Nettle Manual

For the Nettle Library version 3.0

Niels Moller

This manual is for the Nettle library (version 3.0), a low-level cryptographic library.
Originally written 2001 by Niels Méller, updated 2014.
This manual is placed in the public domain. You may freely copy it, in whole

or in part, with or without modification. Attribution is appreciated, but not
required.

Table of Contents

1 Introduction.............. 1
2 Copyright 2
3 Conventions............. 4
4 Example............ 5
5 Linking 7
6 Reference........ 8
6.1 Hash functions. 8
6.1.1 Recommended hash functions.............................. 8
6.1.1.1 SHA2B6 . . oottt ettt 8

6.1.1.2 SHA224 . ..o 9

6.1.1.3 SHABL . .o 9

6.1.1.4 SHA384 and other variants of SHA512 10

6.1.1.5 SHA3-224 11

6.1.1.6 SHAS-256 . ..ottt 12

6.1.1.7 SHASB-384 ... 12

6.1.1.8 SHAS3-512 . . i 13

6.1.2 Legacy hash functions............ i i 13
6.1.2.1 MDD ettt 14

0.1.2.2 MDD .. 14

6.1.2.3 MDA ..o 15

6.1.2.4 RIPEMDIGOttt e e 15

6.1.2.5 SHAL. ... e 16

6.1.2.6 GOSTHASHOt 16

6.1.3 The struct nettle_hash abstraction 17

6.2 Cipher functions 17
6.2. 1 AES . 19
6.2.2 ARCFOURo 20
6.2.3 ARCTWO ... e 21
6.2.4 BLOWTFISH ... 22
6.2.5 Camellia. ... 23
6.2.6 CASTI28 ... i 25
6.2.7 ChaCha...... ..o 25
6.2.8 DES ... 26
6.2.9 DE S .. 27
6.2.10 Salsa0 ... 28

6.2.11 SERPENT ... 29

6.2.12 TWOFISH.o e 30
6.2.13 The struct nettle_cipher abstraction................. 30
6.3 Cipher modes. ...ttt 31
6.3.1 Cipher Block Chainingo i, 32
6.3.2 Counter mode.........ccuuiiiiiiiiiiiiiiiiiiii e 33
6.4 Authenticated encryption with associated data 34
6.4.1 EAX . . 35
6.4.1.1 General EAX interface............................... 35
6.4.1.2 EAX helper macros...........ooiiiiiiiia, 36
6.4.1.3 EAX-AES128 interface..................coiiiiiiin, 37

6.4.2 Galois counter modecooiiiiiiiii 37
6.4.2.1 General GCM interfacecooiiiieiiiiiiian. 38
6.4.2.2 GCM helper macrosoouiiiiieeeennnnnnnn. 39
6.4.2.3 GCM-AES interface..................oooiiiiiiia, 40
6.4.2.4 GCM-Camellia interface 41

6.4.3 Counter with CBC-MAC mode........................... 42
6.4.3.1 General CCM interfaceot 43
6.4.3.2 CCM message interface, 44
6.4.3.3 CCM-AES interface........ ..., 45

6.4.4 ChaCha-Polyl305o 47
6.4.5 The struct nettle_aead abstraction 48
6.5 Keyed Hash Functions o i i 49
6.5.1 HMAC ... 49
6.5.2 Concrete HMAC functions ..., 50
6.5.2.1 HMAC-MDS5 ..\ttt et 51
6.5.2.2 HMAC-RIPEMDI60ccuiiiiiiiiin e iiieeeennn. ol
6.5.2.3 HMAC-SHAL. ..\t 51
6.5.2.4 HMAC-SHA256ottt 52
6.5.2.5 HMAC-SHABL2 ...ttt 52

6.5.3 UMAC ... 52
6.5.4 Polyl305. ... 54
6.6 Key derivation Functions.............. ... i i 55
6.6.1 PBEKDE2 ...\ttt 56
6.6.2 Concrete PBKDF2 functions............coovvviieneen.... 56
6.6.2.1 PBKDF2-HMAC-SHAL 0. 96
6.6.2.2 PBKDF2-HMAC-SHA256ovviiiiiiin i 57

6.7 Public-key algorithms i o7
6.7. 1 RS A .. 58
6.7.1.1 Nettle’s RSA support ..., 59

6.7.2 DS A . 61
6.7.2.1 Nettle’s DSA support ..o, 63
6.7.2.2 OId, deprecated, DSA interface 65

6.7.3 EIIPtiC CUIVES .« oottt ettt e e e 66
6.7.3.1 Side-channel silencet 67
6.7.3.2 ECDSA 67

6.8 Randomnesst 69
0.8.1 YaITOW . ..ottt 71

6.9 ASCII encoding.........oueinuiiiin e 74

ii

6.10 Miscellaneous functions
6.11 Compatibility functions

7 Traditional Nettle Soup

8 Installation

Function and Concept Index

iii

Chapter 1: Introduction 1

1 Introduction

Nettle is a cryptographic library that is designed to fit easily in more or less any context:
In crypto toolkits for object-oriented languages (C++, Python, Pike, ...), in applications like
LSH or GNUPG, or even in kernel space. In most contexts, you need more than the basic
cryptographic algorithms, you also need some way to keep track of available algorithms, their
properties and variants. You often have some algorithm selection process, often dictated by
a protocol you want to implement.

And as the requirements of applications differ in subtle and not so subtle ways, an API
that fits one application well can be a pain to use in a different context. And that is why
there are so many different cryptographic libraries around.

Nettle tries to avoid this problem by doing one thing, the low-level crypto stuff, and
providing a simple but general interface to it. In particular, Nettle doesn’t do algorithm
selection. It doesn’t do memory allocation. It doesn’t do any 1/0.

The idea is that one can build several application and context specific interfaces on
top of Nettle, and share the code, test cases, benchmarks, documentation, etc. Examples
are the Nettle module for the Pike language, and LSH, which both use an object-oriented
abstraction on top of the library.

This manual explains how to use the Nettle library. It also tries to provide some back-
ground on the cryptography, and advice on how to best put it to use.

Chapter 2: Copyright 2

2 Copyright

Nettle is dual licenced under the GNU General Public License version 2 or later, and the
GNU Lesser General Public License version 3 or later. When using Nettle, you must comply
fully with all conditions of at least one of these licenses. A few of the individual files are
licensed under more permissive terms, or in the public domain. To find the current status
of particular files, you have to read the copyright notices at the top of the files.

This manual is in the public domain. You may freely copy it in whole or in part, e.g.,
into documentation of programs that build on Nettle. Attribution, as well as contribution
of improvements to the text, is of course appreciated, but it is not required.

A list of the supported algorithms, their origins, and exceptions to the above licensing;:

AES The implementation of the AES cipher (also known as rijndael) is written by
Rafael Sevilla. Assembler for x86 by Rafael Sevilla and Niels Moller, Sparc
assembler by Niels Moller.

ARCFOUR
The implementation of the ARCFOUR (also known as RC4) cipher is written
by Niels Moller.

ARCTWO
The implementation of the ARCTWO (also known as RC2) cipher is written by
Nikos Mavroyanopoulos and modified by Werner Koch and Simon Josefsson.

BLOWFISH
The implementation of the BLOWFISH cipher is written by Werner Koch, copy-
right owned by the Free Software Foundation. Also hacked by Simon Josefsson
and Niels Moller.

CAMELLIA
The C implementation is by Nippon Telegraph and Telephone Corporation
(NTT), heavily modified by Niels Moller. Assembler for x86 and x86_64 by
Niels Moller.

CAST128 The implementation of the CAST128 cipher is written by Steve Reid. Released
into the public domain.

CHACHA Implemented by Joachim Strombergson, based on the implementation of
SALSA20 (see below). Assembly for x86_64 by Niels Méller.

DES The implementation of the DES cipher is written by Dana L. How, and released
under the LGPL, version 2 or later.
GOSTHASHY/

The C implementation of the GOST94 message digest is written by Aleksey
Kravchenko and was ported from the rhash library by Nikos Mavrogiannopou-
los. It is released under the MIT license.

MD2 The implementation of MD2 is written by Andrew Kuchling, and hacked some
by Andreas Sigfridsson and Niels Moller. Python Cryptography Toolkit license
(essentially public domain).

Chapter 2: Copyright 3

MDj This is almost the same code as for MD5 below, with modifications by Marcus
Comstedt. Released into the public domain.

MDb5 The implementation of the MD5 message digest is written by Colin Plumb. It
has been hacked some more by Andrew Kuchling and Niels Moller. Released
into the public domain.

PBKDF2 The C implementation of PBKDF2 is based on earlier work for Shishi and
GnuTLS by Simon Josefsson.

RIPEMD160
The implementation of RIPEMD160 message digest is based on the code in
libgcrypt, copyright owned by the Free Software Foundation. Ported to Nettle
by Andres Mejia.

SALSA20 The C implementation of SALSA20 is based on D. J. Bernstein’s reference
implementation (in the public domain), adapted to Nettle by Simon Josefsson,
and heavily modified by Niels Moller. Assembly for x86_64 and ARM by Niels
Moller.

SERPENT
The implementation of the SERPENT cipher is based on the code in libgerypt,
copyright owned by the Free Software Foundation. Adapted to Nettle by Simon
Josefsson and heavily modified by Niels Moller. Assembly for x86_64 by Niels
Moller.

POLY1305
Based on the implementation by Andrew M. (floodyberry), modified by Nikos
Mavrogiannopoulos and Niels Moller. Assembly for x86_64 by Niels Moller.

SHA1 The C implementation of the SHA1 message digest is written by Peter Gut-
mann, and hacked some more by Andrew Kuchling and Niels Moller. Released
into the public domain. Assembler for x86, x86_.64 and ARM by Niels Moller,
released under the LGPL.

SHA?2 Written by Niels Moller, using Peter Gutmann’s SHA1 code as a model.

SHAS3 Written by Niels Moller.

TWOFISH
The implementation of the TWOFISH cipher is written by Ruud de Rooij.

UMAC Written by Niels Moller.

RSA Written by Niels Moller. Uses the GMP library for bignum operations.

DSA Written by Niels Moller. Uses the GMP library for bignum operations.

ECDSA Written by Niels Moller. Uses the GMP library for bignum operations. Devel-

opment of Nettle’s ECC support was funded by the .SE Internet Fund.

Chapter 3: Conventions 4

3 Conventions

For each supported algorithm, there is an include file that defines a context struct, a few
constants, and declares functions for operating on the context. The context struct encap-
sulates all information needed by the algorithm, and it can be copied or moved in memory
with no unexpected effects.

For consistency, functions for different algorithms are very similar, but there are some
differences, for instance reflecting if the key setup or encryption function differ for encryp-
tion and decryption, and whether or not key setup can fail. There are also differences
between algorithms that don’t show in function prototypes, but which the application must
nevertheless be aware of. There is no big difference between the functions for stream ciphers
and for block ciphers, although they should be used quite differently by the application.

If your application uses more than one algorithm of the same type, you should probably
create an interface that is tailor-made for your needs, and then write a few lines of glue
code on top of Nettle.

By convention, for an algorithm named foo, the struct tag for the context struct is
foo_ctx, constants and functions uses prefixes like FOO_BLOCK_SIZE (a constant) and foo_
set_key (a function).

In all functions, strings are represented with an explicit length, of type size_t, and a
pointer of type uint8_t * or const uint8_t *. For functions that transform one string
to another, the argument order is length, destination pointer and source pointer. Source
and destination areas are usually of the same length. When they differ, e.g., for ccm_
encrypt_message, the length argument specifies the size of the destination area. Source
and destination pointers may be equal, so that you can process strings in place, but source
and destination areas must not overlap in any other way.

Many of the functions lack return value and can never fail. Those functions which can
fail, return one on success and zero on failure.

Chapter 4: Example 5

4 Example

A simple example program that reads a file from standard input and writes its SHA1 check-
sum on standard output should give the flavor of Nettle.

#include <stdio.h>
#include <stdlib.h>

#include <nettle/shal.h>
#define BUF_SIZE 1000

static void
display_hex(unsigned length, uint8_t *data)
{

unsigned 1i;

for (i = 0; i<length; i++)
printf ("%02x ", datalil);

printf ("\n");
}

int
main(int argc, char *xargv)
{
struct shal_ctx ctx;
uint8_t buffer [BUF_SIZE];
uint8_t digest[SHA1_DIGEST_SIZE];

shal_init(&ctx);
for (;;)
{
int done = fread(buffer, 1, sizeof(buffer), stdin);
shal_update(&ctx, done, buffer);
if (done < sizeof (buffer))
break;
}
if (ferror(stdin))
return EXIT_FAILURE;

shal_digest(&ctx, SHA1_DIGEST_SIZE, digest);

display_hex(SHA1_DIGEST_SIZE, digest);
return EXIT_SUCCESS;

Chapter 4: Example 6

On a typical Unix system, this program can be compiled and linked with the command
line

gcc sha-example.c -o sha-example -lnettle

Chapter 5: Linking 7

5 Linking

Nettle actually consists of two libraries, ‘libnettle’ and ‘libhogweed’. The ‘libhogweed’
library contains those functions of Nettle that uses bignum operations, and depends on
the GMP library. With this division, linking works the same for both static and dynamic
libraries.

If an application uses only the symmetric crypto algorithms of Nettle (i.e., block ciphers,
hash functions, and the like), it’s sufficient to link with -1nettle. If an application also
uses public-key algorithms, the recommended linker flags are -1hogweed -1nettle -1lgmp.
If the involved libraries are installed as dynamic libraries, it may be sufficient to link with
just —lhogweed, and the loader will resolve the dependencies automatically.

Chapter 6: Reference 8

6 Reference
This chapter describes all the Nettle functions, grouped by family.

6.1 Hash functions

A cryptographic hash function is a function that takes variable size strings, and maps them
to strings of fixed, short, length. There are naturally lots of collisions, as there are more
possible 1MB files than 20 byte strings. But the function is constructed such that is hard to
find the collisions. More precisely, a cryptographic hash function H should have the following
properties:

One-way Given a hash value H(x) it is hard to find a string x that hashes to that value.

Collision-resistant
It is hard to find two different strings, x and y, such that H(x) = H(y).

Hash functions are useful as building blocks for digital signatures, message authentication
codes, pseudo random generators, association of unique ids to documents, and many other
things.

The most commonly used hash functions are MD5 and SHA1. Unfortunately, both these
fail the collision-resistance requirement; cryptologists have found ways to construct colliding
inputs. The recommended hash functions for new applications are SHA2 (with main variants
SHA256 and SHA512). At the time of this writing (December 2012), the winner of the
NIST SHA3 competition has recently been announced, and the new SHA3 (earlier known
as Keccak) and other top SHA3 candidates may also be reasonable alternatives.

6.1.1 Recommended hash functions

The following hash functions have no known weaknesses, and are suitable for new applica-
tions. The SHA2 family of hash functions were specified by NIST, intended as a replacement
for SHA1.

6.1.1.1 SHA256

SHA256 is a member of the SHA2 family. It outputs hash values of 256 bits, or 32 octets.
Nettle defines SHA256 in ‘<nettle/sha2.h>’.

struct sha256_ctx [Context struct]

SHA256_DIGEST_SIZE [Constant|
The size of a SHA256 digest, i.e. 32.

SHA256_BLOCK_SIZE [Constant|
The internal block size of SHA256. Useful for some special constructions, in particular
HMAC-SHA256.

void sha256_init (struct sha256_ctx *ctx) [Function]
Initialize the SHA256 state.

void sha256_update (struct sha256_ctx *ctx, size_t length, const [Function]
uint8-t *data)
Hash some more data.

Chapter 6: Reference 9

void sha256_digest (struct sha256_ctx *ctx, size_t length, uint8-t [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA256_DIGEST_SIZE, in which case only the first length octets
of the digest are written.

This function also resets the context in the same way as sha256_init.

Earlier versions of nettle defined SHA256 in the header file ‘<nettle/sha.h>’, which is
now deprecated, but kept for compatibility.

6.1.1.2 SHA224

SHAZ224 is a variant of SHA256, with a different initial state, and with the output trun-
cated to 224 bits, or 28 octets. Nettle defines SHA224 in ‘<nettle/sha2.h>’ (and in
‘<nettle/sha.h>’, for backwards compatibility).

struct sha224_ctx [Context struct]

SHA224 _DIGEST_SIZE [Constant|
The size of a SHA224 digest, i.e. 28.

SHA224 _BLOCK_SIZE [Constant|
The internal block size of SHA224. Useful for some special constructions, in particular

HMAC-SHA224.

void sha224_init (struct sha224_ctx *ctx) [Function]
Initialize the SHA224 state.

void sha224_update (struct sha224_ctx *ctx, size_-t length, const [Function]
uint8-t *data)
Hash some more data.

void sha224_digest (struct sha224_ctx *ctx, size-t length, uint8_t [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA224_DIGEST_SIZE, in which case only the first length octets
of the digest are written.

This function also resets the context in the same way as sha224_init.

6.1.1.3 SHA512

SHAb12 is a larger sibling to SHA256, with a very similar structure but with both the
output and the internal variables of twice the size. The internal variables are 64 bits rather
than 32, making it significantly slower on 32-bit computers. It outputs hash values of 512
bits, or 64 octets. Nettle defines SHA512 in ‘<nettle/sha2.h>’ (and in ‘<nettle/sha.h>’,
for backwards compatibility).

struct shab12_ctx [Context struct]

SHA512_DIGEST_SIZE [Constant|
The size of a SHA512 digest, i.e. 64.

Chapter 6: Reference 10

SHA512_BLOCK_SIZE [Constant)|
The internal block size of SHA512, 128. Useful for some special constructions, in
particular HMAC-SHA512.

void shab12_init (struct sha512_ctx *ctx) [Function]
Initialize the SHA512 state.

void shab12_update (struct sha512_ctx *ctx, size_t length, const [Function]
uint8-t *data)
Hash some more data.

void shab12_digest (struct sha512_ctx *ctx, size_t length, uint8_t [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA512_DIGEST_SIZE, in which case only the first length octets
of the digest are written.

This function also resets the context in the same way as sha512_init.

6.1.1.4 SHA384 and other variants of SHA512

Several variants of SHA512 have been defined, with a different initial state, and with the
output truncated to shorter length than 512 bits. Naming is a bit confused, these algorithms
are call SHA512-224, SHA512-256 and SHA384, for output sizes of 224, 256 and 384 bits,
respectively. Nettle defines these in ‘<nettle/sha2.h>’ (and in ‘<nettle/sha.h>’; for
backwards compatibility).

struct shab12_224_ctx [Context struct]
struct shab12_256_ctx [Context struct]
struct sha384_ctx [Context struct]

These context structs are all the same as shab12_ctx. They are defined as simple
preprocessor aliases, which may cause some problems if used as identifiers for other
purposes. So avoid doing that.

SHA512_224 DIGEST_SIZE [Constant)|

SHA512_256_DIGEST_SIZE [Constant)]

SHA384_DIGEST_SIZE [Constant|
The digest size for each variant, i.e., 28, 32, and 48, respectively.

SHA512_224 BLOCK_SIZE [Constant|

SHA512_256_BLOCK_SIZE [Constant)]

SHA384_BLOCK_SIZE [Constant)|

The internal block size, same as SHA512_BLOCK_SIZE, i.e., 128. Useful for some
special constructions, in particular HMAC-SHA384.

void shab12_224_init (struct sha512_224_ctx *ctx) [Function]
void shab12_256_init (struct sha512_256_ctx *ctx) [Function]
void sha384_init (struct sha384_ctx *ctx) [Function]

Initialize the context struct.

Chapter 6: Reference 11

void shab12_224_update (struct sha512_224_ctx *ctx, size_t length, [Function]
const uint8_-t *data)

void shab12_256_update (struct sha512_256_ctx *ctx, size_t length, [Function]
const uint8-t *data)

void sha384_update (struct sha384_ctx *ctx, size_t length, const [Function]

uint8_t *data)
Hash some more data. These are all aliases for shab512_update, which does the same
thing.

void shab12_224_digest (struct sha512_224_ctx *ctx, size_t length, [Function]
uint8_t *digest)
void shab12_256_digest (struct sha512_256_ctx *ctx, size_t length, [Function]
uint8-t *digest)
void sha384_digest (struct sha384_ctx *ctx, size_t length, uint8_t [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than the specified digest size, in which case only the first length octets
of the digest are written.

These function also reset the context in the same way as the corresponding init
function.

6.1.1.5 SHA3-224

The SHA3 hash functions were specified by NIST in response to weaknesses in SHA1, and
doubts about SHA2 hash functions which structurally are very similar to SHA1. SHAS is
a result of a competition, where the winner, also known as Keccak, was designed by Guido
Bertoni, Joan Daemen, Michaél Peeters and Gilles Van Assche. It is structurally very
different from all widely used earlier hash functions. Like SHA2, there are several variants,
with output sizes of 224, 256, 384 and 512 bits (28, 32, 48 and 64 octets, respectively).

Nettle’s implementation of SHA3 should be considered experimental. It is based on
the design from the competition. Unfortunately, it is likely that when the standard
is finalized, there will be small changes making Nettle’s current implementation
incompatible with the standard. Nettle’s implementation may need incompatible
changes to track standardization. Latest standard draft, at the time of writing, is at
http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf.

Nettle defines SHA3-224 in ‘<nettle/sha3.h>’.

struct sha3_224_ctx [Context struct]

SHA3_224_DIGEST_SIZE [Constant|
The size of a SHA3_224 digest, i.e., 28.

SHA3_224 BLOCK_SIZE [Constant)]
The internal block size of SHA3_224.

void sha3_224_init (struct sha3-224_ctx *ctx) [Function]
Initialize the SHA3-224 state.

Chapter 6: Reference 12

void sha3_224_update (struct sha3-224_ctx *ctx, size_t length, const [Function]
uint8-t *data)
Hash some more data.

void sha3_224_digest (struct sha3-224_ctx *ctx, size_t length, [Function]
uint8_t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA3_224_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context.

6.1.1.6 SHA3-256

This is SHA3 with 256-bit output size, and possibly the most useful of the SHA3 hash
functions.

Nettle defines SHA3-256 in ‘<nettle/sha3.h>’.

struct sha3_256_ctx [Context struct]

SHA3_256_DIGEST_SIZE [Constant|
The size of a SHA3_256 digest, i.e., 32.

SHA3_256_BLOCK_SIZE [Constant|
The internal block size of SHA3_256.

void sha3_256_init (struct sha3_256_ctx *ctx) [Function]
Initialize the SHA3-256 state.

void sha3_256_update (struct sha3-256_ctx *ctx, size_t length, const [Function]
uint8_t *data)
Hash some more data.

void sha3_256_digest (struct sha3-256_ctx *ctx, size_t length, [Function]
uint8_t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA3_256_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context.

6.1.1.7 SHA3-384
This is SHA3 with 384-bit output size.

Nettle defines SHA3-384 in ‘<nettle/sha3.h>’.
struct sha3_384_ctx [Context struct]

SHA3_384_DIGEST_SIZE [Constant)|
The size of a SHA3_384 digest, i.e., 48.

SHA3_384_BLOCK_SIZE [Constant|
The internal block size of SHA3_384.

Chapter 6: Reference 13

void sha3_384_init (struct sha3-384_ctx *ctx) [Function]
Initialize the SHA3-384 state.

void sha3_384_update (struct sha3-384_ctx *ctx, size_t length, const [Function]
uint8_t *data)
Hash some more data.

void sha3_384_digest (struct sha3_384_ctx *ctx, size_t length, [Function]
uint8_t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA3_384_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context.

6.1.1.8 SHA3-512
This is SHA3 with 512-bit output size.
Nettle defines SHA3-512 in ‘<nettle/sha3.h>’.

struct sha3_512_ctx [Context struct]

SHA3_512_DIGEST_SIZE [Constant|
The size of a SHA3_512 digest, i.e. 64.

SHA3_512_BLOCK_SIZE [Constant|
The internal block size of SHA3_512.

void sha3_512_init (struct sha3_512_ctx *ctx) [Function]
Initialize the SHA3-512 state.

void sha3_512_update (struct sha3_-512_ctx *ctx, size_t length, const [Function]
uint8_t *data)
Hash some more data.

void sha3_512_digest (struct sha3_-512_ctx *ctx, size_t length, [Function]
uint8_t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA3_512_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context.

6.1.2 Legacy hash functions

The hash functions in this section all have some known weaknesses, and should be avoided
for new applications. These hash functions are mainly useful for compatibility with old
applications and protocols. Some are still considered safe as building blocks for particu-
lar constructions, e.g., there seems to be no known attacks against HMAC-SHA1 or even
HMAC-MD5. In some important cases, use of a “legacy” hash function does not in itself
make the application insecure; if a known weakness is relevant depends on how the hash
function is used, and on the threat model.

Chapter 6: Reference 14

6.1.2.1 MD5

MD5 is a message digest function constructed by Ronald Rivest, and described in REC
1321. It outputs message digests of 128 bits, or 16 octets. Nettle defines MD5 in
‘nettle/md5.h>’.

struct md5_ctx [Context struct]

MD5_DIGEST_SIZE [Constant)|
The size of an MD5 digest, i.e. 16.

MD5_BLOCK_SIZE [Constant)|
The internal block size of MD5. Useful for some special constructions, in particular
HMAC-MDS5.

void md5_init (struct md5_ctx *ctx) [Function]

Initialize the MD5 state.

void md5_update (struct mdi_ctx *ctx, size_t length, const uint8_t [Function]
*data)
Hash some more data.
void md5_digest (struct md5_ctx *ctx, size_t length, uint8_t [Function]
*digest)

Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than MD5_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as md5_init.

The normal way to use MD5 is to call the functions in order: First md5_init, then
md5_update zero or more times, and finally md5_digest. After md5_digest, the context is
reset to its initial state, so you can start over calling md5_update to hash new data.

To start over, you can call md5_init at any time.

6.1.2.2 MD2
MD?2 is another hash function of Ronald Rivest’s, described in RFC 1319. It outputs
message digests of 128 bits, or 16 octets. Nettle defines MD2 in ‘<nettle/md2.h>’.

struct md2_ctx [Context struct]

MD2_DIGEST_SIZE [Constant)]
The size of an MD2 digest, i.e. 16.

MD2_BLOCK_SIZE [Constant)]
The internal block size of MD2.

void md2_init (struct md2_ctx *ctx) [Function]
Initialize the MD2 state.

void md2_update (struct md2_ctx *ctx, size-t length, const uint8_t [Function]
*data)
Hash some more data.

Chapter 6: Reference 15

void md2_digest (struct md2_ctx *ctx, size_t length, uint8_t [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than MD2_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as md2_init.

6.1.2.3 MD4

MD4 is a predecessor of MD5, described in RFC 1320. Like MDJ5, it is constructed by
Ronald Rivest. It outputs message digests of 128 bits, or 16 octets. Nettle defines MD4
in ‘“nettle/md4.h>’. Use of MD4 is not recommended, but it is sometimes needed for
compatibility with existing applications and protocols.

struct md4_ctx [Context struct]

MD4_DIGEST_SIZE [Constant)|
The size of an MD4 digest, i.e. 16.

MD4_BLOCK_SIZE [Constant|
The internal block size of MDA4.

void md4_init (struct md4_ctx *ctx) [Function]
Initialize the MD4 state.

void md4_update (struct md4_ctx *ctx, size-t length, const uint8_t [Function]
*data)
Hash some more data.
void md4_digest (struct md4_ctx *ctx, size-t length, uint8_t [Function]
*digest)

Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than MD4_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as md4_init.

6.1.2.4 RIPEMD160

RIPEMDI160 is a hash function designed by Hans Dobbertin, Antoon Bosselaers, and Bart
Preneel, as a strengthened version of RIPEMD (which, like MD4 and MD5, fails the
collision-resistance requirement). It produces message digests of 160 bits, or 20 octets.
Nettle defined RIPEMD160 in ‘nettle/ripemd160.h’.

struct ripemd160_ctx [Context struct]

RIPEMD160_DIGEST_SIZE [Constant)|
The size of a RIPEMD160 digest, i.e. 20.

RIPEMD160_BLOCK_SIZE [Constant|
The internal block size of RIPEMD160.

void ripemd160_init (struct ripemdl160_ctx *ctx) [Function]
Initialize the RIPEMD160 state.

Chapter 6: Reference 16

void ripemd160_update (struct ripemdl60-ctx *ctx, size_t length, [Function]
const uint8-t *data)
Hash some more data.

void ripemd160_digest (struct ripemdl60_ctx *ctx, size_t length, [Function]
uint8_t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than RIPEMD160_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context in the same way as ripemd160_init.

6.1.2.5 SHA1

SHA1 is a hash function specified by NIST (The U.S. National Institute for Standards
and Technology). It outputs hash values of 160 bits, or 20 octets. Nettle defines SHA1 in
‘<nettle/shal.h>’ (and in ‘<nettle/sha.h>’, for backwards compatibility).

struct shal_ctx [Context struct]

SHA1_DIGEST_SIZE [Constant|
The size of a SHA1 digest, i.e. 20.

SHA1_BLOCK_SIZE [Constant)|
The internal block size of SHA1. Useful for some special constructions, in particular
HMAC-SHAL.

void shal_init (struct shal_ctx *ctx) [Function]

Initialize the SHA1 state.

void shal_update (struct shal_ctx *ctx, size-t length, const uint8-t [Function]
*data)
Hash some more data.
void shal_digest (struct shal_ctx *ctx, size_-t length, uint8_t [Function]
*digest)

Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA1_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as shal_init.

6.1.2.6 GOSTHASH94

The GOST94 or GOST R 34.11-94 hash algorithm is a Soviet-era algorithm used in Russian
government standards (see RFC 4357). It outputs message digests of 256 bits, or 32 octets.
Nettle defines GOSTHASH94 in ‘<nettle/gosthash94.h>’.

struct gosthash94_ctx [Context struct]
GOSTHASH94 _DIGEST_SIZE [Constant|
The size of a GOSTHASH94 digest, i.e. 32.

GOSTHASH94 _BLOCK_SIZE [Constant|
The internal block size of GOSTHASH94, i.e., 32.

Chapter 6: Reference 17

void gosthash94_init (struct gosthash94_ctx *ctx) [Function]
Initialize the GOSTHASH94 state.

void gosthash94_update (struct gosthash94_ctx *ctx, size_t length, [Function]
const uint8-t *data)
Hash some more data.

void gosthash94_digest (struct gosthash94_ctx *ctx, size_t length, [Function]
uint8_t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than GOSTHASH94_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context in the same way as gosthash94_init.

6.1.3 The struct nettle_hash abstraction

Nettle includes a struct including information about the supported hash functions. It is
defined in ‘<nettle/nettle-meta.h>’, and is used by Nettle’s implementation of HMAC
(see Section 6.5 [Keyed hash functions], page 49).

struct nettle_hash name context_size digest_size block_size init [Meta struct]
update digest

The last three attributes are function pointers, of types nettle_hash_init_func *,

nettle_hash_update_func *, and nettle_hash_digest_func *. The first argument

to these functions is void * pointer to a context struct, which is of size context_size

Constant Struct
Constant Struct
Constant Struct
Constant Struct
Constant Struct

struct nettle_hash nettle_md2
struct nettle_hash nettle_md4
struct nettle_hash nettle_mdb
struct nettle_hash nettle_ripemd160

struct nettle_hash

struct
struct
struct
struct
struct
struct

nettle_hash
nettle_hash
nettle_hash
nettle_hash
nettle_hash
nettle_hash

nettle_shal

nettle_sha224
nettle_sha256
nettle_sha384
nettle_shab12

nettle_sha3_256
nettle_gosthash94

Constant Struct
Constant Struct
Constant Struct
Constant Struct
Constant Struct

[]
[]
[]
[]
[]
[Constant Struct]
[]
[]
[]
[]
[]

These are all the hash functions that Nettle implements.
Nettle also exports a list of all these hashes.

struct nettle_hash ** nettle_hashes [Constant Array]
This list can be used to dynamically enumerate or search the supported algorithms.
NULL-terminated.

6.2 Cipher functions

A cipher is a function that takes a message or plaintext and a secret key and transforms it
to a ciphertext. Given only the ciphertext, but not the key, it should be hard to find the

Chapter 6: Reference 18

plaintext. Given matching pairs of plaintext and ciphertext, it should be hard to find the
key.

There are two main classes of ciphers: Block ciphers and stream ciphers.

A block cipher can process data only in fixed size chunks, called blocks. Typical block
sizes are 8 or 16 octets. To encrypt arbitrary messages, you usually have to pad it to an
integral number of blocks, split it into blocks, and then process each block. The simplest
way is to process one block at a time, independent of each other. That mode of operation
is called ECB, Electronic Code Book mode. However, using ECB is usually a bad idea. For
a start, plaintext blocks that are equal are transformed to ciphertext blocks that are equal;
that leaks information about the plaintext. Usually you should apply the cipher is some
“feedback mode”, CBC (Cipher Block Chaining) and CTR (Counter mode) being two of
of the most popular. See See Section 6.3 [Cipher modes]|, page 31, for information on how
to apply CBC and CTR with Nettle.

A stream cipher can be used for messages of arbitrary length. A typical stream cipher
is a keyed pseudo-random generator. To encrypt a plaintext message of n octets, you key
the generator, generate n octets of pseudo-random data, and XOR it with the plaintext.
To decrypt, regenerate the same stream using the key, XOR it to the ciphertext, and the
plaintext is recovered.

Caution: The first rule for this kind of cipher is the same as for a One Time Pad: never
ever use the same key twice.

A common misconception is that encryption, by itself, implies authentication. Say that
you and a friend share a secret key, and you receive an encrypted message. You apply the
key, and get a plaintext message that makes sense to you. Can you then be sure that it really
was your friend that wrote the message you’re reading? The answer is no. For example, if
you were using a block cipher in ECB mode, an attacker may pick up the message on its
way, and reorder, delete or repeat some of the blocks. Even if the attacker can’t decrypt
the message, he can change it so that you are not reading the same message as your friend
wrote. If you are using a block cipher in CBC mode rather than ECB, or are using a stream
cipher, the possibilities for this sort of attack are different, but the attacker can still make
predictable changes to the message.

It is recommended to always use an authentication mechanism in addition to encrypting
the messages. Popular choices are Message Authentication Codes like HMAC-SHA1 (see
Section 6.5 [Keyed hash functions], page 49), or digital signatures like RSA.

Some ciphers have so called “weak keys”, keys that results in undesirable structure after
the key setup processing, and should be avoided. In Nettle, most key setup functions have
no return value, but for ciphers with weak keys, the return value indicates whether or not
the given key is weak. For good keys, key setup returns 1, and for weak keys, it returns O.
When possible, avoid algorithms that have weak keys. There are several good ciphers that
don’t have any weak keys.

To encrypt a message, you first initialize a cipher context for encryption or decryption
with a particular key. You then use the context to process plaintext or ciphertext messages.
The initialization is known as key setup. With Nettle, it is recommended to use each context
struct for only one direction, even if some of the ciphers use a single key setup function that
can be used for both encryption and decryption.

Chapter 6: Reference 19

6.2.1 AES

AES is a block cipher, specified by NIST as a replacement for the older DES standard. The
standard is the result of a competition between cipher designers. The winning design, also
known as RIJNDAEL, was constructed by Joan Daemen and Vincent Rijnmen.

Like all the AES candidates, the winning design uses a block size of 128 bits, or 16 octets,
and three possible key-size, 128, 192 and 256 bits (16, 24 and 32 octets) being the allowed
key sizes. It does not have any weak keys. Nettle defines AES in ‘<nettle/aes.h>’; and
there is one context struct for each key size. (Earlier versions of Nettle used a single context
struct, struct aes_ctx, for all key sizes. This interface kept for backwards compatibility).

struct aes128_ctx [Context struct]
struct aesl192_ctx [Context struct]
struct aes256_ctx [Context struct]
struct aes_ctx [Context struct]

Alternative struct, for the old AES interface.

AES_BLOCK_SIZE [Constant|
The AES block-size, 16.

AES128_KEY_SIZE [Constant|
AES192_KEY_SIZE [Constant)]
AES256_KEY_SIZE [Constant)|
[]
[]

AES_MIN_KEY_SIZE Constant

AES_MAX_KEY_SIZE Constant

AES_KEY_SIZE [Constant]

Default AES key size, 32.

void aesl128_set_encrypt_key (struct aesl28_ctx *ctx, const uint8_t [Function]
*key)

void aes128_set_decrypt_key (struct aes128_ctx *ctx, const uint8_t [Function]
*key)

void aesl192_set_encrypt_key (struct aesl92_ctx *ctx, const uint8_t [Function]
*key)

void aesl192_set_decrypt_key (struct aes192_ctx *ctx, const uint8_t [Function]
*key)

void aes256_set_encrypt_key (struct aes256_ctx *ctx, const uint8_t [Function]
*key)

void aes256_set_decrypt_key (struct aes256_ctx *ctx, const uint8_t [Function]
*key)

void aes_set_encrypt_key (struct aes_ctx *ctx, size_t length, const [Function]
uint8_t *key)

void aes_set_decrypt_key (struct aes_ctx *ctx, size_-t length, const [Function]

uint8_t *key)
Initialize the cipher, for encryption or decryption, respectively.

Chapter 6: Reference 20

void aes128_invert_key (struct aes128_ctx *dst, const struct [Function]
aes128_ctx *src)

void aes192_invert_key (struct aes192_ctx *dst, const struct [Function]
aes192_ctx *src)

void aes256_invert_key (struct aes256_ctx *dst, const struct [Function]
aes256_ctx *src)

void aes_invert_key (struct aes_ctx *dst, const struct aes_ctx *src) [Function]

Given a context src initialized for encryption, initializes the context struct dst for
decryption, using the same key. If the same context struct is passed for both src and
dst, it is converted in place. These functions are mainly useful for applications which
needs to both encrypt and decrypt using the same key, because calling, e.g., aes128_
set_encrypt_key and aes128_invert_key, is more efficient than calling aes128_
set_encrypt_key and aes128_set_decrypt_key.

void aesl128_encrypt (