeing the workspace. The translator frees all the memory allocated
to the workspace.

Note that the MathProg translator performs no error correction, so if
any of steps 2 to 7 fails (due to errors in the model), the application program
should terminate processing and go to step 8.

Example 1

In this example the program reads model and data sections from input file
egypt.mod® and writes the model to output file egypt.mps in free MPS
format (see Appendix B). No solution is performed.

/* mplsampl.c */

#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

int main(void)
{ glp_prob *lp;
glp_tran *tran;
int ret;
lp = glp_create_prob();
tran = glp_mpl_alloc_wksp();
ret = glp_mpl_read_model(tran, "egypt.mod", 0);
if (ret != 0)
{ fprintf(stderr, "Error on translating model\n");
goto skip;
}
ret = glp_mpl_generate(tran, NULL);
if (ret != 0)
{ fprintf(stderr, "Error on generating model\n") ;
goto skip;
}
glp_mpl_build_prob(tran, 1p);
ret = glp_write_mps(lp, GLP_MPS_FILE, NULL, "egypt.mps");

3This is an example model included in the GLPK distribution.

94

if (ret != 0)
fprintf (stderr, "Error on writing MPS file\n");
skip: glp_mpl_free_wksp(tran);
glp_delete_prob(lp);
return O;

3

/* eof x/

Example 2

In this example the program reads model section from file sudoku.mod?
ignoring data section in this file, reads alternative data section from file
sudoku.dat, solves the problem instance and passes the solution found back
to the model.

/* mplsamp2.c */

#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

int main(void)
{ glp_prob *mip;

glp_tran *tran;

int ret;

mip = glp_create_prob();

tran = glp_mpl_alloc_wksp();

ret = glp_mpl_read_model(tran, "sudoku.mod", 1);

if (ret != 0)

{ fprintf(stderr, "Error on translating model\n");
goto skip;

}

ret = glp_mpl_read_data(tran, "sudoku.dat");

if (ret != 0)

{ fprintf(stderr, "Error on translating data\n");
goto skip;

}

ret = glp_mpl_generate(tran, NULL);

if (ret != 0)

{ fprintf(stderr, "Error on generating model\n");
goto skip;

“This is an example model which is included in the GLPK distribution along with
alternative data file sudoku.dat.

95

}

glp_mpl_build_prob(tran, mip);

glp_simplex(mip, NULL);

glp_intopt (mip, NULL);

ret = glp_mpl_postsolve(tran, mip, GLP_MIP);

if (ret != 0)

fprintf (stderr, "Error on postsolving model\n");

skip: glp_mpl_free_wksp(tran);

glp_delete_prob(mip);

return O;

}

/* eof x/

3.2.2 glp_mpl alloc_wksp—allocate the translator workspace
Synopsis

glp_tran *glp_mpl_alloc_wksp(void);

Description

The routine glp_mpl_alloc_wksp allocates the MathProg translator work-
space. (Note that multiple instances of the workspace may be allocated, if
necessary.)

Returns

The routine returns a pointer to the workspace, which should be used in all
subsequent operations.

3.2.3 glp_mpl read model—read and translate model section
Synopsis
int glp_mpl_read_model(glp_tran *tran, const char *fname,
int skip);
Description

The routine glp_mpl_read_model reads model section and, optionally, data
section, which may follow the model section, from a text file, whose name
is the character string fname, performs translation of model statements and
data blocks, and stores all the information in the workspace.

96

The parameter skip is a flag. If the input file contains the data section
and this flag is non-zero, the data section is not read as if there were no
data section and a warning message is printed. This allows reading data
section(s) from other file(s).

Returns

If the operation is successful, the routine returns zero. Otherwise the routine
prints an error message and returns non-zero.

3.2.4 glp_mpl_read_data—read and translate data section
Synopsis

int glp_mpl_read_data(glp_tran *tran, const char *fname);

Description

The routine glp_mpl_read_data reads data section from a text file, whose
name is the character string fname, performs translation of data blocks, and
stores the data read in the translator workspace. If necessary, this routine
may be called more than once.

Returns

If the operation is successful, the routine returns zero. Otherwise the routine
prints an error message and returns non-zero.

3.2.5 glp_mpl _generate—generate the model
Synopsis

int glp_mpl_generate(glp_tran *tran, const char *fname);

Description

The routine glp_mpl_generate generates the model using its description
stored in the translator workspace. This operation means generating all
variables, constraints, and objectives, executing check and display state-
ments, which precede the solve statement (if it is presented).

The character string fname specifies the name of an output text file, to
which output produced by display statements should be written. If fname
is NULL, the output is sent to the terminal.

97

Returns

If the operation is successful, the routine returns zero. Otherwise the routine
prints an error message and returns non-zero.

3.2.6 glp_mpl_build prob—build problem instance from the
model
Synopsis

void glp_mpl_build_prob(glp_tran *tran, glp_prob *prob);

Description

The routine glp_mpl_build_prob obtains all necessary information from
the translator workspace and stores it in the specified problem object prob.
Note that before building the current content of the problem object is erased
with the routine glp_erase_prob.

3.2.7 glp_mpl postsolve—postsolve the model
Synopsis

int glp_mpl_postsolve(glp_tran *tran, glp_prob *prob,
int sol);

Description

The routine glp_mpl_postsolve copies the solution from the specified prob-
lem object prob to the translator workspace and then executes all the re-
maining model statements, which follow the solve statement.

The parameter sol specifies which solution should be copied from the
problem object to the workspace as follows:

GLP_SOL basic solution;

GLP_IPT interior-point solution;

GLP_MIP mixed integer solution.

Returns

If the operation is successful, the routine returns zero. Otherwise the routine
prints an error message and returns non-zero.

98

3.2.8 glp_mpl free_ wksp—free the translator workspace
Synopsis

void glp_mpl_free_wksp(glp_tran *tran);

Description

The routine glp_mpl_free_wksp frees all the memory allocated to the trans-
lator workspace. It also frees all other resources, which are still used by the
translator.

99

3.3 Problem solution reading/writing routines

3.3.1 glp_print_sol—write basic solution in printable format
Synopsis

int glp_print_sol(glp_prob *1lp, const char *fname);

Description

The routine glp_print_sol writes the current basic solution of an LP
problem, which is specified by the pointer 1p, to a text file, whose name is
the character string fname, in printable format.

Information reported by the routine glp_print_sol is intended mainly
for visual analysis.
Returns
If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.
3.3.2 glp_read sol—read basic solution from text file
Synopsis

int glp_read_sol(glp_prob *1p, const char *fname);

Description

The routine glp_read_sol reads basic solution from a text file whose name
is specified by the parameter fname into the problem object.
For the file format see description of the routine glp_write_sol.

Returns

On success the routine returns zero, otherwise non-zero.

100

3.3.3 glp_write_sol—write basic solution to text file
Synopsis

int glp_write_sol(glp_prob *lp, const char *fname);

Description

The routine glp_write_sol writes the current basic solution to a text file
whose name is specified by the parameter fname. This file can be read back
with the routine glp_read_sol.

Returns

On success the routine returns zero, otherwise non-zero.

File format

The file created by the routine glp_write_sol is a plain text file, which
contains the following information:

mn
p_stat d_stat obj_val
r_stat[1] r_prim[1] r_dual[1]

r_stat[m] r_prim[m] r_dual [m]
c_stat[1] c_prim[1] c_duall[1]

c_stat[n] c_prim[n] c_dual([n]

where:

m is the number of rows (auxiliary variables);

n is the number of columns (structural variables);

p_stat is the primal status of the basic solution (GLP_UNDEF = 1, GLP_FEAS
— 2, GLP_INFEAS = 3, or GLP_NOFEAS = 4);

d_stat is the dual status of the basic solution (GLP_UNDEF = 1, GLP_FEAS
— 2, GLP_INFEAS = 3, or GLP_NOFEAS = 4);

obj_val is the objective value;

r_stat[il, i = 1,...,m, is the status of i-th row (GLP_BS = 1, GLP_NL =
2, GLP_NU = 3, GLP_NF = 4, or GLP_NS = 5);

r_prim[i], ¢ =1,...,m, is the primal value of i-th row;

r_duall[i], i=1,...,m, is the dual value of i-th row;

101

c_stat[jl, j =1,...,n, is the status of j-th column (GLP_BS = 1, GLP_NL
—= 2, GLP_NU = 3, GLP_NF = 4, or GLP_NS = 5);

c_prim[jl, j =1,...,n, is the primal value of j-th column;

c_dualljl, j =1,...,n, is the dual value of j-th column.

3.3.4 glp_print_ipt—write interior-point solution in printable
format

Synopsis

int glp_print_ipt(glp_prob *1lp, const char *fname);

Description

The routine glp_print_ipt writes the current interior point solution of an
LP problem, which the parameter 1p points to, to a text file, whose name
is the character string fname, in printable format.

Information reported by the routine glp_print_ipt is intended mainly
for visual analysis.

Returns

If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

3.3.5 glp_read_ipt—read interior-point solution from text file
Synopsis

int glp_read_ipt(glp_prob *1lp, const char *fname);

Description

The routine glp_read_ipt reads interior-point solution from a text file
whose name is specified by the parameter fname into the problem object.
For the file format see description of the routine glp_write_ipt.

Returns

On success the routine returns zero, otherwise non-zero.

102

3.3.6 glp_write_ipt—write interior-point solution to text file
Synopsis

int glp_write_ipt(glp_prob *lp, const char *fname);

Description

The routine glp_write_ipt writes the current interior-point solution to a
text file whose name is specified by the parameter fname. This file can be
read back with the routine glp_read_ipt.

Returns

On success the routine returns zero, otherwise non-zero.

File format

The file created by the routine glp_write_ipt is a plain text file, which
contains the following information:

mn
stat obj_val
r_prim[1] r_dual[1]

r_prim[m] r_dual [m]
c_prim[1] c_duall[1]

c_prim[n] c_duall[n]

where:

m is the number of rows (auxiliary variables);

n is the number of columns (structural variables);

stat is the solution status (GLP_UNDEF = 1 or GLP_OPT = 5);
obj_val is the objective value;

r_prim[i], ¢ =1,...,m, is the primal value of i-th row;
r_duallil, 7 =1,...,m, is the dual value of i-th row;
c_prim[jl, j =1,...,n, is the primal value of j-th column;

c_dualljl, j =1,...,n, is the dual value of j-th column.

103

3.3.7 glp_print_mip—write MIP solution in printable format
Synopsis

int glp_print_mip(glp_prob *1lp, const char *fname);

Description

The routine glp_print_mip writes a best known integer solution of a MIP
problem, which is specified by the pointer 1p, to a text file, whose name is
the character string fname, in printable format.

Information reported by the routine glp_print_mip is intended mainly
for visual analysis.

Returns

If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

104

3.3.8 glp_read mip—read MIP solution from text file
Synopsis

int glp_read_mip(glp_prob *mip, const char *fname);

Description

The routine glp_read_mip reads MIP solution from a text file whose name
is specified by the parameter fname into the problem object.
For the file format see description of the routine glp_write_mip.

Returns

On success the routine returns zero, otherwise non-zero.

3.3.9 glp_write_mip—write MIP solution to text file
Synopsis

int glp_write_mip(glp_prob *mip, const char *fname);

Description

The routine glp_write_mip writes the current MIP solution to a text file
whose name is specified by the parameter fname. This file can be read back
with the routine glp_read_mip.

Returns

On success the routine returns zero, otherwise non-zero.

File format

The file created by the routine glp_write_sol is a plain text file, which
contains the following information:

m n
stat obj_val
r_vall[1]
r_val[m]
c_vall1]

105

c_val[n]
where:
m is the number of rows (auxiliary variables);
n is the number of columns (structural variables);
stat is the solution status (GLP_UNDEF = 1, GLP_FEAS = 2, GLP_NOFEAS =
4, or GLP_OPT = 5);
obj_val is the objective value;
r_vall[il,i=1,...,m, is the value of i-th row;
c_valljl, j=1,...,n, is the value of j-th column.

106

3.4 Post-optimal analysis routines

3.4.1 glp_print_ranges—print sensitivity analysis report
Synopsis

int glp_print_ranges(glp_prob *P, int len, const int list[],
int flags, const char *fname);

Description

The routine glp_print_ranges performs sensitivity analysis of current op-
timal basic solution and writes the analysis report in human-readable format
to a text file, whose name is the character string fname. (Detailed descrip-
tion of the report structure is given below.)

The parameter len specifies the length of the row/column list.

The array list specifies ordinal number of rows and columns to be ana-
lyzed. The ordinal numbers should be passed in locations list[1], list[2], ...,
list[len]. Ordinal numbers from 1 to m refer to rows, and ordinal numbers
from m + 1 to m + n refer to columns, where m and n are, resp., the total
number of rows and columns in the problem object. Rows and columns
appear in the analysis report in the same order as they follow in the array
list.

It is allowed to specify len = 0, in which case the array list is not used
(so it can be specified as NULL), and the routine performs analysis for all
rows and columns of the problem object.

The parameter flags is reserved for use in the future and must be specified
as zero.

On entry to the routine glp_print_ranges the current basic solution
must be optimal and the basis factorization must exist. The application
program can check that with the routine glp_bf_exists, and if the factor-
ization does not exist, compute it with the routine glp_factorize. Note
that if the LP preprocessor is not used, on normal exit from the simplex
solver routine glp_simplex the basis factorization always exists.

Returns

If the operation was successful, the routine glp_print_ranges returns zero.
Otherwise, it prints an error message and returns non-zero.

107

Analysis report example

An example of the sensitivity analysis report is shown on the next two
pages. This example corresponds to the example of LP problem described
in Subsection “Example of MPS file”.

Structure of the analysis report

For each row and column specified in the array [list the routine prints two
lines containing generic information and analysis information, which de-
pends on the status of corresponding row or column.

Note that analysis of a row is analysis of its auxiliary variable, which is
equal to the row linear form) ajz;, and analysis of a column is analysis
of corresponding structural variable. Therefore, formally, on performing the
sensitivity analysis there is no difference between rows and columns.

Generic information

No. is the row or column ordinal number in the problem object. Rows are
numbered from 1 to m, and columns are numbered from 1 to n, where m and
n are, resp., the total number of rows and columns in the problem object.

Row name is the symbolic name assigned to the row. If the row has no name
assigned, this field contains blanks.

Column name is the symbolic name assigned to the column. If the column
has no name assigned, this field contains blanks.

St is the status of the row or column in the optimal solution:

BS — non-active constraint (row), basic column;

NL — inequality constraint having its lower right-hand side active (row),
non-basic column having its lower bound active;

NU — inequality constraint having its upper right-hand side active (row),
non-basic column having its upper bound active;

NS — active equality constraint (row), non-basic fixed column.

NF — active free row, non-basic free (unbounded) column. (This case
means that the optimal solution is dual degenerate.)

Activity is the (primal) value of the auxiliary variable (row) or structural
variable (column) in the optimal solution.

Slack is the (primal) value of the row slack variable.

Obj coef is the objective coefficient of the column (structural variable).

108

ENIF 90TL986C FuI+ €.090°99¢ 00000 00€ 0CSs8y
ND T1860°68C 0Cs8y - T.8C€"SET 00000 0S¢ 00000 0§ 00000 0S¢ N IS 8
ENIF 69957 L6C FUI+ 9CTZ6 ¥0ST FUI+ 661SC"°
nd ¥¥¥€9-26c 6618C - GCTY8L G8YT 00000 00ST : 00000 °00ST N TV L
N 2S956°10€ 1S.8C" C6207°6 00000°0¢€
TNId €e%9€°09C 8T96L° T- LTYYL ¥T FuIl- TL6EO 0T 62096°6T1 sd DN 9
ENIF ST86C S6C (a7l T6989° 1% 00000 " 0% ovv¥S -
YNId 9S9CSC 66T Ful- 9€ely " ¥¢ Jul- : 00000 " 0% NN N S
GNIg 86.%C %1€ i7A4%% €1286°6.L 00000° 00T :
NW LSTT1S°0.LC €190€ " - L9788 €6 JuIl- 6%CE€0° 9T 19.96°€8 sg n v
ENI9 ¥628C 68C €C895°C 81669 °C9 00000°09 €C895°C-
YNIg TI9TLL 90€ FuIl- 9106899 FuIl- : 0000009 NN d4 €
nd 6.920°96¢ FUuIl+ 6.%€0 " ¥T0C 00000 0002 09€T0 " -
ENIF S9€8C 96C FuIl- 798905661 00000 *000T : 00000 " 000T SN dTdIA C
FuIl+ FuIl+ T991Z°96C FuIl+ :
NW . 00000 T- GGCST 66T Fui- T991C " 96C- T991C"96C sd dNTVA T
oTqetaea jutod yeeiq o8uex o8uex punoq xaddp TeutSaey
Surqtur] 3e enrea [qg Feoo [qg LytaT3oy punoq IoMOT YOoeTS L3ytaT3oy 18 swRU MOY °ON
(WMWINIWN) S90991C 962 = ANTVA :eatT308lqQ
NVId ‘waTqoxd

T a8ed

140438 SISATVNV ALIAILISNAS - C%°¥ AdTD

109

qxodex yo pugm

NW 19999 °90¢€ 1999%° SY.L¥S° 98 Jul+ :
GNIg 98S.C 89T 8T8YT " €60.LT VCT : 0008g" ¢9..S5°0CT sg NODITIS L
NN LTSL0°T0€ [44° a5 9.80%°CTT FUI+
TV 6.8.8°68C §888T " ¢L.L.9T " 8S¢€ : 000TC" 668€9 °66C sd WATV 9
ENIF ¥%TLO0" L6C FuI+ 9896.°8S 00000 00ST 9S¥%10°
ENIF 0¥6.C €6C PPeeT” 6€.8L°T0C- : 000ST" : N GNIg9 S
TNId O0T09% " L0€ TS9%T" ¥C9ST1 " 99¢C- 00000004 :
NN S7.%S° 162 6680T° CE€9CS 0TL 00000 00T 000CT" €L.81° ¥CV sd NI ¥
GNIg 8%598°00€ 8Y6.T" 1G8C% " L¥E- 00000008
NW L08CC°16C C86ST" ¥1€19°88L 00000 " 00% 000.T" T.2ST 06% sd ENIF €
NI 2S956°10€ £€9880° 990€V "ETE 000000052
TNId 2T8¥¥ " ¥SC CCLTO" ¢cTeee i cos : 00080° 96C%€ 599 sd CNIg T
YNIgd 15608 ¥0€ FUI+ 0v088° €€ 00000002 C9€S8T”
YNId #6506 88C C9€TT - S.%C8°8C- : 000€0" : IN NI T
oTqetaea jutod yeeiq o8uex o8uex punoq xaddp TeutSaey
Surqtuwr] 3e enrea [qg Feoo [qg LytaT3oy punoq IoMo] Fo0o [qgQ L3ytaT30y 18 OWeu uUWNTo) °ON

a8ed

(UMWINIW) S90991Z 96T = ANTVA :9aT308[qQ
NVId ‘weTqoxd

140438 SISATVNV ALIAILISNAS - C%°¥ AdTD

110

Marginal is the reduced cost (dual activity) of the auxiliary variable (row)
or structural variable (column).

Lower bound is the lower right-hand side (row) or lower bound (column). If
the row or column has no lower bound, this field contains -Inf.

Upper bound is the upper right-hand side (row) or upper bound (column).
If the row or column has no upper bound, this field contains +Inf.

Sensitivity analysis of active bounds

The sensitivity analysis of active bounds is performed only for rows, which
are active constraints, and only for non-basic columns, because inactive
constraints and basic columns have no active bounds.

For every auxiliary (row) or structural (column) non-basic variable the
routine starts changing its active bound in both direction. The first of
the two lines in the report corresponds to decreasing, and the second line
corresponds to increasing of the active bound. Since the variable being
analyzed is non-basic, its activity, which is equal to its active bound, also
starts changing. This changing leads to changing of basic (auxiliary and
structural) variables, which depend on the non-basic variable. The current
basis remains primal feasible and therefore optimal while values of all basic
variables are primal feasible, i.e. are within their bounds. Therefore, if some
basic variable called the limiting variable reaches its (lower or upper) bound
first, before any other basic variables, it thereby limits further changing of
the non-basic variable, because otherwise the current basis would become
primal infeasible. The point, at which this happens, is called the break
point. Note that there are two break points: the lower break point, which
corresponds to decreasing of the non-basic variable, and the upper break
point, which corresponds to increasing of the non-basic variable.

In the analysis report values of the non-basic variable (i.e. of its active
bound) being analyzed at both lower and upper break points are printed in
the field ‘Activity range’. Corresponding values of the objective function
are printed in the field ‘Obj value at break point’, and symbolic names
of corresponding limiting basic variables are printed in the field ‘Limiting
variable’. If the active bound can decrease or/and increase unlimitedly,
the field ‘Activity range’ contains -Inf or/and +Inf, resp.

For example (see the example report above), row SI is a double-sided
constraint, which is active on its lower bound (right-hand side), and its
activity in the optimal solution being equal to the lower bound is 250. The
activity range for this row is [235.32871,255.06073]. This means that the
basis remains optimal while the lower bound is increasing up to 255.06073,

111

and further increasing is limited by (structural) variable BIN3. If the lower
bound reaches this upper break point, the objective value becomes equal to
298.67206.

Note that if the basis does not change, the objective function depends
on the non-basic variable linearly, and the per-unit change of the objective
function is the reduced cost (marginal value) of the non-basic variable.

Sensitivity analysis of objective coefficients at non-basic variables

The sensitivity analysis of the objective coefficient at a non-basic variable
is quite simple, because in this case change in the objective coefficient leads
to equivalent change in the reduced cost (marginal value).

For every auxiliary (row) or structural (column) non-basic variable the
routine starts changing its objective coefficient in both direction. (Note
that auxiliary variables are not included in the objective function and there-
fore always have zero objective coefficients.) The first of the two lines in
the report corresponds to decreasing, and the second line corresponds to
increasing of the objective coefficient. This changing leads to changing of
the reduced cost of the non-basic variable to be analyzed and does affect
reduced costs of all other non-basic variables. The current basis remains
dual feasible and therefore optimal while the reduced cost keeps its sign.
Therefore, if the reduced cost reaches zero, it limits further changing of the
objective coefficient (if only the non-basic variable is non-fixed).

In the analysis report minimal and maximal values of the objective
coefficient, on which the basis remains optimal, are printed in the field
‘Obj coef range’. If the objective coefficient can decrease or/and increase
unlimitedly, this field contains -Inf or/and +Inf, resp.

For example (see the example report above), column BIN5 is non-basic
having its lower bound active. Its objective coefficient is 0.15, and reduced
cost in the optimal solution 0.01456. The column lower bound remains active
while the column reduced cost remains non-negative, thus, minimal value of
the objective coefficient, on which the current basis still remains optimal, is
0.15 — 0.01456 = 0.13644, that is indicated in the field ‘Obj coef range’.

Sensitivity analysis of objective coefficients at basic variables

To perform sensitivity analysis for every auxiliary (row) or structural (col-
umn) variable the routine starts changing its objective coefficient in both
direction. (Note that auxiliary variables are not included in the objective
function and therefore always have zero objective coefficients.) The first of
the two lines in the report corresponds to decreasing, and the second line

112

corresponds to increasing of the objective coefficient. This changing leads to
changing of reduced costs of non-basic variables. The current basis remains
dual feasible and therefore optimal while reduced costs of all non-basic vari-
ables (except fixed variables) keep their signs. Therefore, if the reduced
cost of some non-basic non-fixed variable called the limiting variable reaches
zero first, before reduced cost of any other non-basic non-fixed variable, it
thereby limits further changing of the objective coefficient, because other-
wise the current basis would become dual infeasible (non-optimal). The
point, at which this happens, is called the break point. Note that there are
two break points: the lower break point, which corresponds to decreasing of
the objective coefficient, and the upper break point, which corresponds to
increasing of the objective coefficient. Let the objective coefficient reach its
limit value and continue changing a bit further in the same direction that
makes the current basis dual infeasible (non-optimal). Then the reduced
cost of the non-basic limiting variable becomes “a bit” dual infeasible that
forces the limiting variable to enter the basis replacing there some basic
variable, which leaves the basis to keep its primal feasibility. It should be
understood that if we change the current basis in this way exactly at the
break point, both the current and adjacent bases will be optimal with the
same objective value, because at the break point the limiting variable has
zero reduced cost. On the other hand, in the adjacent basis the value of
the limiting variable changes, because there it becomes basic, that leads to
changing of the value of the basic variable being analyzed. Note that on
determining the adjacent basis the bounds of the analyzed basic variable
are ignored as if it were a free (unbounded) variable, so it cannot leave the
current basis.

In the analysis report lower and upper limits of the objective coefficient
at the basic variable being analyzed, when the basis remains optimal, are
printed in the field ‘Obj coef range’. Corresponding values of the objec-
tive function at both lower and upper break points are printed in the field
‘Obj value at break point’, symbolic names of corresponding non-basic
limiting variables are printed in the field ‘Limiting variable’, and values
of the basic variable, which it would take on in the adjacent bases (as was
explained above) are printed in the field ‘Activity range’. If the objec-
tive coefficient can increase or/and decrease unlimitedly, the field ‘Obj coef
range’ contains -Inf and/or +Inf, resp. It also may happen that no dual
feasible adjacent basis exists (i.e. on entering the basis the limiting vari-
able can increase or decrease unlimitedly), in which case the field ‘Activity
range’ contains -Inf and/or +Inf.

113

For example (see the example report above), structural variable (column)
BINS is basic, its optimal value is 490.25271, and its objective coefficient is
0.17. The objective coefficient range for this column is [0.15982,0.17948].
This means that the basis remains optimal while the objective coefficient is
decreasing down to 0.15982, and further decreasing is limited by (auxiliary)
variable MN. If we make the objective coeflicient a bit less than 0.15982,
the limiting variable MN will enter the basis, and in that adjacent basis
the structural variable BIN3 will take on new optimal value 788.61314. At
the lower break point, where the objective coeflicient is exactly 0.15982,
the objective function takes on the value 291.22807 in both the current and
adjacent bases.

Note that if the basis does not change, the objective function depends
on the objective coefficient at the basic variable linearly, and the per-unit
change of the objective function is the value of the basic variable.

114

Chapter 4

Advanced API Routines

4.1 Background

Using vector and matrix notations LP problem (1.1)—(1.3) (see Section 1.1,
page 12) can be stated as follows:

minimize (or maximize)
z=clzg+ co (3.1)
subject to linear constraints
xr = Axg (3.2)

and bounds of variables

lp <zp <upg (3.3)
ls <zs <ug

where:

xr = (x1,...,2Ty) is the vector of auxiliary variables;

s = (Tm41,-- - Tm+n) is the vector of structural variables;

z is the objective function;

¢ = (c1,...,cp) is the vector of objective coefficients;

¢p is the constant term (“shift”) of the objective function;

A = (ai1,...,amy) is the constraint matrix;

lr = (l1,...,ly) is the vector of lower bounds of auxiliary variables;

ugp = (u1,...,uUn) is the vector of upper bounds of auxiliary variables;

ls = (lm+1, -+ lm+n) is the vector of lower bounds of structural variables;

Us = (Um+1, - - - s Um+n) is the vector of upper bounds of structural variables.

115

From the simplex method’s standpoint there is no difference between
auxiliary and structural variables. This allows combining all these variables
into one vector that leads to the following problem statement:

minimize (or maximize)
z2=0]c)Tz4 ¢ (3.4)
subject to linear constraints
(I]-A)z=0 (3.5)
and bounds of variables
I<zx<u (3.6)

where:

x = (zr | xg) is the (m + n)-vector of (all) variables;

(0 | ¢) is the (m + n)-vector of objective coefficients;*

(I | —A) is the augmented constraint m x (m -+ n)-matrix;?

l=(lr | lg) is the (m + n)-vector of lower bounds of (all) variables;

u = (ur | ug) is the (m + n)-vector of upper bounds of (all) variables.

By definition an LP basic solution geometrically is a point in the space
of all variables, which is the intersection of planes corresponding to active
constraints®. The space of all variables has the dimension m+n, therefore, to
define some basic solution we have to define m + n active constraints. Note
that m constraints (3.5) being linearly independent equalities are always
active, so remaining n active constraints can be chosen only from bound
constraints (3.6).

A variable is called non-basic, if its (lower or upper) bound is active,
otherwise it is called basic. Since, as was said above, exactly n bound con-
straints must be active, in any basic solution there are always n non-basic
variables and m basic variables. (Note that a free variable also can be
non-basic. Although such variable has no bounds, we can think it as the
difference between two non-negative variables, which both are non-basic in
this case.)

!Subvector 0 corresponds to objective coefficients at auxiliary variables.

*Note that due to auxiliary variables matrix (I | —A) contains the unity submatrix and
therefore has full rank. This means, in particular, that the system (3.5) has no linearly
dependent constraints.

3A constraint is called active if in a given point it is satisfied as equality, otherwise it
is called inactive.

116

Now consider how to determine numeric values of all variables for a given
basic solution.
Let II be an appropriate permutation matrix of the order (m+n). Then

we can write:
<“B> =11 <‘”R> = Iz, (3.7)
TN Tg

where xp is the vector of basic variables, x is the vector of non-basic
variables, x = (xg | xg) is the vector of all variables in the original order. In
this case the system of linear constraints (3.5) can be rewritten as follows:

(I|-A'Mz=0 = (B]|N) (ii) =0, (3.8)

where

(B|N)=1|-A0". (3.9)

Matrix B is a square non-singular m X m-matrix, which is composed from
columns of the augmented constraint matrix corresponding to basic vari-
ables. It is called the basis matriz or simply the basis. Matrix N is a rect-
angular m X n-matrix, which is composed from columns of the augmented
constraint matrix corresponding to non-basic variables.

From (3.8) it follows that:

Brp+ Nxy =0, (3.10)

therefore,
g =B 'Nay. (3.11)

Thus, the formula (3.11) shows how to determine numeric values of basic
variables g assuming that non-basic variables xy are fixed on their active
bounds.
The m x n-matrix
E=-B7'N, (3.12)

which appears in (3.11), is called the simplex tableau.* It shows how basic
variables depend on non-basic variables:

Tp = ZTN. (3.13)

The system (3.13) is equivalent to the system (3.5) in the sense that they
both define the same set of points in the space of (primal) variables, which

4This definition corresponds to the GLPK implementation.

117

satisfy to these systems. If, moreover, values of all basic variables satisfy
to their bound constraints (3.3), the corresponding basic solution is called
(primal) feasible, otherwise (primal) infeasible. It is understood that any
(primal) feasible basic solution satisfy to all constraints (3.2) and (3.3).

The LP theory says that if LP has optimal solution, it has (at least one)
basic feasible solution, which corresponds to the optimum. And the most
natural way to determine whether a given basic solution is optimal or not
is to use the Karush—Kuhn—Tucker optimality conditions.

For the problem statement (3.4)—(3.6) the optimality conditions are the
following:®

(I]-A)x=0 (3.14)

(I-ATr4+ XN+ =Vz=(0]) (3.15)

[<z<u (3.16)

A >0, A\, <0 (minimization) (3.17)

A <0, Ay >0 (maximization) (3.18)

M)k(zr — 1) =0, A)r(zp —ug) =0, E=1,2,....,m+n (3.19)

where: m = (w1, m9,...,Ty) is a m-vector of Lagrange multipliers for equal-
ity constraints (3.5); A\; = [(A)1, (A1)2, .., (A\1)n] is & n-vector of Lagrange
multipliers for lower bound constraints (3.6); Ay = [(Au)1, (Au)2, -+, (Au)n]
is a n-vector of Lagrange multipliers for upper bound constraints (3.6).

Condition (3.14) is the primal (original) system of equality constraints
(3.5).

Condition (3.15) is the dual system of equality constraints. It requires
the gradient of the objective function to be a linear combination of normals
to the planes defined by constraints of the original problem.

Condition (3.16) is the primal (original) system of bound constraints
(3.6).

Condition (3.17) (or (3.18) in case of maximization) is the dual system
of bound constraints.

Condition (3.19) is the complementary slackness condition. It requires,
for each original (auxiliary or structural) variable zy, that either its (lower or
upper) bound must be active, or zero bound of the corresponding Lagrange
multiplier ((A\;)g or (Ay)x) must be active.

In GLPK two multipliers (A;) and (\y)x for each primal (original) vari-
able zp, k =1,2,...,m + n, are combined into one multiplier:

Ak = Ak + (Aw)ks (3.20)

5These conditions can be appiled to any solution, not only to a basic solution.

118

which is called a dual variable for xp. This cannot lead to the ambiguity,
because both lower and upper bounds of z; cannot be active at the same
time,% so at least one of (\;) and (\,)x must be equal to zero, and because
these multipliers have different signs, the combined multiplier, which is their
sum, uniquely defines each of them.

Using dual variables A the dual system of bound constraints (3.17) and
(3.18) can be written in the form of so called “rule of signs” as follows:

Original bound Minimization Maximization
constraint | (A)k|(Au)k| (A)k + Ak | (M| Aui| M)k + (Au)k
—oco <z <400 =0|=0 A =0 =0]=0 A =0
x> g >0 =0 A >0 <0| =0 A <0
T < Uk =0 <0 A <0 =0 >0 A, >0
I <z < uy >0 <0 |[—oco< A< +00 <0 >0 |—00o< A< +00
zp=lg=ur |>0| <0 |—c0o<Ag<+o0 | <0| >0 |—00<A<+00

May note that each primal variable x; has its dual counterpart A\ and
vice versa. This allows applying the same partition for the vector of dual

variables as (3.7):
(AB> =TI, (3.21)
AN

where Ap is a vector of dual variables for basic variables zg, Ay is a vector
of dual variables for non-basic variables x .

By definition, bounds of basic variables are inactive constraints, so in
any basic solution A\g = 0. Corresponding values of dual variables Ay for
non-basic variables xy can be determined in the following way. From the
dual system (3.15) we have:

(I|-ATr4+x=(0]¢7, (3.22)
so multiplying both sides of (3.22) by matrix II gives:
(I | -A)T74+TIA=T1(0 | ¢)T. (3.23)
From (3.9) it follows that

(L | - A4)" = [(I [-A)I7]" = (B | N)". (3.24)

51f xp is a fixed variable, we can think it as double-bounded variable I, < zp < wug,
where [, = uy.

119

Further, we can apply the partition (3.7) also to the vector of objective

coefficients (see (3.4)):
(gﬁ) =11 (S) , (3.25)

where cp is a vector of objective coefficients at basic variables, cy is a vector
of objective coefficients at non-basic variables. Now, substituting (3.24),
(3.21), and (3.25) into (3.23), leads to:

(B | N)T7T+ (A |)\N)T = (cp | CN)T, (3.26)

and transposing both sides of (3.26) gives the system:

<f,§> ™+ Gi) — (ii) : (3.27)

which can be written as follows:

{BT7T+)\B:CB

NTx + Ay = cn (3.28)

Lagrange multipliers m = (m;) correspond to equality constraints (3.5) and
therefore can have any sign. This allows resolving the first subsystem of
(3.28) as follows:”

7=BT(cg —Ap) = —B TAg+ B Tep, (3.29)
and substitution of 7 from (3.29) into the second subsystem of (3.28) gives:
Av=-N'rt+eny=N'BTAp+ (ey — NTB Tep). (3.30)
The latter system can be written in the following final form:
Av = —-ET\g +d, (3.31)
where = is the simplex tableau (see (3.12)), and
d=cy —N'BTeg=cy+Zlcp (3.32)

is the vector of so called reduced costs of non-basic variables.

"B~T means (BT)"! = (B™HT.

120

Above it was said that in any basic solution Ag = 0, so Ay = d as it
follows from (3.31).

The system (3.31) is equivalent to the system (3.15) in the sense that
they both define the same set of points in the space of dual variables A,
which satisfy to these systems. If, moreover, values of all dual variables
Ay (i.e. reduced costs d) satisfy to their bound constraints (i.e. to the
“rule of signs”; see the table above), the corresponding basic solution is
called dual feasible, otherwise dual infeasible. It is understood that any dual
feasible solution satisfy to all constraints (3.15) and (3.17) (or (3.18) in case
of maximization).

It can be easily shown that the complementary slackness condition (3.19)
is always satisfied for any basic solution. Therefore, a basic solution® is
optimal if and only if it is primal and dual feasible, because in this case it
satifies to all the optimality conditions (3.14)—(3.19).

The meaning of reduced costs d = (d;) of non-basic variables can be
explained in the following way. From (3.4), (3.7), and (3.25) it follows that:

z=chag + chan + co. (3.33)

Substituting xp from (3.11) into (3.33) we can eliminate basic variables and
express the objective only through non-basic variables:

z = CE(*B_lNLEN) + C%I‘N +co =
= (¢ — LB 'N)ay +co =
(e = BB N)an + 6o (3.34)
= (CN — NTBfTCB)Tl'N +cop =
=dlzn + cp.
From (3.34) it is seen that reduced cost d; shows how the objective function

z depends on non-basic variable (xy); in the neighborhood of the current
basic solution, i.e. while the current basis remains unchanged.

81t is assumed that a complete basic solution has the form (z,A), i.e. it includes primal
as well as dual variables.

121

4.2 LP basis routines

4.2.1 glp_bf exists——check if the basis factorization exists
Synopsis

int glp_bf_exists(glp_prob *1p);

Returns

If the basis factorization for the current basis associated with the specified
problem object exists and therefore is available for computations, the routine
glp_bf_exists returns non-zero. Otherwise the routine returns zero.

Comments

Let the problem object have m rows and n columns. In GLPK the basis
matriz B is a square non-singular matrix of the order m, whose columns
correspond to basic (auxiliary and/or structural) variables. It is defined by
the following main equality:”

(B|N)= (I |-A,

where [is the unity matrix of the order m, whose columns correspond to
auxiliary variables; A is the original constraint m x n-matrix, whose columns
correspond to structural variables; (I | —A) is the augmented constraint
m X (m + n)-matrix, whose columns correspond to all (auxiliary and struc-
tural) variables following in the original order; II is a permutation matrix
of the order m + n; and N is a rectangular m x m-matrix, whose columns
correspond to non-basic (auxiliary and/or structural) variables.

For various reasons it may be necessary to solve linear systems with
matrix B. To provide this possibility the GLPK implementation maintains
an invertable form of B (that is, some representation of B~!) called the
basis factorization, which is an internal component of the problem object.
Typically, the basis factorization is computed by the simplex solver, which
keeps it in the problem object to be available for other computations.

Should note that any changes in the problem object, which affects the
basis matrix (e.g. changing the status of a row or column, changing a basic
column of the constraint matrix, removing an active constraint, etc.), inval-
idates the basis factorization. So before calling any API routine, which uses
the basis factorization, the application program must make sure (using the

9For more details see Subsection 4.1, page 115.

122

routine glp_bf_exists) that the factorization exists and therefore available
for computations.

4.2.2 glp_factorize—compute the basis factorization

Synopsis

int glp_factorize(glp_prob *1p);

Description

The routine glp_factorize computes the basis factorization for the current
basis associated with the specified problem object.'®

The basis factorization is computed from “scratch” even if it exists, so
the application program may use the routine glp_bf_exists, and, if the
basis factorization already exists, not to call the routine glp_factorize to
prevent an extra work.

The routine glp_factorize does not compute components of the basic
solution (i.e. primal and dual values).

Returns

0

GLP_EBADB

GLP_ESING

GLP_ECOND

The basis factorization has been successfully computed.

The basis matrix is invalid, because the number of basic
(auxiliary and structural) variables is not the same as the
number of rows in the problem object.

The basis matrix is singular within the working precision.

The basis matrix is ill-conditioned, i.e. its condition num-
ber is too large.

"The current basis is defined by the current statuses of rows (auxiliary variables) and
columns (structural variables).

123

4.2.3 glp_bf updated—-check if the basis factorization has
been updated

Synopsis
int glp_bf_updated(glp_prob *1p);

Returns

If the basis factorization has been just computed from “scratch”, the rou-
tine glp_bf_updated returns zero. Otherwise, if the factorization has been
updated at least once, the routine returns non-zero.

Comments

Updating the basis factorization means recomputing it to reflect changes in
the basis matrix. For example, on every iteration of the simplex method
some column of the current basis matrix is replaced by a new column that
gives a new basis matrix corresponding to the adjacent basis. In this case
computing the basis factorization for the adjacent basis from “scratch” (as
the routine glp_factorize does) would be too time-consuming.

On the other hand, since the basis factorization update is a numeric
computational procedure, applying it many times may lead to accumulating
round-off errors. Therefore the basis is periodically refactorized (reinverted)
from “scratch” (with the routine glp_factorize) that allows improving its
numerical properties.

The routine glp_bf_updated allows determining if the basis factoriza-
tion has been updated at least once since it was computed from “scratch”.

124

4.2.4 glp_get_bfcp—retrieve basis factorization control pa-
rameters

Synopsis
void glp_get_bfcp(glp_prob *1lp, glp_bfcp *parm);

Description

The routine glp_get_bfcp retrieves control parameters, which are used on
computing and updating the basis factorization associated with the specified
problem object.

Current values of the control parameters are stored in a glp_bfcp struc-
ture, which the parameter parm points to. For a detailed description of the
structure glp_bfcp see comments to the routine glp_set_bfcp in the next
subsection.

Comments

The purpose of the routine glp_get_bfcp is two-fold. First, it allows the
application program obtaining current values of control parameters used by
internal GLPK routines, which compute and update the basis factorization.

The second purpose of this routine is to provide proper values for all
fields of the structure glp_bfcp in the case when the application program
needs to change some control parameters.

4.2.5 glp_set_bfcp——change basis factorization control param-
eters

Synopsis

void glp_set_bfcp(glp_prob *1lp, const glp_bfcp *parm);

Description

The routine glp_set_bfcp changes control parameters, which are used by
internal GLPK routines on computing and updating the basis factorization
associated with the specified problem object.

New values of the control parameters should be passed in a structure
glp_bfcp, which the parameter parm points to. For a detailed description
of the structure glp_bfcp see paragraph “Control parameters” below.

The parameter parm can be specified as NULL, in which case all control
parameters are reset to their default values.

125

Comments

Before changing some control parameters with the routine glp_set_bfcp the
application program should retrieve current values of all control parameters
with the routine glp_get_bfcp. This is needed for backward compatibil-
ity, because in the future there may appear new members in the structure
glp_bfcp.

Note that new values of control parameters come into effect on a next
computation of the basis factorization, not immediately.

Example

glp_prob *lp;
glp_bfcp parm;

/* retrieve current values of control parameters */
glp_get_bfcp(lp, &parm);

/* change the threshold pivoting tolerance */
parm.piv_tol = 0.05;

/* set new values of control parameters */
glp_set_bfcp(lp, &parm);

Control parameters

This paragraph describes all basis factorization control parameters currently
used in the package. Symbolic names of control parameters are names of
corresponding members in the structure glp_bfcp.

int type (default: GLP_BF_FT)
Basis factorization type:
GLP_BF_FT—LU + Forrest—Tomlin update;
GLP_BF_BG—LU + Schur complement + Bartels—Golub update;
GLP_BF_GR—LU + Schur complement + Givens rotation update.
In case of GLP_BF_FT the update is applied to matrix U, while in cases
of GLP_BF_BG and GLP_BF_GR the update is applied to the Schur com-
plement.

int lu_size (default: 0)
The initial size of the Sparse Vector Area, in non-zeros, used on com-
puting LU-factorization of the basis matrix for the first time. If this
parameter is set to 0, the initial SVA size is determined automatically.

126

double piv_tol (default: 0.10)

Threshold pivoting (Markowitz) tolerance, 0 < piv_tol < 1, used on
computing LU-factorization of the basis matrix. Element u;; of the ac-
tive submatrix of factor U fits to be pivot if it satisfies to the stability
criterion |u;;| >= piv_tol - max |u|, i.e. if it is not very small in the
magnitude among other elements in the same row. Decreasing this pa-
rameter may lead to better sparsity at the expense of numerical accuracy,
and vice versa.

int piv_lim (default: 4)
This parameter is used on computing LU-factorization of the basis ma-
trix and specifies how many pivot candidates needs to be considered on
choosing a pivot element, piv_1im > 1. If piv_1lim candidates have been
considered, the pivoting routine prematurely terminates the search with
the best candidate found.

int suhl (default: GLP_ON)

This parameter is used on computing LU-factorization of the basis ma-
trix. Being set to GLP_ON it enables applying the following heuristic
proposed by Uwe Suhl: if a column of the active submatrix has no eligi-
ble pivot candidates, it is no more considered until it becomes a column
singleton. In many cases this allows reducing the time needed for pivot
searching. To disable this heuristic the parameter suhl should be set to
GLP_OFF.

double eps_tol (default: 1e-15)
Epsilon tolerance, eps_tol > 0, used on computing LU-factorization of
the basis matrix. If an element of the active submatrix of factor U is
less than eps_tol in the magnitude, it is replaced by exact zero.

double max_gro (default: 1e+10)
Maximal growth of elements of factor U, max_gro > 1, allowable on
computing LU-factorization of the basis matrix. If on some elimination
step the ratio upig/bmas (Where up;4 is the largest magnitude of elements
of factor U appeared in its active submatrix during all the factorization
process, byq, is the largest magnitude of elements of the basis matrix to
be factorized), the basis matrix is considered as ill-conditioned.

127

int nfs max (default: 100)

Maximal number of additional row-like factors (entries of the eta file),
nfs_max > 1, which can be added to LU-factorization of the basis matrix
on updating it with the Forrest—Tomlin technique. This parameter is
used only once, before LU-factorization is computed for the first time,
to allocate working arrays. As a rule, each update adds one new factor
(however, some updates may need no addition), so this parameter limits
the number of updates between refactorizations.

double upd_tol (default: 1e-6)
Update tolerance, 0 < upd_tol < 1, used on updating LU-factorization
of the basis matrix with the Forrest—Tomlin technique. If after updat-
ing the magnitude of some diagonal element wugy of factor U becomes
less than upd_tol - max(|ugs|, |u«g|), the factorization is considered as
inaccurate.

int nrs_max (default: 100)

Maximal number of additional rows and columns, nrs_max > 1, which
can be added to LU-factorization of the basis matrix on updating it with
the Schur complement technique. This parameter is used only once, be-
fore LU-factorization is computed for the first time, to allocate working
arrays. As a rule, each update adds one new row and column (how-
ever, some updates may need no addition), so this parameter limits the
number of updates between refactorizations.

int rs_size (default: 0)
The initial size of the Sparse Vector Area, in non-zeros, used to store
non-zero elements of additional rows and columns introduced on up-
dating LU-factorization of the basis matrix with the Schur complement
technique. If this parameter is set to 0, the initial SVA size is determined
automatically.

128

4.2.6 glp_get_bhead—retrieve the basis header information
Synopsis

int glp_get_bhead(glp_prob *lp, int k);

Description

The routine glp_get_bhead returns the basis header information for the
current basis associated with the specified problem object.

Returns

If basic variable (zg)k, 1 < k < m, is i-th auxiliary variable (1 <14 < m), the
routine returns i. Otherwise, if (zp) is j-th structural variable (1 < j < n),
the routine returns m+j. Here m is the number of rows and n is the number
of columns in the problem object.

Comments

Sometimes the application program may need to know which original (aux-
iliary and structural) variable correspond to a given basic variable, or, that
is the same, which column of the augmented constraint matrix (I | —A)
correspond to a given column of the basis matrix B.

The correspondence is defined as follows:!!

) =) = ()= ()

where xp is the vector of basic variables, zy is the vector of non-basic
variables, g is the vector of auxiliary variables following in their original
order,'? g is the vector of structural variables following in their original
order, II is a permutation matrix (which is a component of the basis factor-
ization).

Thus, if (zg)r = (zgr); is i-th auxiliary variable, the routine returns 4,
and if (zp)y = (xg); is j-th structural variable, the routine returns m + j,
where m is the number of rows in the problem object.

"¥or more details see Subsection 4.1, page 115.
12The original order of auxiliary and structural variables is defined by the ordinal num-
bers of corresponding rows and columns in the problem object.

129

4.2.7 glp_get_row_bind—retrieve row index in the basis
header
Synopsis

int glp_get_row_bind(glp_prob *1lp, int i);

Returns

The routine glp_get_row_bind returns the index k of basic variable (zg),
1 < k < m, which is i-th auxiliary variable (that is, the auxiliary variable
corresponding to i-th row), 1 < i < m, in the current basis associated with
the specified problem object, where m is the number of rows. However, if
i-th auxiliary variable is non-basic, the routine returns zero.

Comments

The routine glp_get_row_bind is an inverse to the routine glp_get_bhead:
if glp_get_bhead(lp, k) returns i, glp_get_row_bind(lp,?) returns k, and
vice versa.

4.2.8 glp_get_col bind—retrieve column index in the basis
header
Synopsis

int glp_get_col_bind(glp_prob *1lp, int j);

Returns

The routine glp_get_col_bind returns the index k of basic variable (zg),
1 < k < m, which is j-th structural variable (that is, the structural variable
corresponding to j-th column), 1 < j < n, in the current basis associated
with the specified problem object, where m is the number of rows, n is the
number of columns. However, if j-th structural variable is non-basic, the
routine returns zero.

Comments

The routine glp_get_col_bind is an inverse to the routine glp_get_bhead:
if glp_get_bhead(lp, k) returns m + j, glp_get_col_bind(lp, j) returns k,
and vice versa.

130

4.2.9 glp_ftran—perform forward transformation
Synopsis

void glp_ftran(glp_prob *lp, double x[]);

Description

The routine glp_ftran performs forward transformation (FTRAN), i.e. it
solves the system Bx = b, where B is the basis matrix associated with the
specified problem object, x is the vector of unknowns to be computed, b is
the vector of right-hand sides.

On entry to the routine elements of the vector b should be stored in
locations x[1], ..., x[m], where m is the number of rows. On exit the
routine stores elements of the vector x in the same locations.

4.2.10 glp_btran—perform backward transformation

Synopsis

void glp_btran(glp_prob *1p, double x[]);

Description

The routine glp_btran performs backward transformation (BTRAN), i.e.
it solves the system BTz = b, where B” is a matrix transposed to the basis
matrix B associated with the specified problem object, = is the vector of
unknowns to be computed, b is the vector of right-hand sides.

On entry to the routine elements of the vector b should be stored in
locations x[1], ..., x[m], where m is the number of rows. On exit the
routine stores elements of the vector x in the same locations.

131

4.2.11 glp_-warm_up—“warm up” LP basis
Synopsis

int glp_warm_up(glp_prob *P);

Description

The routine glp_warm_up “warms up” the LP basis for the specified prob-
lem object using current statuses assigned to rows and columns (that is, to
auxiliary and structural variables).

This operation includes computing factorization of the basis matrix (if
it does not exist), computing primal and dual components of basic solution,
and determining the solution status.

Returns

0 The operation has been successfully performed.

GLP_EBADB The basis matrix is invalid, because the number of basic
(auxiliary and structural) variables is not the same as the
number of rows in the problem object.

GLP_ESING The basis matrix is singular within the working precision.

GLP_ECOND The basis matrix is ill-conditioned, i.e. its condition num-

ber is too large.

132

4.3 Simplex tableau routines

4.3.1 glp_eval tab_row—compute row of the tableau
Synopsis

int glp_eval_tab_row(glp_prob *1lp, int k, int ind[],
double valll);

Description

The routine glp_eval_tab_row computes a row of the current simplex
tableau (see Subsection 3.1.1, formula (3.12)), which (row) corresponds to
some basic variable specified by the parameter k as follows: if 1 < k < m,
the basic variable is k-th auxiliary variable, and if m +1 < k < m + n, the
basic variable is (kK — m)-th structural variable, where m is the number of
rows and n is the number of columns in the specified problem object. The
basis factorization must exist.

The computed row shows how the specified basic variable depends on
non-basic variables:

zp = (zB)i =&1(an)1 + &i2(xn)2 + ... + &in(TN)n,

where &1, &, ..., &n are elements of the simplex table row, (xnx)1, (zn)2,
.., (xn)n are non-basic (auxiliary and structural) variables.

The routine stores column indices and corresponding numeric values of
non-zero elements of the computed row in unordered sparse format in loca-
tions ind[1], ..., ind[len] and val[1], ..., val[len], respectively, where
0 < 1len < n is the number of non-zero elements in the row returned on exit.

Element indices stored in the array ind have the same sense as index k,
i.e. indices 1 to m denote auxiliary variables while indices m + 1 to m +n
denote structural variables (all these variables are obviously non-basic by
definition).

Returns

The routine glp_eval_tab_row returns len, which is the number of non-
zero elements in the simplex table row stored in the arrays ind and val.
Comments

A row of the simplex table is computed as follows. At first, the routine checks
that the specified variable zj is basic and uses the permutation matrix II

133

(3.7) to determine index i of basic variable (zp);, which corresponds to xy.
The row to be computed is i-th row of the matrix = (3.12), therefore:

§=¢Z=—¢] B'N=—(B"¢)"N,

where ¢e; is i-th unity vector. So the routine performs BTRAN to obtain
i-th row of the inverse B~!:

0i =B Te;,
and then computes elements of the simplex table row as inner products:
T .
é-lj = —0; N]7 J = 1727"'7na

where Nj is j-th column of matrix N (3.9), which (column) corresponds to
non-basic variable (zy);. The permutation matrix II is used again to convert
indices j of non-basic columns to original ordinal numbers of auxiliary and
structural variables.

4.3.2 glp_eval tab_col-—compute column of the tableau
Synopsis

int glp_eval_tab_col(glp_prob *1lp, int k, int ind[],
double valll);

Description

The routine glp_eval_tab_col computes a column of the current simplex
tableau (see Subsection 3.1.1, formula (3.12)), which (column) corresponds
to some non-basic variable specified by the parameter k: if 1 < k < m, the
non-basic variable is k-th auxiliary variable, and if m + 1 < k < m + n, the
non-basic variable is (k — m)-th structural variable, where m is the number
of rows and n is the number of columns in the specified problem object. The
basis factorization must exist.

The computed column shows how basic variables depends on the speci-
fied non-basic variable z; = (zn);:

(IEB)l = ...+§1j(xN)j +...
(.CUB)Q = ...—f—fgj(xN)j —+...

134

where &5, &, ..., &m; are elements of the simplex table column, (zp)1,
(xB)2, --., (xB)m are basic (auxiliary and structural) variables.

The routine stores row indices and corresponding numeric values of non-
zero elements of the computed column in unordered sparse format in loca-
tions ind[1], ..., ind[len] and val[1], ..., val[len], respectively, where
0 < 1len < m is the number of non-zero elements in the column returned on
exit.

Element indices stored in the array ind have the same sense as index
k, i.e. indices 1 to m denote auxiliary variables while indices m + 1 to
m + n denote structural variables (all these variables are obviously basic by
definition).

Returns

The routine glp_eval_tab_col returns len, which is the number of non-
zero elements in the simplex table column stored in the arrays ind and val.

Comments

A column of the simplex table is computed as follows. At first, the routine
checks that the specified variable zj, is non-basic and uses the permutation
matrix II (3.7) to determine index j of non-basic variable (xy);, which
corresponds to xy.
The column to be computed is j-th column of the matrix = (3.12), there-
fore:
=, =Ze; = —B 'Ne; = —B™'Nj,

where e; is j-th unity vector, N; is j-th column of matrix N (3.9). So
the routine performs FTRAN to transform N; to the simplex table column
Z; = (&;) and uses the permutation matrix II to convert row indices ¢ to
original ordinal numbers of auxiliary and structural variables.

135

4.3.3 glp_transform_row—transform explicitly specified
row

Synopsis

int glp_transform_row(glp_prob *P, int len, int ind[],
double valll);

Description

The routine glp_transform_row performs the same operation as the rou-
tine glp_eval_tab_row with exception that the row to be transformed is
specified explicitly as a sparse vector.

The explicitly specified row may be thought as a linear form:

T = a1Tm+1 + 2Tm42 + ... + AnTin4n,

where z is an auxiliary variable for this row, a; are coefficients of the linear
form, x,,4; are structural variables.

On entry column indices and numerical values of non-zero coefficients
a; of the specified row should be placed in locations ind[1], ..., ind[len]
and val[1], ..., val[len], where len is number of non-zero coeflicients.

This routine uses the system of equality constraints and the current basis
in order to express the auxiliary variable x through the current non-basic
variables (as if the transformed row were added to the problem object and
the auxiliary variable z were basic), i.e. the resultant row has the form:

=& (xn)1 +&(@n)2 + .o F &N)n,

where &; are influence coefficients, (zx); are non-basic (auxiliary and struc-
tural) variables, n is the number of columns in the problem object.

On exit the routine stores indices and numerical values of non-zero co-
efficients &; of the resultant row in locations ind[1], ..., ind[len’] and
val[1], ..., val[len’], where 0 < len’ < m is the number of non-zero
coefficients in the resultant row returned by the routine. Note that indices
of non-basic variables stored in the array ind correspond to original ordinal
numbers of variables: indices 1 to m mean auxiliary variables and indices
m + 1 to m + n mean structural ones.

Returns

The routine glp_transform_row returns len’, the number of non-zero co-
efficients in the resultant row stored in the arrays ind and val.

136

4.3.4 glp_transform_col—transform explicitly specified
column

Synopsis

int glp_transform_col(glp_prob *P, int len, int ind[],
double valll);

Description

The routine glp_transform_col performs the same operation as the routine
glp_eval_tab_col with exception that the column to be transformed is
specified explicitly as a sparse vector.

The explicitly specified column may be thought as it were added to the
original system of equality constraints:

T1 = 611Tm+1 +...+ AnTmin + 1T
T2 = a21Tm+1 + ...+ AapnTm4n + a2T

Tm = Gm1Tm+1 + ..+ CmnTmtn + G2

where z; are auxiliary variables, x,,;; are structural variables (presented
in the problem object), = is a structural variable for the explicitly specified
column, a; are constraint coefficients at .

On entry row indices and numerical values of non-zero coefficients a; of
the specified column should be placed in locations ind[1], ..., ind[len]
and val[1], ..., val[len], where len is number of non-zero coeflicients.

This routine uses the system of equality constraints and the current basis
in order to express the current basic variables through the structural variable
x (as if the transformed column were added to the problem object and the
variable x were non-basic):

(1‘3)1 =...+ flx
(xB)2 = ...+ &2
(€8)m = oo G

where ; are influence coefficients, xp are basic (auxiliary and structural)
variables, m is the number of rows in the problem object.

On exit the routine stores indices and numerical values of non-zero coef-
ficients &; of the resultant column in locations ind[1], ..., ind[len’] and
val[1], ..., val[len’], where 0 < len’ < m is the number of non-zero

137

coefficients in the resultant column returned by the routine. Note that in-
dices of basic variables stored in the array ind correspond to original ordinal
numbers of variables, i.e. indices 1 to m mean auxiliary variables, indices
m + 1 to m + n mean structural ones.

Returns

The routine glp_transform_col returns len’, the number of non-zero co-
efficients in the resultant column stored in the arrays ind and val.

4.3.5 glp_prim_rtest—perform primal ratio test
Synopsis

int glp_prim_rtest(glp_prob *P, int len, const int ind[],
const double val[]l, int dir, double eps);

Description

The routine glp_prim_rtest performs the primal ratio test using an explic-
itly specified column of the simplex table.

The current basic solution associated with the LP problem object must
be primal feasible.

The explicitly specified column of the simplex table shows how the basic
variables xp depend on some non-basic variable z (which is not necessarily
presented in the problem object):

()1 = ...+ &z
(:EB)Q =...+ 5216
(@B = -+ Ema

The column is specifed on entry to the routine in sparse format. Ordinal
numbers of basic variables (zp); should be placed in locations ind[1], ...,
ind[len], where ordinal number 1 to m denote auxiliary variables, and or-
dinal numbers m+1 to m+n denote structural variables. The corresponding
non-zero coefficients &; should be placed in locations val[1], ..., val[len].
The arrays ind and val are not changed by the routine.

The parameter dir specifies direction in which the variable z changes
on entering the basis: +1 means increasing, —1 means decreasing.

The parameter eps is an absolute tolerance (small positive number, say,
107?) used by the routine to skip &;’s whose magnitude is less than eps.

138

The routine determines which basic variable (among those specified in
ind[1], ..., ind[len]) reaches its (lower or upper) bound first before any
other basic variables do, and which, therefore, should leave the basis in order
to keep primal feasibility.

Returns

The routine glp_prim_rtest returns the index, piv, in the arrays ind and
val corresponding to the pivot element chosen, 1 < piv < len. If the
adjacent basic solution is primal unbounded, and therefore the choice cannot
be made, the routine returns zero.

Comments

If the non-basic variable x is presented in the LP problem object, the input
column can be computed with the routine glp_eval_tab_col; otherwise, it
can be computed with the routine glp_transform_col.

4.3.6 glp_dual rtest—perform dual ratio test
Synopsis

int glp_dual_rtest(glp_prob *P, int len, const int ind[],
const double val[]l, int dir, double eps);

Description

The routine glp_dual_rtest performs the dual ratio test using an explicitly
specified row of the simplex table.

The current basic solution associated with the LP problem object must
be dual feasible.

The explicitly specified row of the simplex table is a linear form that
shows how some basic variable x (which is not necessarily presented in the
problem object) depends on non-basic variables xy:

z=Ci(zn)1 +&(@n)2+ ...+ (zn)n.

The row is specified on entry to the routine in sparse format. Ordinal
numbers of non-basic variables (zx); should be placed in locations ind[1],
.., ind[len], where ordinal numbers 1 to m denote auxiliary variables,
and ordinal numbers m + 1 to m 4+ n denote structural variables. The

139

corresponding non-zero coefficients &; should be placed in locations val[1],
..., val[len]. The arrays ind and val are not changed by the routine.

The parameter dir specifies direction in which the variable changes on
leaving the basis: +1 means that z goes on its lower bound, so its reduced
cost (dual variable) is increasing (minimization) or decreasing (maximiza-
tion); —1 means that x goes on its upper bound, so its reduced cost is
decreasing (minimization) or increasing (maximization).

The parameter eps is an absolute tolerance (small positive number, say,
107?) used by the routine to skip &;’s whose magnitude is less than eps.

The routine determines which non-basic variable (among those specified
in ind[1], ..., ind[len]) should enter the basis in order to keep dual
feasibility, because its reduced cost reaches the (zero) bound first before this
occurs for any other non-basic variables.

Returns

The routine glp_dual_rtest returns the index, piv, in the arrays ind and
val corresponding to the pivot element chosen, 1 < piv < len. If the
adjacent basic solution is dual unbounded, and therefore the choice cannot
be made, the routine returns zero.

Comments

If the basic variable z is presented in the LP problem object, the input row
can be computed with the routine glp_eval_tab_row; otherwise, it can be
computed with the routine glp_transform_row.

140

4.4 Post-optimal analysis routines

4.4.1 glp_analyze bound—analyze active bound of non-basic
variable

Synopsis

void glp_analyze_bound(glp_prob *P, int k, double *1limit1l,
int *varl, double *1limit2, int *var2);

Description

The routine glp_analyze_bound analyzes the effect of varying the active
bound of specified non-basic variable.

The non-basic variable is specified by the parameter k, where 1 < k < m
means auxiliary variable of corresponding row, and m +1 < k < m+n
means structural variable (column).

Note that the current basic solution must be optimal, and the basis
factorization must exist.

Results of the analysis have the following meaning.

valuel is the minimal value of the active bound, at which the basis still
remains primal feasible and thus optimal. -DBL_MAX means that the active
bound has no lower limit.

varl is the ordinal number of an auxiliary (1 to m) or structural (m + 1
to m + n) basic variable, which reaches its bound first and thereby limits
further decreasing the active bound being analyzed. if valuel = -DBL_MAX,
varl is set to 0.

value?2 is the maximal value of the active bound, at which the basis still
remains primal feasible and thus optimal. +DBL_MAX means that the active
bound has no upper limit.

var?2 is the ordinal number of an auxiliary (1 to m) or structural (m + 1
to m + n) basic variable, which reaches its bound first and thereby limits
further increasing the active bound being analyzed. if value2 = +DBL_MAX,
var?2 is set to 0.

The parameters valuel, varil, value2, var2 can be specified as NULL,
in which case corresponding information is not stored.

141

4.4.2 glp_analyze_coef—analyze objective coefficient at basic
variable

Synopsis

void glp_analyze_coef(glp_prob *P, int k, double *coefl,
int *varl, double *valuel, double *coef2, int *var2,
double *value2);

Description

The routine glp_analyze_coef analyzes the effect of varying the objective
coefficient at specified basic variable.

The basic variable is specified by the parameter &, where 1 < k < m
means auxiliary variable of corresponding row, and m+1 < k < m+n
means structural variable (column).

Note that the current basic solution must be optimal, and the basis
factorization must exist.

Results of the analysis have the following meaning.

coefl is the minimal value of the objective coefficient, at which the
basis still remains dual feasible and thus optimal. -DBL_MAX means that the
objective coefficient has no lower limit.

varl is the ordinal number of an auxiliary (1 to m) or structural (m + 1
to m + n) non-basic variable, whose reduced cost reaches its zero bound
first and thereby limits further decreasing the objective coefficient being
analyzed. If coefl = -DBL_MAX, varl is set to 0.

valuel is value of the basic variable being analyzed in an adjacent basis,
which is defined as follows. Let the objective coefficient reaches its minimal
value (coefl) and continues decreasing. Then the reduced cost of the limit-
ing non-basic variable (var1) becomes dual infeasible and the current basis
becomes non-optimal that forces the limiting non-basic variable to enter the
basis replacing there some basic variable that leaves the basis to keep pri-
mal feasibility. Should note that on determining the adjacent basis current
bounds of the basic variable being analyzed are ignored as if it were free
(unbounded) variable, so it cannot leave the basis. It may happen that no
dual feasible adjacent basis exists, in which case valuel is set to -DBL_MAX
or +DBL_MAX.

coef2 is the maximal value of the objective coefficient, at which the
basis still remains dual feasible and thus optimal. +DBL_MAX means that the
objective coefficient has no upper limit.

142

var2 is the ordinal number of an auxiliary (1 to m) or structural (m+ 1
to m+n) non-basic variable, whose reduced cost reaches its zero bound first
and thereby limits further increasing the objective coefficient being analyzed.
If coef2 = +DBL_MAX, var?2 is set to 0.

value? is value of the basic variable being analyzed in an adjacent basis,
which is defined exactly in the same way as valuel above with exception
that now the objective coefficient is increasing.

The parameters coefl, varil, valuel, coef2, var2, value2 can be spec-
ified as NULL, in which case corresponding information is not stored.

143

Chapter 5

Branch-and-Cut API| Routines

5.1 Introduction

5.1.1 Using the callback routine

The GLPK MIP solver based on the branch-and-cut method allows the
application program to control the solution process. This is attained by
means of the user-defined callback routine, which is called by the solver at
various points of the branch-and-cut algorithm.

The callback routine passed to the MIP solver should be written by the
user and has the following specification:!

void foo_bar(glp_tree *tree, void *info);

where tree is a pointer to the data structure glp_tree, which should be
used on subsequent calls to branch-and-cut interface routines, and info is
a transit pointer passed to the routine glp_intopt, which may be used by
the application program to pass some external data to the callback routine.

The callback routine is passed to the MIP solver through the control pa-
rameter structure glp_iocp (see Chapter “Basic API Routines”, Section
“Mixed integer programming routines”, Subsection “Solve MIP problem
with the branch-and-cut method”) as follows:

!The name foo_bar used here is a placeholder for the callback routine name.

144

glp_prob *mip;
glp_iocp parm;

glp_init_iocp(&parm);

parm.cb_func = foo_bar;

parm.cb_info e
ret = glp_intopt(mip, &parm);

To determine why it is being called by the MIP solver the callback routine
should use the routine glp_ios_reason (described in this section below),
which returns a code indicating the reason for calling. Depending on the
reason the callback routine may perform necessary actions to control the
solution process.

The reason codes, which correspond to various point of the branch-and-
cut algorithm implemented in the MIP solver, are described in Subsection
“Reasons for calling the callback routine” below.

To ignore calls for reasons, which are not processed by the callback rou-
tine, it should just return to the MIP solver doing nothing. For example:

void foo_bar(glp_tree *tree, void *info)

{
switch (glp_ios_reason(tree))
{ case GLP_IBRANCH:
break;
case GLP_ISELECT:
break;
default:
/* ignore call for other reasons */
break;
}
return;
}

To control the solution process as well as to obtain necessary information
the callback routine may use the branch-and-cut API routines described in
this chapter. Names of all these routines begin with ‘glp_ios_’.

145

5.1.2 Branch-and-cut algorithm

This section gives a schematic description of the branch-and-cut algorithm
as it is implemented in the GLPK MIP solver.

1. Initialization
Set L := {Py}, where L is the active list (i.e. the list of active subprob-
lems), Py is the original MIP problem to be solved.

Set 2%t := 400 (in case of minimization) or z
best

best .= —oo (in case of

maximization), where z°¢** is incumbent value, i.e. an upper (minimization)
or lower (maximization) global bound for z°P!, the optimal objective value

for PO,

2. Subproblem selection
If L =@ then GO TO 9.
Select P € L, i.e. make active subproblem P current.

3. Solving LP relaxation

Solve PLP | which is LP relaxation of P.

If PP has no primal feasible solution then GO TO 8.

Let z* be the optimal objective value for PX¥.

If 2P > 2%t (in case of minimization) or 2% < 2P*' (in case of maxi-
mization) then GO TO 8.

4. Adding “lazy” constraints

Let 22" be the optimal solution to PLF.

If there are “lazy” constraints (i.e. essential constraints not included in
the original MIP problem Py), which are violated at the optimal point P
add them to P, and GO TO 3.

5. Check for integrality

Let x; be a variable, which is required to be integer, and let bt ¢ gLP

J
be its value in the optimal solution to PL¥.
If LUJLP are integral for all integer variables, then a better integer feasible

solution is found. Store its components, set 2% := 2L and GO TO 8.

6. Adding cutting planes
If there are cutting planes (i.e. valid constraints for P), which are vio-
lated at the optimal point z%*, add them to P, and GO TO 3.

7. Branching
Select branching variable x;, i.e. a variable, which is required to be
integer, and whose value z2¥ € I’ is fractional in the optimal solution to

J
_[)Ll’

146

Create new subproblem PP (so called down branch), which is identical
to the current subproblem P with exception that the upper bound of z; is
replaced by LxJLPJ. (For example, if a:JLP = 3.14, the new upper bound of z;
in the down branch will be [3.14] = 3.)

Create new subproblem PY (so called up branch), which is identical to
the current subproblem P with exception that the lower bound of z; is
replaced by [x][-’P]. (For example, if acJLP = 3.14, the new lower bound of x;
in the up branch will be [3.14] = 4.)

Set L := (L\{P}) U {PP,PY}, i.e. remove the current subproblem P
from the active list L and add two new subproblems PP and PV to it. Then
GO TO 2.

8. Pruning

Remove from the active list L all subproblems (including the current
one), whose local bound Z is not better than the global bound 2", i.e. set
L := L\{P} for all P, where Z > 2% (in case of minimization) or z < 2%
(in case of maximization), and then GO TO 2.

The local bound Z for subproblem P is an lower (minimization) or upper
(maximization) bound for integer optimal solution to this subproblem (not to
the original problem). This bound is local in the sense that only subproblems
in the subtree rooted at node P cannot have better integer feasible solutions.
Note that the local bound is not necessarily the optimal objective value to
LP relaxation PLP.

9. Termination

If 2%* = 400 (in case of minimization) or z —oo (in case of max-
imization), the original problem Py has no integer feasible solution. Other-
wise, the last integer feasible solution stored on step 5 is the integer optimal
solution to the original problem Py with z°Pt = zt¢st. STOP.

best _

5.1.3 The search tree

On the branching step of the branch-and-cut algorithm the current subprob-
lem is divided into two? new subproblems, so the set of all subproblems can
be represented in the form of a rooted tree, which is called the search or
branch-and-bound tree. An example of the search tree is shown on Fig. 1.
Each node of the search tree corresponds to a subproblem, so the terms
‘node’ and ‘subproblem’ may be used synonymously.

2In more general cases the current subproblem may be divided into more than two
subproblems. However, currently such feature is not used in GLPK.

147

/\\
N /\\

@
Foo o & A
] Curem Active
O Nowactive @ Fathormed

Fig. 1. An example of the search tree.

In GLPK each node may have one of the following four statuses:

e current node is the active node currently being processed;

e active node is a leaf node, which still has to be processed;

e non-active node is a node, which has been processed, but not fathomed;

e fathomed node is a node, which has been processed and fathomed.

In the data structure representing the search tree GLPK keeps only
current, active, and non-active nodes. Once a node has been fathomed, it is
removed from the tree data structure.

Being created each node of the search tree is assigned a distinct positive
integer called the subproblem reference number, which may be used by the
application program to specify a particular node of the tree. The root node
corresponding to the original problem to be solved is always assigned the
reference number 1.

5.1.4 Current subproblem

The current subproblem is a MIP problem corresponding to the current node
of the search tree. It is represented as the GLPK problem object (glp_prob)
that allows the application program using API routines to access its content
in the standard way. If the MIP presolver is not used, it is the original

148

problem object passed to the routine glp_intopt; otherwise, it is an internal
problem object built by the MIP presolver.

Note that the problem object is used by the MIP solver itself during the
solution process for various purposes (to solve LP relaxations, to perfom
branching, etc.), and even if the MIP presolver is not used, the current
content of the problem object may differ from its original content. For
example, it may have additional rows, bounds of some rows and columns
may be changed, etc. In particular, LP segment of the problem object
corresponds to LP relaxation of the current subproblem. However, on exit
from the MIP solver the content of the problem object is restored to its
original state.

To obtain information from the problem object the application program
may use any API routines, which do not change the object. Using API
routines, which change the problem object, is restricted to stipulated cases.

5.1.5 The cut pool

The cut pool is a set of cutting plane constraints maintained by the MIP
solver. It is used by the GLPK cut generation routines and may be used by
the application program in the same way, i.e. rather than to add cutting
plane constraints directly to the problem object the application program
may store them to the cut pool. In the latter case the solver looks through
the cut pool, selects efficient constraints, and adds them to the problem
object.

5.1.6 Reasons for calling the callback routine

The callback routine may be called by the MIP solver for the following
reasons.

Request for subproblem selection

The callback routine is called with the reason code GLP_ISELECT if the cur-
rent subproblem has been fathomed and therefore there is no current sub-
problem.

In response the callback routine may select some subproblem from the
active list and pass its reference number to the solver using the routine
glp_ios_select_node, in which case the solver continues the search from
the specified active subproblem. If no selection is made by the callback
routine, the solver uses a backtracking technique specified by the control
parameter bt_tech.

149

To explore the active list (i.e. active nodes of the branch-and-bound
tree) the callback routine may use the routines glp_ios_next_node and
glp_ios_prev_node.

Request for preprocessing

The callback routine is called with the reason code GLP_IPREPRO if the cur-
rent subproblem has just been selected from the active list and its LP re-
laxation is not solved yet.

In response the callback routine may perform some preprocessing of the
current subproblem like tightening bounds of some variables or removing
bounds of some redundant constraints.

Request for row generation

The callback routine is called with the reason code GLP_IROWGEN if LP re-
laxation of the current subproblem has just been solved to optimality and
its objective value is better than the best known integer feasible solution.

In response the callback routine may add one or more “lazy” constraints
(rows), which are violated by the current optimal solution of LP relaxation,
using API routines glp_add_rows, glp_set_row_name, glp_set_row_bnds,
and glp_set_mat_row, in which case the solver will perform re-optimization
of LP relaxation. If there are no violated constraints, the callback routine
should just return.

Optimal solution components for LP relaxation can be obtained with
API routines glp_get_obj_val, glp_get_row_prim, glp_get_row_dual,
glp_get_col_prim, and glp_get_col_dual.

Request for heuristic solution

The callback routine is called with the reason code GLP_IHEUR if LP relax-
ation of the current subproblem being solved to optimality is integer infea-
sible (i.e. values of some structural variables of integer kind are fractional),
though its objective value is better than the best known integer feasible
solution.

In response the callback routine may try applying a primal heuristic to
find an integer feasible solution,® which is better than the best known one.
In case of success the callback routine may store such better solution in the
problem object using the routine glp_ios_heur_sol.

3Integer feasible to the original MIP problem, not to the current subproblem.

150

Request for cut generation

The callback routine is called with the reason code GLP_ICUTGEN if LP re-
laxation of the current subproblem being solved to optimality is integer
infeasible (i.e. values of some structural variables of integer kind are frac-
tional), though its objective value is better than the best known integer
feasible solution.

In response the callback routine may reformulate the current subproblem
(before it will be splitted up due to branching) by adding to the problem
object one or more cutting plane constraints, which cut off the fractional
optimal point from the MIP polytope.*

Adding cutting plane constraints may be performed in two ways. One
way is the same as for the reason code GLP_IROWGEN (see above), in which
case the callback routine adds new rows corresponding to cutting plane
constraints directly to the current subproblem.

The other way is to add cutting plane constraints to the cut pool, a set of
cutting plane constraints maintained by the solver, rather than directly to
the current subproblem. In this case after return from the callback routine
the solver looks through the cut pool, selects efficient cutting plane con-
straints, adds them to the current subproblem, drops other constraints, and
then performs re-optimization.

Request for branching

The callback routine is called with the reason code GLP_IBRANCH if LP re-
laxation of the current subproblem being solved to optimality is integer
infeasible (i.e. values of some structural variables of integer kind are frac-
tional), though its objective value is better than the best known integer
feasible solution.

In response the callback routine may choose some variable suitable for
branching (i.e. integer variable, whose value in optimal solution to LP relax-
ation of the current subproblem is fractional) and pass its ordinal number
to the solver using the routine glp_ios_branch_upon, in which case the
solver splits the current subproblem in two new subproblems and continues
the search. If no choice is made by the callback routine, the solver uses a
branching technique specified by the control parameter br_tech.

4Since these constraints are added to the current subproblem, they may be globally as
well as locally valid.

151

Better integer solution found

The callback routine is called with the reason code GLP_IBINGO if LP relax-
ation of the current subproblem being solved to optimality is integer feasible
(i.e. values of all structural variables of integer kind are integral within the
working precision) and its objective value is better than the best known
integer feasible solution.

Optimal solution components for LP relaxation can be obtained in the
same way as for the reason code GLP_IROWGEN (see above).

Components of the new MIP solution can be obtained with API routines
glp_mip_obj_val, glp_mip_row_val, and glp_mip_col_val. Note, how-
ever, that due to row/cut generation there may be additional rows in the
problem object.

The difference between optimal solution to LP relaxation and corre-
sponding MIP solution is that in the former case some structural variables
of integer kind (namely, basic variables) may have values, which are close
to nearest integers within the working precision, while in the latter case all
such variables have exact integral values.

The reason GLP_IBINGO is intended only for informational purposes, so
the callback routine should not modify the problem object in this case.

152

5.2 Basic routines

5.2.1 glp_ios_ reason—determine reason for calling the call-
back routine

Synopsis

int glp_ios_reason(glp_tree *tree);

Returns

The routine glp_ios_reason returns a code, which indicates why the user-
defined callback routine is being called:

GLP_ISELECT—request for subproblem selection;

GLP_IPREPRO—request for preprocessing;

GLP_IROWGEN—request for row generation;

GLP_IHEUR —request for heuristic solution;

GLP_ICUTGEN—request for cut generation;

GLP_IBRANCH—request for branching;

GLP_IBINGO —better integer solution found.

5.2.2 glp_ios_get_prob—access the problem object

Synopsis

glp_prob *glp_ios_get_prob(glp_tree *tree);

Description

The routine glp_ios_get_prob can be called from the user-defined callback
routine to access the problem object, which is used by the MIP solver. It
is the original problem object passed to the routine glp_intopt if the MIP
presolver is not used; otherwise it is an internal problem object built by the
presolver.

Returns

The routine glp_ios_get_prob returns a pointer to the problem object used
by the MIP solver.

153

Comments

To obtain various information about the problem instance the callback rou-
tine can access the problem object (i.e. the object of type glp_prob) using
the routine glp_ios_get_prob. It is the original problem object passed to
the routine glp_intopt if the MIP presolver is not used; otherwise it is an
internal problem object built by the presolver.

5.2.3 glp_ios_row_attr—determine additional row attributes
Synopsis

void glp_ios_row_attr(glp_tree *tree, int i, glp_attr *attr);

Description

The routine glp_ios_row_attr retrieves additional attributes of i-th row of
the current subproblem and stores them in the structure glp_attr, which
the parameter attr points to.

The structure glp_attr has the following fields:

int level
Subproblem level at which the row was created. (If level = 0, the
row was added either to the original problem object passed to the rou-
tine glp_intopt or to the root subproblem on generating “lazy” or/and
cutting plane constraints.)

int origin
The row origin flag:
GLP_RF_REG —regular constraint;
GLP_RF_LAZY—“lazy” constraint;
GLP_RF_CUT —cutting plane constraint.

int klass
The row class descriptor, which is a number passed to the routine
glp_ios_add_row as its third parameter. If the row is a cutting plane
constraint generated by the solver, its class may be the following:
GLP_RF_GMI —Gomory’s mixed integer cut;
GLP_RF_MIR —mixed integer rounding cut;
GLP_RF_COV —mixed cover cut;
GLP_RF_CLQ —clique cut.

154

5.2.4 glp_ios_mip_gap—compute relative MIP gap
Synopsis

double glp_ios_mip_gap(glp_tree *tree);

Description

The routine glp_ios_mip_gap computes the relative MIP gap (also called
duality gap) with the following formula:

|best mip — best_bnd|
ap =
%P = Tbest mip| + DBL_EPSILON

where best_mip is the best integer feasible solution found so far, best_bnd
is the best (global) bound. If no integer feasible solution has been found
yet, gap is set to DBL_MAX.

Returns

The routine glp_ios_mip_gap returns the relative MIP gap.

Comments

The relative MIP gap is used to measure the quality of the best integer
feasible solution found so far, because the optimal solution value z* for the
original MIP problem always lies in the range

best_bnd < z* < best_mip
in case of minimization, or in the range
best mip < z* < best_bnd

in case of maximization.
To express the relative MIP gap in percents the value returned by the
routine glp_ios_mip_gap should be multiplied by 100%.

155

5.2.5 glp_ios_node_data—access application-specific data
Synopsis

void *glp_ios_node_data(glp_tree *tree, int p);

Description

The routine glp_ios_node_data allows the application accessing a memory
block allocated for the subproblem (which may be active or inactive), whose
reference number is p.

The size of the block is defined by the control parameter cb_size passed
to the routine glp_intopt. The block is initialized by binary zeros on creat-
ing corresponding subproblem, and its contents is kept until the subproblem
will be removed from the tree.

The application may use these memory blocks to store specific data for
each subproblem.

Returns

The routine glp_ios_node_data returns a pointer to the memory block for
the specified subproblem. Note that if cb_size = 0, the routine returns a
null pointer.

5.2.6 glp_ios_select_ node—select subproblem to continue the
search

Synopsis

void glp_ios_select_node(glp_tree *tree, int p);

Description

The routine glp_ios_select_node can be called from the user-defined call-
back routine in response to the reason GLP_ISELECT to select an active sub-
problem, whose reference number is p. The search will be continued from
the subproblem selected.

156

5.2.7 glp_ios_heur_sol—provide solution found by heuristic
Synopsis

int glp_ios_heur_sol(glp_tree *tree, const double x[]);

Description

The routine glp_ios_heur_sol can be called from the user-defined callback
routine in response to the reason GLP_IHEUR to provide an integer feasible
solution found by a primal heuristic.

Primal values of all variables (columns) found by the heuristic should be
placed in locations z[1], ..., x[n], where n is the number of columns in the
original problem object. Note that the routine glp_ios_heur_sol does not
check primal feasibility of the solution provided.

Using the solution passed in the array x the routine computes value of
the objective function. If the objective value is better than the best known
integer feasible solution, the routine computes values of auxiliary variables
(rows) and stores all solution components in the problem object.

Returns

If the provided solution is accepted, the routine glp_ios_heur_sol returns
zero. Otherwise, if the provided solution is rejected, the routine returns
Nnon-zero.

5.2.8 glp_ios_can_branch—-check if can branch upon specified
variable
Synopsis

int glp_ios_can_branch(glp_tree *tree, int j);

Returns

If j-th variable (column) can be used to branch upon, the routine returns
non-zero, otherwise zero.

157

5.2.9 glp_ios_branch upon—choose variable to branch upon
Synopsis

void glp_ios_branch_upon(glp_tree *tree, int j, int sel);

Description

The routine glp_ios_branch_upon can be called from the user-defined call-
back routine in response to the reason GLP_IBRANCH to choose a branching
variable, whose ordinal number is j. Should note that only variables, for
which the routine glp_ios_can_branch returns non-zero, can be used to
branch upon.

The parameter sel is a flag that indicates which branch (subproblem)
should be selected next to continue the search:

GLP_DN_BRNCH—select down-branch;

GLP_UP_BRNCH—select up-branch;

GLP_NO_BRNCH—use general selection technique.

Comments

On branching the solver removes the current active subproblem from the
active list and creates two new subproblems (down- and up-branches), which
are added to the end of the active list. Note that the down-branch is created
before the up-branch, so the last active subproblem will be the up-branch.

The down- and up-branches are identical to the current subproblem with
exception that in the down-branch the upper bound of z;, the variable
chosen to branch upon, is replaced by Lx;J, while in the up-branch the
lower bound of x; is replaced by (:L‘ﬂ, where :L‘; is the value of z; in optimal
solution to LP relaxation of the current subproblem. For example, if x;‘ =
3.14, the new upper bound of z; in the down-branch is |3.14] = 3, and the
new lower bound in the up-branch is [3.14] = 4.)

Additionally the callback routine may select either down- or up-branch,
from which the solver will continue the search. If none of the branches is
selected, a general selection technique will be used.

158

5.2.10 glp_ios_terminate—terminate the solution process
Synopsis

void glp_ios_terminate(glp_tree *tree);

Description

The routine glp_ios_terminate sets a flag indicating that the MIP solver
should prematurely terminate the search.

159

5.3 The search tree exploring routines

5.3.1 glp_ios_tree_size—determine size of the search tree
Synopsis

void glp_ios_tree_size(glp_tree *tree, int *a_cnt, int *n_cnt,
int *t_cnt);

Description

The routine glp_ios_tree_size stores the following three counts which
characterize the current size of the search tree:

a_cnt is the current number of active nodes, i.e. the current size of the
active list;

n_cnt is the current number of all (active and inactive) nodes;

t_cnt is the total number of nodes including those which have been
already removed from the tree. This count is increased whenever a new
node appears in the tree and never decreased.

If some of the parameters a_cnt, n_cnt, t_cnt is a null pointer, the
corresponding count is not stored.

5.3.2 glp_ios_curr_ node—determine current active subprob-
lem
Synopsis

int glp_ios_curr_node(glp_tree *tree);

Returns

The routine glp_ios_curr_node returns the reference number of the current
active subproblem. However, if the current subproblem does not exist, the
routine returns zero.

160

5.3.3 glp_ios_next node—determine next active subproblem
Synopsis

int glp_ios_next_node(glp_tree *tree, int p);

Returns

If the parameter p is zero, the routine glp_ios_next_node returns the ref-
erence number of the first active subproblem. However, if the tree is empty,
zero is returned.

If the parameter p is not zero, it must specify the reference number of
some active subproblem, in which case the routine returns the reference
number of the next active subproblem. However, if there is no next active
subproblem in the list, zero is returned.

All subproblems in the active list are ordered chronologically, i.e. sub-
problem A precedes subproblem B if A was created before B.

5.3.4 glp_ios_prev_node—determine previous active subprob-
lem

Synopsis

int glp_ios_prev_node(glp_tree *tree, int p);

Returns

If the parameter p is zero, the routine glp_ios_prev_node returns the ref-
erence number of the last active subproblem. However, if the tree is empty,
zero is returned.

If the parameter p is not zero, it must specify the reference number of
some active subproblem, in which case the routine returns the reference
number of the previous active subproblem. However, if there is no previous
active subproblem in the list, zero is returned.

All subproblems in the active list are ordered chronologically, i.e. sub-
problem A precedes subproblem B if A was created before B.

161

5.3.5 glp_ios_up_node—determine parent subproblem
Synopsis

int glp_ios_up_node(glp_tree *tree, int p);

Returns

The parameter p must specify the reference number of some (active or inac-
tive) subproblem, in which case the routine iet_get_up_node returns the
reference number of its parent subproblem. However, if the specified sub-
problem is the root of the tree and, therefore, has no parent, the routine
returns zero.

5.3.6 glp_ios_node_level-—determine subproblem level
Synopsis

int glp_ios_node_level(glp_tree *tree, int p);

Returns

The routine glp_ios_node_level returns the level of the subproblem,
whose reference number is p, in the branch-and-bound tree. (The root sub-
problem has level 0, and the level of any other subproblem is the level of its
parent plus one.)

5.3.7 glp_ios_node bound—determine subproblem local
bound
Synopsis

double glp_ios_node_bound(glp_tree *tree, int p);

Returns

The routine glp_ios_node_bound returns the local bound for (active or
inactive) subproblem, whose reference number is p.

Comments

The local bound for subproblem p is an lower (minimization) or upper (max-
imization) bound for integer optimal solution to this subproblem (not to the

162

original problem). This bound is local in the sense that only subproblems in
the subtree rooted at node p cannot have better integer feasible solutions.

On creating a subproblem (due to the branching step) its local bound
is inherited from its parent and then may get only stronger (never weaker).
For the root subproblem its local bound is initially set to ~-DBL_MAX (min-
imization) or +DBL_MAX (maximization) and then improved as the root LP
relaxation has been solved.

Note that the local bound is not necessarily the optimal objective value
to corresponding LP relaxation.

5.3.8 glp_ios_best_ node—find active subproblem with best
local bound
Synopsis

int glp_ios_best_node(glp_tree *tree);

Returns

The routine glp_ios_best_node returns the reference number of the active
subproblem, whose local bound is best (i.e. smallest in case of minimization
or largest in case of maximization). However, if the tree is empty, the routine
returns zero.

Comments

The best local bound is an lower (minimization) or upper (maximization)
bound for integer optimal solution to the original MIP problem.

163

5.4 The cut pool routines

5.4.1 glp_ios_pool _size—determine current size of the cut
pool

Synopsis

int glp_ios_pool_size(glp_tree *tree);

Returns

The routine glp_ios_pool_size returns the current size of the cut pool,
that is, the number of cutting plane constraints currently added to it.

5.4.2 glp_ios_add row—add constraint to the cut pool
Synopsis

int glp_ios_add_row(glp_tree *tree, const char *name,
int klass, int flags, int len, const int ind[],
const double val[], int type, double rhs);

Description

The routine glp_ios_add_row adds specified row (cutting plane constraint)
to the cut pool.
The cutting plane constraint should have the following format:

Zajxj{i}b,

jed

where J is a set of indices (ordinal numbers) of structural variables, a; are
constraint coefficients, z; are structural variables, b is the right-hand side.

The parameter name specifies a symbolic name assigned to the constraint
(1 up to 255 characters). If it is NULL or an empty string, no name is assigned.

The parameter klass specifies the constraint class, which must be either
zero or a number in the range from 101 to 200. The application may use
this attribute to distinguish between cutting plane constraints of different
classes.”

The parameter flags currently is not used and must be zero.

5Constraint classes numbered from 1 to 100 are reserved for GLPK cutting plane
generators.

164

Ordinal numbers of structural variables (i.e. column indices) j € J and
numerical values of corresponding constraint coefficients a; must be placed
in locations ind[1], ..., ind[len] and val[1], ..., val[len], respectively,
where len = |J] is the number of constraint coefficients, 0 < len < n, and n
is the number of columns in the problem object. Coefficients with identical
column indices are not allowed. Zero coefficients are allowed, however, they
are ignored.

The parameter type s