
 Network Working Group J. Case
 Request for Comments: 1442 SNMP Research, Inc.
 K. McCloghrie
 Hughes LAN Systems
 M. Rose
 Dover Beach Consulting, Inc.
 S. Waldbusser
 Carnegie Mellon University
 April 1993

 Structure of Management Information
 for version 2 of the
 Simple Network Management Protocol (SNMPv2)

 Status of this Memo

 This RFC specifes an IAB standards track protocol for the
 Internet community, and requests discussion and suggestions
 for improvements. Please refer to the current edition of the
 "IAB Official Protocol Standards" for the standardization
 state and status of this protocol. Distribution of this memo
 is unlimited.

 Table of Contents

 1 Introduction .. 2
 1.1 A Note on Terminology 3
 2 Definitions ... 4
 3.1 The MODULE-IDENTITY macro 5
 3.2 Object Names and Syntaxes 7
 3.3 The OBJECT-TYPE macro 10
 3.5 The NOTIFICATION-TYPE macro 12
 3 Information Modules 13
 3.1 Macro Invocation 13
 3.1.1 Textual Clauses 14
 3.2 IMPORTing Symbols 14
 4 Naming Hierarchy 16
 5 Mapping of the MODULE-IDENTITY macro 17
 5.1 Mapping of the LAST-UPDATED clause 17
 5.2 Mapping of the ORGANIZATION clause 17
 5.3 Mapping of the CONTACT-INFO clause 17
 5.4 Mapping of the DESCRIPTION clause 17
 5.5 Mapping of the REVISION clause 17
 5.6 Mapping of the DESCRIPTION clause 18
 5.7 Mapping of the MODULE-IDENTITY value 18
 5.8 Usage Example 19

 Case, McCloghrie, Rose & Waldbusser [Page i]

 RFC 1442 SMI for SNMPv2 April 1993

 6 Mapping of the OBJECT-IDENTITY macro 20
 6.1 Mapping of the STATUS clause 20
 6.2 Mapping of the DESCRIPTION clause 20
 6.3 Mapping of the REFERENCE clause 20
 6.4 Mapping of the OBJECT-IDENTITY value 20
 6.5 Usage Example 21
 7 Mapping of the OBJECT-TYPE macro 22
 7.1 Mapping of the SYNTAX clause 22
 7.1.1 Integer32 and INTEGER 22
 7.1.2 OCTET STRING 23
 7.1.3 OBJECT IDENTIFIER 23
 7.1.4 BIT STRING .. 23
 7.1.5 IpAddress ... 23
 7.1.6 Counter32 ... 24
 7.1.7 Gauge32 ... 24
 7.1.8 TimeTicks ... 24
 7.1.9 Opaque .. 25
 7.1.10 NsapAddress 25
 7.1.11 Counter64 .. 26
 7.1.12 UInteger32 26
 7.2 Mapping of the UNITS clause 26
 7.3 Mapping of the MAX-ACCESS clause 27
 7.4 Mapping of the STATUS clause 27
 7.5 Mapping of the DESCRIPTION clause 27
 7.6 Mapping of the REFERENCE clause 28
 7.7 Mapping of the INDEX clause 28
 7.7.1 Creation and Deletion of Conceptual Rows 30
 7.8 Mapping of the AUGMENTS clause 31
 7.8.1 Relation between INDEX and AUGMENTS clauses 31
 7.9 Mapping of the DEFVAL clause 32
 7.10 Mapping of the OBJECT-TYPE value 33
 7.11 Usage Example 35
 8 Mapping of the NOTIFICATION-TYPE macro 37
 8.1 Mapping of the OBJECTS clause 37
 8.2 Mapping of the STATUS clause 37
 8.3 Mapping of the DESCRIPTION clause 37
 8.4 Mapping of the REFERENCE clause 37
 8.5 Mapping of the NOTIFICATION-TYPE value 38
 8.6 Usage Example 39
 9 Refined Syntax .. 40
 10 Extending an Information Module 41
 10.1 Object Assignments 41
 10.2 Object Definitions 41
 10.3 Notification Definitions 42

 Case, McCloghrie, Rose & Waldbusser [Page ii]

 RFC 1442 SMI for SNMPv2 April 1993

 11 Appendix: de-OSIfying a MIB module 43
 11.1 Managed Object Mapping 43
 11.1.1 Mapping to the SYNTAX clause 44
 11.1.2 Mapping to the UNITS clause 45
 11.1.3 Mapping to the MAX-ACCESS clause 45
 11.1.4 Mapping to the STATUS clause 45
 11.1.5 Mapping to the DESCRIPTION clause 45
 11.1.6 Mapping to the REFERENCE clause 45
 11.1.7 Mapping to the INDEX clause 45
 11.1.8 Mapping to the DEFVAL clause 45
 11.2 Action Mapping 46
 11.2.1 Mapping to the SYNTAX clause 46
 11.2.2 Mapping to the MAX-ACCESS clause 46
 11.2.3 Mapping to the STATUS clause 46
 11.2.4 Mapping to the DESCRIPTION clause 46
 11.2.5 Mapping to the REFERENCE clause 46
 11.3 Event Mapping 46
 11.3.1 Mapping to the STATUS clause 47
 11.3.2 Mapping to the DESCRIPTION clause 47
 11.3.3 Mapping to the REFERENCE clause 47
 12 Acknowledgements 48
 13 References ... 52
 14 Security Considerations 54
 15 Authors’ Addresses 54

 Case, McCloghrie, Rose & Waldbusser [Page 1]

 RFC 1442 SMI for SNMPv2 April 1993

 1. Introduction

 A network management system contains: several (potentially
 many) nodes, each with a processing entity, termed an agent,
 which has access to management instrumentation; at least one
 management station; and, a management protocol, used to convey
 management information between the agents and management
 stations. Operations of the protocol are carried out under an
 administrative framework which defines both authentication and
 authorization policies.

 Network management stations execute management applications
 which monitor and control network elements. Network elements
 are devices such as hosts, routers, terminal servers, etc.,
 which are monitored and controlled through access to their
 management information.

 Management information is viewed as a collection of managed
 objects, residing in a virtual information store, termed the
 Management Information Base (MIB). Collections of related
 objects are defined in MIB modules. These modules are written
 using a subset of OSI’s Abstract Syntax Notation One (ASN.1)
 [1]. It is the purpose of this document, the Structure of
 Management Information (SMI), to define that subset.

 The SMI is divided into three parts: module definitions,
 object definitions, and, trap definitions.

 (1) Module definitions are used when describing information
 modules. An ASN.1 macro, MODULE-IDENTITY, is used to
 concisely convey the semantics of an information module.

 (2) Object definitions are used when describing managed
 objects. An ASN.1 macro, OBJECT-TYPE, is used to
 concisely convey the syntax and semantics of a managed
 object.

 (3) Notification definitions are used when describing
 unsolicited transmissions of management information. An
 ASN.1 macro, NOTIFICATION-TYPE, is used to concisely
 convey the syntax and semantics of a notification.

 Case, McCloghrie, Rose & Waldbusser [Page 2]

 RFC 1442 SMI for SNMPv2 April 1993

 1.1. A Note on Terminology

 For the purpose of exposition, the original Internet-standard
 Network Management Framework, as described in RFCs 1155, 1157,
 and 1212, is termed the SNMP version 1 framework (SNMPv1).
 The current framework is termed the SNMP version 2 framework
 (SNMPv2).

 Case, McCloghrie, Rose & Waldbusser [Page 3]

 RFC 1442 SMI for SNMPv2 April 1993

 2. Definitions

 SNMPv2-SMI DEFINITIONS ::= BEGIN

 -- the path to the root

 internet OBJECT IDENTIFIER ::= { iso 3 6 1 }

 directory OBJECT IDENTIFIER ::= { internet 1 }

 mgmt OBJECT IDENTIFIER ::= { internet 2 }

 experimental OBJECT IDENTIFIER ::= { internet 3 }

 private OBJECT IDENTIFIER ::= { internet 4 }
 enterprises OBJECT IDENTIFIER ::= { private 1 }

 security OBJECT IDENTIFIER ::= { internet 5 }

 snmpV2 OBJECT IDENTIFIER ::= { internet 6 }

 -- transport domains
 snmpDomains OBJECT IDENTIFIER ::= { snmpV2 1 }

 -- transport proxies
 snmpProxys OBJECT IDENTIFIER ::= { snmpV2 2 }

 -- module identities
 snmpModules OBJECT IDENTIFIER ::= { snmpV2 3 }

 Case, McCloghrie, Rose & Waldbusser [Page 4]

 RFC 1442 SMI for SNMPv2 April 1993

 -- definitions for information modules

 MODULE-IDENTITY MACRO ::=
 BEGIN
 TYPE NOTATION ::=
 "LAST-UPDATED" value(Update UTCTime)
 "ORGANIZATION" Text
 "CONTACT-INFO" Text
 "DESCRIPTION" Text
 RevisionPart

 VALUE NOTATION ::=
 value(VALUE OBJECT IDENTIFIER)

 RevisionPart ::=
 Revisions
 | empty
 Revisions ::=
 Revision
 | Revisions Revision
 Revision ::=
 "REVISION" value(Update UTCTime)
 "DESCRIPTION" Text

 -- uses the NVT ASCII character set
 Text ::= """" string """"
 END

 Case, McCloghrie, Rose & Waldbusser [Page 5]

 RFC 1442 SMI for SNMPv2 April 1993

 OBJECT-IDENTITY MACRO ::=
 BEGIN
 TYPE NOTATION ::=
 "STATUS" Status
 "DESCRIPTION" Text
 ReferPart

 VALUE NOTATION ::=
 value(VALUE OBJECT IDENTIFIER)

 Status ::=
 "current"
 | "obsolete"

 ReferPart ::=
 "REFERENCE" Text
 | empty

 Text ::= """" string """"
 END

 Case, McCloghrie, Rose & Waldbusser [Page 6]

 RFC 1442 SMI for SNMPv2 April 1993

 -- names of objects

 ObjectName ::=
 OBJECT IDENTIFIER

 -- syntax of objects

 ObjectSyntax ::=
 CHOICE {
 simple
 SimpleSyntax,

 -- note that SEQUENCEs for conceptual tables and
 -- rows are not mentioned here...

 application-wide
 ApplicationSyntax
 }

 -- built-in ASN.1 types

 SimpleSyntax ::=
 CHOICE {
 -- INTEGERs with a more restrictive range
 -- may also be used
 integer-value
 INTEGER (-2147483648..2147483647),

 string-value
 OCTET STRING,

 objectID-value
 OBJECT IDENTIFIER,

 -- only the enumerated form is allowed
 bit-value
 BIT STRING
 }

 Case, McCloghrie, Rose & Waldbusser [Page 7]

 RFC 1442 SMI for SNMPv2 April 1993

 -- indistinguishable from INTEGER, but never needs more than
 -- 32-bits for a two’s complement representation
 Integer32 ::=
 [UNIVERSAL 2]
 IMPLICIT INTEGER (-2147483648..2147483647)

 -- application-wide types

 ApplicationSyntax ::=
 CHOICE {
 ipAddress-value
 IpAddress,

 counter-value
 Counter32,

 gauge-value
 Gauge32,

 timeticks-value
 TimeTicks,

 arbitrary-value
 Opaque,

 nsapAddress-value
 NsapAddress,

 big-counter-value
 Counter64,

 unsigned-integer-value
 UInteger32
 }

 -- in network-byte order
 -- (this is a tagged type for historical reasons)
 IpAddress ::=
 [APPLICATION 0]
 IMPLICIT OCTET STRING (SIZE (4))

 Case, McCloghrie, Rose & Waldbusser [Page 8]

 RFC 1442 SMI for SNMPv2 April 1993

 -- this wraps
 Counter32 ::=
 [APPLICATION 1]
 IMPLICIT INTEGER (0..4294967295)

 -- this doesn’t wrap
 Gauge32 ::=
 [APPLICATION 2]
 IMPLICIT INTEGER (0..4294967295)

 -- hundredths of seconds since an epoch
 TimeTicks ::=
 [APPLICATION 3]
 IMPLICIT INTEGER (0..4294967295)

 -- for backward-compatibility only
 Opaque ::=
 [APPLICATION 4]
 IMPLICIT OCTET STRING

 -- for OSI NSAP addresses
 -- (this is a tagged type for historical reasons)
 NsapAddress ::=
 [APPLICATION 5]
 IMPLICIT OCTET STRING (SIZE (1 | 4..21))

 -- for counters that wrap in less than one hour with only 32 bits
 Counter64 ::=
 [APPLICATION 6]
 IMPLICIT INTEGER (0..18446744073709551615)

 -- an unsigned 32-bit quantity
 UInteger32 ::=
 [APPLICATION 7]
 IMPLICIT INTEGER (0..4294967295)

 Case, McCloghrie, Rose & Waldbusser [Page 9]

 RFC 1442 SMI for SNMPv2 April 1993

 -- definition for objects

 OBJECT-TYPE MACRO ::=
 BEGIN
 TYPE NOTATION ::=
 "SYNTAX" type(Syntax)
 UnitsPart
 "MAX-ACCESS" Access
 "STATUS" Status
 "DESCRIPTION" Text
 ReferPart
 IndexPart
 DefValPart

 VALUE NOTATION ::=
 value(VALUE ObjectName)

 UnitsPart ::=
 "UNITS" Text
 | empty

 Access ::=
 "not-accessible"
 | "read-only"
 | "read-write"
 | "read-create"

 Status ::=
 "current"
 | "deprecated"
 | "obsolete"

 ReferPart ::=
 "REFERENCE" Text
 | empty

 IndexPart ::=
 "INDEX" "{" IndexTypes "}"
 | "AUGMENTS" "{" Entry "}"
 | empty
 IndexTypes ::=
 IndexType
 | IndexTypes "," IndexType

 Case, McCloghrie, Rose & Waldbusser [Page 10]

 RFC 1442 SMI for SNMPv2 April 1993

 IndexType ::=
 "IMPLIED" Index
 | Index
 Index ::=
 -- use the SYNTAX value of the
 -- correspondent OBJECT-TYPE invocation
 value(Indexobject ObjectName)
 Entry ::=
 -- use the INDEX value of the
 -- correspondent OBJECT-TYPE invocation
 value(Entryobject ObjectName)

 DefValPart ::=
 "DEFVAL" "{" value(Defval Syntax) "}"
 | empty

 -- uses the NVT ASCII character set
 Text ::= """" string """"
 END

 Case, McCloghrie, Rose & Waldbusser [Page 11]

 RFC 1442 SMI for SNMPv2 April 1993

 -- definitions for notifications

 NOTIFICATION-TYPE MACRO ::=
 BEGIN
 TYPE NOTATION ::=
 ObjectsPart
 "STATUS" Status
 "DESCRIPTION" Text
 ReferPart

 VALUE NOTATION ::=
 value(VALUE OBJECT IDENTIFIER)

 ObjectsPart ::=
 "OBJECTS" "{" Objects "}"
 | empty
 Objects ::=
 Object
 | Objects "," Object
 Object ::=
 value(Name ObjectName)

 Status ::=
 "current"
 | "deprecated"
 | "obsolete"

 ReferPart ::=
 "REFERENCE" Text
 | empty

 -- uses the NVT ASCII character set
 Text ::= """" string """"
 END

 END

 Case, McCloghrie, Rose & Waldbusser [Page 12]

 RFC 1442 SMI for SNMPv2 April 1993

 3. Information Modules

 An "information module" is an ASN.1 module defining
 information relating to network management.

 The SMI describes how to use a subset of ASN.1 to define an
 information module. Further, additional restrictions are
 placed on "standard" information modules. It is strongly
 recommended that "enterprise-specific" information modules
 also adhere to these restrictions.

 Typically, there are three kinds of information modules:

 (1) MIB modules, which contain definitions of inter-related
 managed objects, make use of the OBJECT-TYPE and
 NOTIFICATION-TYPE macros;

 (2) compliance statements for MIB modules, which make use of
 the MODULE-COMPLIANCE and OBJECT-GROUP macros [2]; and,

 (3) capability statements for agent implementations which
 make use of the AGENT-CAPABILITIES macros [2].

 This classification scheme does not imply a rigid taxonomy.
 For example, a "standard" information module might include
 definitions of managed objects and a compliance statement.
 Similarly, an "enterprise-specific" information module might
 include definitions of managed objects and a capability
 statement. Of course, a "standard" information module may not
 contain capability statements.

 All information modules start with exactly one invocation of
 the MODULE-IDENTITY macro, which provides contact and revision
 history. This invocation must appear immediately after any
 IMPORTs or EXPORTs statements.

 3.1. Macro Invocation

 Within an information module, each macro invocation appears
 as:

 <descriptor> <macro> <clauses> ::= <value>

 where <descriptor> corresponds to an ASN.1 identifier, <macro>

 Case, McCloghrie, Rose & Waldbusser [Page 13]

 RFC 1442 SMI for SNMPv2 April 1993

 names the macro being invoked, and <clauses> and <value>
 depend on the definition of the macro.

 An ASN.1 identifier consists of one or more letters, digits,
 or hyphens. The initial character must be a lower-case
 letter, and the final character may not be a hyphen. Further,
 a hyphen may not be immediatedly followed by another hyphen.

 For all descriptors appearing in an information module, the
 descriptor shall be unique and mnemonic, and shall not exceed
 64 characters in length. This promotes a common language for
 humans to use when discussing the information module and also
 facilitates simple table mappings for user-interfaces.

 The set of descriptors defined in all "standard" information
 modules shall be unique. Further, within any information
 module, the hyphen is not allowed as a character in any
 descriptor.

 Finally, by convention, if the descriptor refers to an object
 with a SYNTAX clause value of either Counter32 or Counter64,
 then the descriptor used for the object should denote
 plurality.

 3.1.1. Textual Clauses

 Some clauses in a macro invocation may take a textual value
 (e.g., the DESCRIPTION clause). Note that, in order to
 conform to the ASN.1 syntax, the entire value of these clauses
 must be enclosed in double quotation marks, and therefore
 cannot itself contain double quotation marks, although the
 value may be multi-line.

 3.2. IMPORTing Symbols

 To reference an external object, the IMPORTS statement must be
 used to identify both the descriptor and the module defining
 the descriptor.

 Note that when symbols from "enterprise-specific" information
 modules are referenced (e.g., a descriptor), there is the
 possibility of collision. As such, if different objects with
 the same descriptor are IMPORTed, then this ambiguity is

 Case, McCloghrie, Rose & Waldbusser [Page 14]

 RFC 1442 SMI for SNMPv2 April 1993

 resolved by prefixing the descriptor with the name of the
 information module and a dot ("."), i.e.,

 "module.descriptor"

 (All descriptors must be unique within any information
 module.)

 Of course, this notation can be used even when there is no
 collision when IMPORTing symbols.

 Finally, the IMPORTS statement may not be used to import an
 ASN.1 named type which corresponds to either the SEQUENCE or
 SEQUENCE OF type.

 Case, McCloghrie, Rose & Waldbusser [Page 15]

 RFC 1442 SMI for SNMPv2 April 1993

 4. Naming Hierarchy

 The root of the subtree administered by the Internet Assigned
 Numbers Authority (IANA) for the Internet is:

 internet OBJECT IDENTIFIER ::= { iso 3 6 1 }

 That is, the Internet subtree of OBJECT IDENTIFIERs starts
 with the prefix:

 1.3.6.1.

 Several branches underneath this subtree are used for network
 management:

 mgmt OBJECT IDENTIFIER ::= { internet 2 }
 experimental OBJECT IDENTIFIER ::= { internet 3 }
 private OBJECT IDENTIFIER ::= { internet 4 }
 enterprises OBJECT IDENTIFIER ::= { private 1 }

 However, the SMI does not prohibit the definition of objects
 in other portions of the object tree.

 The mgmt(2) subtree is used to identify "standard" objects.

 The experimental(3) subtree is used to identify objects being
 designed by working groups of the IETF. If an information
 module produced by a working group becomes a "standard"
 information module, then at the very beginning of its entry
 onto the Internet standards track, the objects are moved under
 the mgmt(2) subtree.

 The private(4) subtree is used to identify objects defined
 unilaterally. The enterprises(1) subtree beneath private is
 used, among other things, to permit providers of networking
 subsystems to register models of their products.

 Case, McCloghrie, Rose & Waldbusser [Page 16]

 RFC 1442 SMI for SNMPv2 April 1993

 5. Mapping of the MODULE-IDENTITY macro

 The MODULE-IDENTITY macro is used to provide contact and
 revision history for each information module. It must appear
 exactly once in every information module. It should be noted
 that the expansion of the MODULE-IDENTITY macro is something
 which conceptually happens during implementation and not
 during run-time.

 5.1. Mapping of the LAST-UPDATED clause

 The LAST-UPDATED clause, which must be present, contains the
 date and time that this information module was last edited.

 5.2. Mapping of the ORGANIZATION clause

 The ORGANIZATION clause, which must be present, contains a
 textual description of the organization under whose auspices
 this information module was developed.

 5.3. Mapping of the CONTACT-INFO clause

 The CONTACT-INFO clause, which must be present, contains the
 name, postal address, telephone number, and electronic mail
 address of the person to whom technical queries concerning
 this information module should be sent.

 5.4. Mapping of the DESCRIPTION clause

 The DESCRIPTION clause, which must be present, contains a
 high-level textual description of the contents of this
 information module.

 5.5. Mapping of the REVISION clause

 The REVISION clause, which need not be present, is repeatedly
 used to describe the revisions made to this information
 module, in reverse chronological order. Each instance of this
 clause contains the date and time of the revision.

 Case, McCloghrie, Rose & Waldbusser [Page 17]

 RFC 1442 SMI for SNMPv2 April 1993

 5.6. Mapping of the DESCRIPTION clause

 The DESCRIPTION clause, which must be present for each
 REVISION clause, contains a high-level textual description of
 the revision identified in that REVISION clause.

 5.7. Mapping of the MODULE-IDENTITY value

 The value of an invocation of the MODULE-IDENTITY macro is an
 OBJECT IDENTIFIER. As such, this value may be authoritatively
 used when referring to the information module containing the
 invocation.

 Case, McCloghrie, Rose & Waldbusser [Page 18]

 RFC 1442 SMI for SNMPv2 April 1993

 5.8. Usage Example

 Consider how a skeletal MIB module might be constructed: e.g.,

 FIZBIN-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, experimental
 FROM SNMPv2-SMI;

 fizbin MODULE-IDENTITY
 LAST-UPDATED "9210070433Z"
 ORGANIZATION "IETF SNMPv2 Working Group"
 CONTACT-INFO
 " Marshall T. Rose

 Postal: Dover Beach Consulting, Inc.
 420 Whisman Court
 Mountain View, CA 94043-2186
 US

 Tel: +1 415 968 1052
 Fax: +1 415 968 2510

 E-mail: mrose@dbc.mtview.ca.us"
 DESCRIPTION
 "The MIB module for entities implementing the xxxx
 protocol."
 REVISION "9210070433Z"
 DESCRIPTION
 "Initial version of this MIB module."
 -- contact IANA for actual number
 ::= { experimental xx }

 END

 Case, McCloghrie, Rose & Waldbusser [Page 19]

 RFC 1442 SMI for SNMPv2 April 1993

 6. Mapping of the OBJECT-IDENTITY macro

 The OBJECT-IDENTITY macro is used to define information about
 an OBJECT IDENTIFIER assignment. It should be noted that the
 expansion of the OBJECT-IDENTITY macro is something which
 conceptually happens during implementation and not during
 run-time.

 6.1. Mapping of the STATUS clause

 The STATUS clause, which must be present, indicates whether
 this definition is current or historic.

 The values "current", and "obsolete" are self-explanatory.

 6.2. Mapping of the DESCRIPTION clause

 The DESCRIPTION clause, which must be present, contains a
 textual description of the object assignment.

 6.3. Mapping of the REFERENCE clause

 The REFERENCE clause, which need not be present, contains a
 textual cross-reference to an object assignment defined in
 some other information module.

 6.4. Mapping of the OBJECT-IDENTITY value

 The value of an invocation of the OBJECT-IDENTITY macro is an
 OBJECT IDENTIFIER.

 Case, McCloghrie, Rose & Waldbusser [Page 20]

 RFC 1442 SMI for SNMPv2 April 1993

 6.5. Usage Example

 Consider how an OBJECT IDENTIFIER assignment might be made:
 e.g.,

 fizbin69 OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "The authoritative identity of the Fizbin 69
 chipset."
 ::= { fizbinChipSets 1 }

 Case, McCloghrie, Rose & Waldbusser [Page 21]

 RFC 1442 SMI for SNMPv2 April 1993

 7. Mapping of the OBJECT-TYPE macro

 The OBJECT-TYPE macro is used to define a managed object. It
 should be noted that the expansion of the OBJECT-TYPE macro is
 something which conceptually happens during implementation and
 not during run-time.

 7.1. Mapping of the SYNTAX clause

 The SYNTAX clause, which must be present, defines the abstract
 data structure corresponding to that object. The data
 structure must be one of the alternatives defined in the
 ObjectSyntax CHOICE.

 Full ASN.1 sub-typing is allowed, as appropriate to the
 underingly ASN.1 type, primarily as an aid to implementors in
 understanding the meaning of the object. Any such restriction
 on size, range, enumerations or repertoire specified in this
 clause represents the maximal level of support which makes
 "protocol sense". Of course, sub-typing is not allowed for
 the Counter32 or Counter64 types, but is allowed for the
 Gauge32 type.

 The semantics of ObjectSyntax are now described.

 7.1.1. Integer32 and INTEGER

 The Integer32 type represents integer-valued information
 between -2^31 and 2^31-1 inclusive (-2147483648 to 2147483647
 decimal). This type is indistinguishable from the INTEGER
 type.

 The INTEGER type may also be used to represent integer-valued
 information, if it contains named-number enumerations, or if
 it is sub-typed to be more constrained than the Integer32
 type. In the former case, only those named-numbers so
 enumerated may be present as a value. Note that although it
 is recommended that enumerated values start at 1 and be
 numbered contiguously, any valid value for Integer32 is
 allowed for an enumerated value and, further, enumerated
 values needn’t be contiguously assigned.

 Case, McCloghrie, Rose & Waldbusser [Page 22]

 RFC 1442 SMI for SNMPv2 April 1993

 Finally, the hyphen character is not allowed as a part of the
 label name for any named-number enumeration.

 7.1.2. OCTET STRING

 The OCTET STRING type represents arbitrary binary or textual
 data. Although there is no SMI-specified size limitation for
 this type, MIB designers should realize that there may be
 implementation and interoperability limitations for sizes in
 excess of 255 octets.

 7.1.3. OBJECT IDENTIFIER

 The OBJECT IDENTIFIER type represents administratively
 assigned names. Any instance of this type may have at most
 128 sub-identifiers. Further, each sub-identifier must not
 exceed the value 2^32-1 (4294967295 decimal).

 7.1.4. BIT STRING

 The BIT STRING type represents an enumeration of named bits.
 This collection is assigned non-negative, contiguous values,
 starting at zero. Only those named-bits so enumerated may be
 present in a value.

 A requirement on "standard" MIB modules is that the hyphen
 character is not allowed as a part of the label name for any
 named-bit enumeration.

 7.1.5. IpAddress

 The IpAddress type represents a 32-bit internet address. It
 is represented as an OCTET STRING of length 4, in network
 byte-order.

 Note that the IpAddress type is a tagged type for historical
 reasons. Network addresses should be represented using an
 invocation of the TEXTUAL-CONVENTION macro [3].

 Case, McCloghrie, Rose & Waldbusser [Page 23]

 RFC 1442 SMI for SNMPv2 April 1993

 7.1.6. Counter32

 The Counter32 type represents a non-negative integer which
 monotonically increases until it reaches a maximum value of
 2^32-1 (4294967295 decimal), when it wraps around and starts
 increasing again from zero.

 Counters have no defined "initial" value, and thus, a single
 value of a Counter has (in general) no information content.
 Discontinuities in the monotonically increasing value normally
 occur at re-initialization of the management system, and at
 other times as specified in the description of an object-type
 using this ASN.1 type. If such other times can occur, for
 example, the creation of an object instance at times other
 than re-initialization, then a corresponding object should be
 defined with a SYNTAX clause value of TimeStamp (a textual
 convention defined in [3]) indicating the time of the last
 discontinuity.

 The value of the MAX-ACCESS clause for objects with a SYNTAX
 clause value of Counter32 is always "read-only".

 A DEFVAL clause is not allowed for objects with a SYNTAX
 clause value of Counter32.

 7.1.7. Gauge32

 The Gauge32 type represents a non-negative integer, which may
 increase or decrease, but shall never exceed a maximum value.
 The maximum value can not be greater than 2^32-1 (4294967295
 decimal). The value of a Gauge has its maximum value whenever
 the information being modeled is greater or equal to that
 maximum value; if the information being modeled subsequently
 decreases below the maximum value, the Gauge also decreases.

 7.1.8. TimeTicks

 The TimeTicks type represents a non-negative integer which
 represents the time, modulo 2^32 (4294967296 decimal), in
 hundredths of a second between two epochs. When objects are
 defined which use this ASN.1 type, the description of the
 object identifies both of the reference epochs.

 Case, McCloghrie, Rose & Waldbusser [Page 24]

 RFC 1442 SMI for SNMPv2 April 1993

 For example, [3] defines the TimeStamp textual convention
 which is based on the TimeTicks type. With a TimeStamp, the
 first reference epoch is defined as when MIB-II’s sysUpTime
 [7] was zero, and the second reference epoch is defined as the
 current value of sysUpTime.

 7.1.9. Opaque

 The Opaque type is provided solely for backward-compatibility,
 and shall not be used for newly-defined object types.

 The Opaque type supports the capability to pass arbitrary
 ASN.1 syntax. A value is encoded using the ASN.1 Basic
 Encoding Rules [4] into a string of octets. This, in turn, is
 encoded as an OCTET STRING, in effect "double-wrapping" the
 original ASN.1 value.

 Note that a conforming implementation need only be able to
 accept and recognize opaquely-encoded data. It need not be
 able to unwrap the data and then interpret its contents.

 A requirement on "standard" MIB modules is that no object may
 have a SYNTAX clause value of Opaque.

 7.1.10. NsapAddress

 The NsapAddress type represents an OSI address as a variable-
 length OCTET STRING. The first octet of the string contains a
 binary value in the range of 0..20, and indicates the length
 in octets of the NSAP. Following the first octet, is the
 NSAP, expressed in concrete binary notation, starting with the
 most significant octet. A zero-length NSAP is used as a
 "special" address meaning "the default NSAP" (analogous to the
 IP address of 0.0.0.0). Such an NSAP is encoded as a single
 octet, containing the value 0. All other NSAPs are encoded in
 at least 4 octets.

 Note that the NsapAddress type is a tagged type for historical
 reasons. Network addresses should be represented using an
 invocation of the TEXTUAL-CONVENTION macro [3].

 Case, McCloghrie, Rose & Waldbusser [Page 25]

 RFC 1442 SMI for SNMPv2 April 1993

 7.1.11. Counter64

 The Counter64 type represents a non-negative integer which
 monotonically increases until it reaches a maximum value of
 2^64-1 (18446744073709551615 decimal), when it wraps around
 and starts increasing again from zero.

 Counters have no defined "initial" value, and thus, a single
 value of a Counter has (in general) no information content.
 Discontinuities in the monotonically increasing value normally
 occur at re-initialization of the management system, and at
 other times as specified in the description of an object-type
 using this ASN.1 type. If such other times can occur, for
 example, the creation of an object instance at times other
 than re-initialization, then a corresponding object should be
 defined with a SYNTAX clause value of TimeStamp (a textual
 convention defined in [3]) indicating the time of the last
 discontinuity.

 The value of the MAX-ACCESS clause for objects with a SYNTAX
 clause value of Counter64 is always "read-only".

 A requirement on "standard" MIB modules is that the Counter64
 type may be used only if the information being modeled would
 wrap in less than one hour if the Counter32 type was used
 instead.

 A DEFVAL clause is not allowed for objects with a SYNTAX
 clause value of Counter64.

 7.1.12. UInteger32

 The UInteger32 type represents integer-valued information
 between 0 and 2^32-1 inclusive (0 to 4294967295 decimal).

 7.2. Mapping of the UNITS clause

 This UNITS clause, which need not be present, contains a
 textual definition of the units associated with that object.

 Case, McCloghrie, Rose & Waldbusser [Page 26]

 RFC 1442 SMI for SNMPv2 April 1993

 7.3. Mapping of the MAX-ACCESS clause

 The MAX-ACCESS clause, which must be present, defines whether
 it makes "protocol sense" to read, write and/or create an
 instance of the object. This is the maximal level of access
 for the object. (This maximal level of access is independent
 of any administrative authorization policy.)

 The value "read-write" indicates that read and write access
 make "protocol sense", but create does not. The value "read-
 create" indicates that read, write and create access make
 "protocol sense". The value "not-accessible" indicates either
 an auxiliary object (see Section 7.7) or an object which is
 accessible only via a notificationn (e.g., snmpTrapOID [5]).

 These values are ordered, from least to greatest: "not-
 accessible", "read-only", "read-write", "read-create".

 If any columnar object in a conceptual row has "read-create"
 as its maximal level of access, then no other columnar object
 of the same conceptual row may have a maximal access of
 "read-write". (Note that "read-create" is a superset of
 "read-write".)

 7.4. Mapping of the STATUS clause

 The STATUS clause, which must be present, indicates whether
 this definition is current or historic.

 The values "current", and "obsolete" are self-explanatory.
 The "deprecated" value indicates that the object is obsolete,
 but that an implementor may wish to support that object to
 foster interoperability with older implementations.

 7.5. Mapping of the DESCRIPTION clause

 The DESCRIPTION clause, which must be present, contains a
 textual definition of that object which provides all semantic
 definitions necessary for implementation, and should embody
 any information which would otherwise be communicated in any
 ASN.1 commentary annotations associated with the object.

 Case, McCloghrie, Rose & Waldbusser [Page 27]

 RFC 1442 SMI for SNMPv2 April 1993

 7.6. Mapping of the REFERENCE clause

 The REFERENCE clause, which need not be present, contains a
 textual cross-reference to an object defined in some other
 information module. This is useful when de-osifying a MIB
 module produced by some other organization.

 7.7. Mapping of the INDEX clause

 The INDEX clause, which must be present if that object
 corresponds to a conceptual row (unless an AUGMENTS clause is
 present instead), and must be absent otherwise, defines
 instance identification information for the columnar objects
 subordinate to that object.

 Management operations apply exclusively to scalar objects.
 However, it is convenient for developers of management
 applications to impose imaginary, tabular structures on the
 ordered collection of objects that constitute the MIB. Each
 such conceptual table contains zero or more rows, and each row
 may contain one or more scalar objects, termed columnar
 objects. This conceptualization is formalized by using the
 OBJECT-TYPE macro to define both an object which corresponds
 to a table and an object which corresponds to a row in that
 table. A conceptual table has SYNTAX of the form:

 SEQUENCE OF <EntryType>

 where <EntryType> refers to the SEQUENCE type of its
 subordinate conceptual row. A conceptual row has SYNTAX of
 the form:

 <EntryType>

 where <EntryType> is a SEQUENCE type defined as follows:

 <EntryType> ::= SEQUENCE { <type1>, ... , <typeN> }

 where there is one <type> for each subordinate object, and
 each <type> is of the form:

 <descriptor> <syntax>

 where <descriptor> is the descriptor naming a subordinate

 Case, McCloghrie, Rose & Waldbusser [Page 28]

 RFC 1442 SMI for SNMPv2 April 1993

 object, and <syntax> has the value of that subordinate
 object’s SYNTAX clause, optionally omitting the sub-typing
 information. Further, these ASN.1 types are always present
 (the DEFAULT and OPTIONAL clauses are disallowed in the
 SEQUENCE definition). The MAX-ACCESS clause for conceptual
 tables and rows is "not-accessible".

 For leaf objects which are not columnar objects, instances of
 the object are identified by appending a sub-identifier of
 zero to the name of that object. Otherwise, the INDEX clause
 of the conceptual row object superior to a columnar object
 defines instance identification information.

 The instance identification information in an INDEX clause
 must specify object(s) such that value(s) of those object(s)
 will unambiguously distinguish a conceptual row. The syntax
 of those objects indicate how to form the instance-identifier:

 (1) integer-valued: a single sub-identifier taking the
 integer value (this works only for non-negative
 integers);

 (2) string-valued, fixed-length strings (or variable-length
 preceded by the IMPLIED keyword): ‘n’ sub-identifiers,
 where ‘n’ is the length of the string (each octet of the
 string is encoded in a separate sub-identifier);

 (3) string-valued, variable-length strings (not preceded by
 the IMPLIED keyword): ‘n+1’ sub-identifiers, where ‘n’ is
 the length of the string (the first sub-identifier is ‘n’
 itself, following this, each octet of the string is
 encoded in a separate sub-identifier);

 (4) object identifier-valued: ‘n+1’ sub-identifiers, where
 ‘n’ is the number of sub-identifiers in the value (the
 first sub-identifier is ‘n’ itself, following this, each
 sub-identifier in the value is copied);

 (5) IpAddress-valued: 4 sub-identifiers, in the familiar
 a.b.c.d notation.

 (6) NsapAddress-valued: ‘n’ sub-identifiers, where ‘n’ is the
 length of the value (each octet of the value is encoded
 in a separate sub-identifier);

 Case, McCloghrie, Rose & Waldbusser [Page 29]

 RFC 1442 SMI for SNMPv2 April 1993

 Note that the IMPLIED keyword can only be present for objects
 having a variable-length syntax (e.g., variable-length strings
 or object identifier-valued objects). Further, the IMPLIED
 keyword may appear at most once within the INDEX clause, and
 if so, is associated with the right-most object having a
 variable-length syntax. Finally, the IMPLIED keyword may not
 be used on a variable-length string object if that string
 might have a value of zero-length.

 Instances identified by use of integer-valued objects should
 be numbered starting from one (i.e., not from zero). The use
 of zero as a value for an integer-valued index object should
 be avoided, except in special cases.

 Objects which are both specified in the INDEX clause of a
 conceptual row and also columnar objects of the same
 conceptual row are termed auxiliary objects. The MAX-ACCESS
 clause for newly-defined auxiliary objects is "not-
 accessible". However, a conceptual row must contain at least
 one columnar object which is not an auxiliary object (i.e.,
 the value of the MAX-ACCESS clause for such an object is
 either "read-only" or "read-create").

 Note that objects specified in a conceptual row’s INDEX clause
 need not be columnar objects of that conceptual row. In this
 situation, the DESCRIPTION clause of the conceptual row must
 include a textual explanation of how the objects which are
 included in the INDEX clause but not columnar objects of that
 conceptual row, are used in uniquely identifying instances of
 the conceptual row’s columnar objects.

 7.7.1. Creation and Deletion of Conceptual Rows

 For newly-defined conceptual rows which allow the creation of
 new object instances and the deletion of existing object
 instances, there should be one columnar object with a SYNTAX
 clause value of RowStatus (a textual convention defined in
 [3]) and a MAX-ACCESS clause value of read-create. By
 convention, this is termed the status column for the
 conceptual row.

 Case, McCloghrie, Rose & Waldbusser [Page 30]

 RFC 1442 SMI for SNMPv2 April 1993

 7.8. Mapping of the AUGMENTS clause

 The AUGMENTS clause, which must not be present unless the
 object corresponds to a conceptual row, is an alternative to
 the INDEX clause. Every object corresponding to a conceptual
 row has either an INDEX clause or an AUGMENTS clause.

 If an object corresponding to a conceptual row has an INDEX
 clause, that row is termed a base conceptual row;
 alternatively, if the object has an AUGMENTS clause, the row
 is said to be a conceptual row augmentation, where the
 AUGMENTS clause names the object corresponding to the base
 conceptual row which is augmented by this conceptual row
 extension. Instances of subordinate columnar objects of a
 conceptual row extension are identified according to the INDEX
 clause of the base conceptual row corresponding to the object
 named in the AUGMENTS clause. Further, instances of
 subordinate columnar objects of a conceptual row extension
 exist according to the same semantics as instances of
 subordinate columnar objects of the base conceptual row being
 augmented. As such, note that creation of a base conceptual
 row implies the correspondent creation of any conceptual row
 augmentations.

 For example, a MIB designer might wish to define additional
 columns in an "enterprise-specific" MIB which logically extend
 a conceptual row in a "standard" MIB. The "standard" MIB
 definition of the conceptual row would include the INDEX
 clause and the "enterprise-specific" MIB would contain the
 definition of a conceptual row using the AUGMENTS clause.

 Note that a base conceptual row may be augmented by multiple
 conceptual row extensions.

 7.8.1. Relation between INDEX and AUGMENTS clauses

 When defining instance identification information for a
 conceptual table:

 (1) If there is a one-to-one correspondence between the
 conceptual rows of this table and an existing table, then
 the AUGMENTS clause should be used.

 Case, McCloghrie, Rose & Waldbusser [Page 31]

 RFC 1442 SMI for SNMPv2 April 1993

 (2) Otherwise, if there is a sparse relationship between the
 conceptuals rows of this table and an existing table,
 then an INDEX clause should be used which is identical to
 that in the existing table.

 (3) Otherwise, auxiliary objects should be defined within the
 conceptual row for the new table, and those objects
 should be used within the INDEX clause for the conceptual
 row.

 7.9. Mapping of the DEFVAL clause

 The DEFVAL clause, which need not be present, defines an
 acceptable default value which may be used at the discretion
 of a SNMPv2 entity acting in an agent role when an object
 instance is created.

 During conceptual row creation, if an instance of a columnar
 object is not present as one of the operands in the
 correspondent management protocol set operation, then the
 value of the DEFVAL clause, if present, indicates an
 acceptable default value that a SNMPv2 entity acting in an
 agent role might use.

 The value of the DEFVAL clause must, of course, correspond to
 the SYNTAX clause for the object. If the value is an OBJECT
 IDENTIFIER, then it must be expressed as a single ASN.1
 identifier, and not as a collection of sub-identifiers.

 Note that if an operand to the management protocol set
 operation is an instance of a read-only object, then the error
 ‘notWritable’ [6] will be returned. As such, the DEFVAL
 clause can be used to provide an acceptable default value that
 a SNMPv2 entity acting in an agent role might use.

 By way of example, consider the following possible DEFVAL
 clauses:

 Case, McCloghrie, Rose & Waldbusser [Page 32]

 RFC 1442 SMI for SNMPv2 April 1993

 ObjectSyntax DEFVAL clause
 ----------------- ------------
 Integer32 1
 -- same for Gauge32, TimeTicks, UInteger32
 INTEGER valid -- enumerated value
 OCTET STRING ’ffffffffffff’H
 OBJECT IDENTIFIER sysDescr
 BIT STRING { primary, secondary } -- enumerated values
 IpAddress ’c0210415’H -- 192.33.4.21

 Object types with SYNTAX of Counter32 and Counter64 may not
 have DEFVAL clauses, since they do not have defined initial
 values. However, it is recommended that they be initialized
 to zero.

 7.10. Mapping of the OBJECT-TYPE value

 The value of an invocation of the OBJECT-TYPE macro is the
 name of the object, which is an OBJECT IDENTIFIER, an
 administratively assigned name.

 When an OBJECT IDENTIFIER is assigned to an object:

 (1) If the object corresponds to a conceptual table, then
 only a single assignment, that for a conceptual row, is
 present immediately beneath that object. The
 administratively assigned name for the conceptual row
 object is derived by appending a sub-identifier of "1" to
 the administratively assigned name for the conceptual
 table.

 (2) If the object corresponds to a conceptual row, then at
 least one assignment, one for each column in the
 conceptual row, is present beneath that object. The
 administratively assigned name for each column is derived
 by appending a unique, positive sub-identifier to the
 administratively assigned name for the conceptual row.

 (3) Otherwise, no other OBJECT IDENTIFIERs which are
 subordinate to the object may be assigned.

 Note that the final sub-identifier of any administratively
 assigned name for an object shall be positive. A zero-valued
 final sub-identifier is reserved for future use.

 Case, McCloghrie, Rose & Waldbusser [Page 33]

 RFC 1442 SMI for SNMPv2 April 1993

 Further note that although conceptual tables and rows are
 given administratively assigned names, these conceptual
 objects may not be manipulated in aggregate form by the
 management protocol.

 Case, McCloghrie, Rose & Waldbusser [Page 34]

 RFC 1442 SMI for SNMPv2 April 1993

 7.11. Usage Example

 Consider how one might define a conceptual table and its
 subordinates.

 evalSlot OBJECT-TYPE
 SYNTAX INTEGER
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The index number of the first unassigned entry in
 the evaluation table.

 A management station should create new entries in
 the evaluation table using this algorithm: first,
 issue a management protocol retrieval operation to
 determine the value of evalSlot; and, second,
 issue a management protocol set operation to
 create an instance of the evalStatus object
 setting its value to underCreation(1). If this
 latter operation succeeds, then the management
 station may continue modifying the instances
 corresponding to the newly created conceptual row,
 without fear of collision with other management
 stations."
 ::= { eval 1 }

 evalTable OBJECT-TYPE
 SYNTAX SEQUENCE OF EvalEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The (conceptual) evaluation table."
 ::= { eval 2 }

 evalEntry OBJECT-TYPE
 SYNTAX EvalEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry (conceptual row) in the evaluation
 table."
 INDEX { evalIndex }
 ::= { evalTable 1 }

 Case, McCloghrie, Rose & Waldbusser [Page 35]

 RFC 1442 SMI for SNMPv2 April 1993

 EvalEntry ::=
 SEQUENCE {
 evalIndex Integer32,
 evalString DisplayString,
 evalValue Integer32,
 evalStatus RowStatus
 }

 evalIndex OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The auxiliary variable used for identifying
 instances of the columnar objects in the
 evaluation table."
 ::= { evalEntry 1 }

 evalString OBJECT-TYPE
 SYNTAX DisplayString
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The string to evaluate."
 ::= { evalEntry 2 }

 evalValue OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value when evalString was last executed."
 DEFVAL { 0 }
 ::= { evalEntry 3 }

 evalStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status column used for creating, modifying,
 and deleting instances of the columnar objects in
 the evaluation table."
 DEFVAL { active }
 ::= { evalEntry 4 }

 Case, McCloghrie, Rose & Waldbusser [Page 36]

 RFC 1442 SMI for SNMPv2 April 1993

 8. Mapping of the NOTIFICATION-TYPE macro

 The NOTIFICATION-TYPE macro is used to define the information
 contained within an unsolicited transmission of management
 information (i.e., within either a SNMPv2-Trap-PDU or
 InformRequest-PDU). It should be noted that the expansion of
 the NOTIFICATION-TYPE macro is something which conceptually
 happens during implementation and not during run-time.

 8.1. Mapping of the OBJECTS clause

 The OBJECTS clause, which need not be present, defines the
 ordered sequence of MIB objects which are contained within
 every instance of the notification.

 8.2. Mapping of the STATUS clause

 The STATUS clause, which must be present, indicates whether
 this definition is current or historic.

 The values "current", and "obsolete" are self-explanatory.
 The "deprecated" value indicates that the notification is
 obsolete, but that an implementor may wish to support that
 object to foster interoperability with older implementations.

 8.3. Mapping of the DESCRIPTION clause

 The DESCRIPTION clause, which must be present, contains a
 textual definition of the notification which provides all
 semantic definitions necessary for implementation, and should
 embody any information which would otherwise be communicated
 in any ASN.1 commentary annotations associated with the
 object. In particular, the DESCRIPTION clause should document
 which instances of the objects mentioned in the OBJECTS clause
 should be contained within notifications of this type.

 8.4. Mapping of the REFERENCE clause

 The REFERENCE clause, which need not be present, contains a
 textual cross-reference to a notification defined in some
 other information module. This is useful when de-osifying a

 Case, McCloghrie, Rose & Waldbusser [Page 37]

 RFC 1442 SMI for SNMPv2 April 1993

 MIB module produced by some other organization.

 8.5. Mapping of the NOTIFICATION-TYPE value

 The value of an invocation of the NOTIFICATION-TYPE macro is
 the name of the notification, which is an OBJECT IDENTIFIER,
 an administratively assigned name.

 Sections 4.2.6 and 4.2.7 of [6] describe how the
 NOTIFICATION-TYPE macro is used to generate a SNMPv2-Trap-PDU
 or InformRequest-PDU, respectively.

 Case, McCloghrie, Rose & Waldbusser [Page 38]

 RFC 1442 SMI for SNMPv2 April 1993

 8.6. Usage Example

 Consider how a linkUp trap might be described:

 linkUp NOTIFICATION-TYPE
 OBJECTS { ifIndex }
 STATUS current
 DESCRIPTION
 "A linkUp trap signifies that the SNMPv2 entity,
 acting in an agent role, recognizes that one of
 the communication links represented in its
 configuration has come up."
 ::= { snmpTraps 4 }

 According to this invocation, the trap authoritatively
 identified as

 { snmpTraps 4 }

 is used to report a link coming up.

 Note that a SNMPv2 entity acting in an agent role can be
 configured to send this trap to zero or more SNMPv2 entities
 acting in a manager role, depending on the contents of the
 aclTable and viewTable [8] tables. For example, by judicious
 use of the viewTable, a SNMPv2 entity acting in an agent role
 might be configured to send all linkUp traps to one particular
 SNMPv2 entity, and linkUp traps for only certain interfaces to
 other SNMPv2 entities.

 Case, McCloghrie, Rose & Waldbusser [Page 39]

 RFC 1442 SMI for SNMPv2 April 1993

 9. Refined Syntax

 Some macros allow an object’s syntax to be refined (e.g., the
 SYNTAX clause in the MODULE-COMPLIANCE macro [2]). However,
 not all refinements of syntax are appropriate. In particular,
 the object’s primitive or application type must not be
 changed.

 Further, the following restrictions apply:

 Restrictions to Refinement on
 object syntax range enumeration size repertoire
 ----------------- ----- ----------- ---- ----------
 INTEGER (1) (2) - -
 OCTET STRING - - (3) (4)
 OBJECT IDENTIFIER - - - -
 BIT STRING - (2) - -
 IpAddress - - - -
 Counter32 - - - -
 Gauge32 (1) - - -
 TimeTicks - - - -
 NsapAddress - - - -
 Counter64 - - - -

 where:

 (1) the range of permitted values may be refined by raising
 the lower-bounds, by reducing the upper-bounds, and/or by
 reducing the alternative value/range choices;

 (2) the enumeration of named-values may be refined by
 removing one or more named-values;

 (3) the size in characters of the value may be refined by
 raising the lower-bounds, by reducing the upper-bounds,
 and/or by reducing the alternative size choices; or,

 (4) the repertoire of characters in the value may be reduced
 by further sub-typing.

 Otherwise no refinements are possible.

 Note that when refining an object with a SYNTAX clause value
 of Integer32 or UInteger32, the refined SYNTAX is expressed as
 an INTEGER and the restrictions of the table above are used.

 Case, McCloghrie, Rose & Waldbusser [Page 40]

 RFC 1442 SMI for SNMPv2 April 1993

 10. Extending an Information Module

 As experience is gained with a published information module,
 it may be desirable to revise that information module.

 To begin, the invocation of the MODULE-IDENTITY macro should
 be updated to include information about the revision.
 Usually, this consists of updating the LAST-UPDATED clause and
 adding a pair of REVISION and DESCRIPTION clauses. However,
 other existing clauses in the invocation may be updated.

 Note that the module’s label (e.g., "FIZBIN-MIB" from the
 example in Section 5.8), is not changed when the information
 module is revised.

 10.1. Object Assignments

 If any non-editorial change is made to any clause of a object
 assignment, then the OBJECT IDENTIFIER value associated with
 that object assignment must also be changed, along with its
 associated descriptor.

 10.2. Object Definitions

 An object definition may be revised in any of the following
 ways:

 (1) A SYNTAX clause containing an enumerated INTEGER may have
 new enumerations added or existing labels changed.

 (2) A STATUS clause value of "current" may be revised as
 "deprecated" or "obsolete". Similarly, a STATUS clause
 value of "deprecated" may be revised as "obsolete".

 (3) A DEFVAL clause may be added or updated.

 (4) A REFERENCE clause may be added or updated.

 (5) A UNITS clause may be added.

 (6) A conceptual row may be augmented by adding new columnar
 objects at the end of the row.

 Case, McCloghrie, Rose & Waldbusser [Page 41]

 RFC 1442 SMI for SNMPv2 April 1993

 (7) Entirely new objects may be defined, named with
 previously unassigned OBJECT IDENTIFIER values.

 Otherwise, if the semantics of any previously defined object
 are changed (i.e., if a non-editorial change is made to any
 clause other those specifically allowed above), then the
 OBJECT IDENTIFIER value associated with that object must also
 be changed.

 Note that changing the descriptor associated with an existing
 object is considered a semantic change, as these strings may
 be used in an IMPORTS statement.

 Finally, note that if an object has the value of its STATUS
 clause changed, then the value of its DESCRIPTION clause
 should be updated accordingly.

 10.3. Notification Definitions

 A notification definition may be revised in any of the
 following ways:

 (1) A REFERENCE clause may be added or updated.

 Otherwise, if the semantics of any previously defined
 notification are changed (i.e., if a non-editorial change is
 made to any clause other those specifically allowed above),
 then the OBJECT IDENTIFIER value associated with that
 notification must also be changed.

 Note that changing the descriptor associated with an existing
 notification is considered a semantic change, as these strings
 may be used in an IMPORTS statement.

 Finally, note that if an object has the value of its STATUS
 clause changed, then the value of its DESCRIPTION clause
 should be updated accordingly.

 Case, McCloghrie, Rose & Waldbusser [Page 42]

 RFC 1442 SMI for SNMPv2 April 1993

 11. Appendix: de-OSIfying a MIB module

 There has been an increasing amount of work recently on taking
 MIBs defined by other organizations (e.g., the IEEE) and de-
 osifying them for use with the Internet-standard network
 management framework. The steps to achieve this are
 straight-forward, though tedious. Of course, it is helpful to
 already be experienced in writing MIB modules for use with the
 Internet-standard network management framework.

 The first step is to construct a skeletal MIB module, as shown
 earlier in Section 5.8. The next step is to categorize the
 objects into groups. Optional objects are not permitted.
 Thus, when a MIB module is created, optional objects must be
 placed in a additional groups, which, if implemented, all
 objects in the group must be implemented. For the first pass,
 it is wisest to simply ignore any optional objects in the
 original MIB: experience shows it is better to define a core
 MIB module first, containing only essential objects; later, if
 experience demands, other objects can be added.

 11.1. Managed Object Mapping

 Next for each managed object class, determine whether there
 can exist multiple instances of that managed object class. If
 not, then for each of its attributes, use the OBJECT-TYPE
 macro to make an equivalent definition.

 Otherwise, if multiple instances of the managed object class
 can exist, then define a conceptual table having conceptual
 rows each containing a columnar object for each of the managed
 object class’s attributes. If the managed object class is
 contained within the containment tree of another managed
 object class, then the assignment of an object is normally
 required for each of the "distinguished attributes" of the
 containing managed object class. If they do not already exist
 within the MIB module, then they can be added via the
 definition of additional columnar objects in the conceptual
 row corresponding to the contained managed object class.

 In defining a conceptual row, it is useful to consider the
 optimization of network management operations which will act
 upon its columnar objects. In particular, it is wisest to
 avoid defining more columnar objects within a conceptual row,

 Case, McCloghrie, Rose & Waldbusser [Page 43]

 RFC 1442 SMI for SNMPv2 April 1993

 than can fit in a single PDU. As a rule of thumb, a
 conceptual row should contain no more than approximately 20
 objects. Similarly, or as a way to abide by the "20 object
 guideline", columnar objects should be grouped into tables
 according to the expected grouping of network management
 operations upon them. As such, the content of conceptual rows
 should reflect typical access scenarios, e.g., they should be
 organized along functional lines such as one row for
 statistics and another row for parameters, or along usage
 lines such as commonly-needed objects versus rarely-needed
 objects.

 On the other hand, the definition of conceptual rows where the
 number of columnar objects used as indexes outnumbers the
 number used to hold information, should also be avoided. In
 particular, the splitting of a managed object class’s
 attributes into many conceptual tables should not be used as a
 way to obtain the same degree of flexibility/complexity as is
 often found in MIBs with a myriad of optionals.

 11.1.1. Mapping to the SYNTAX clause

 When mapping to the SYNTAX clause of the OBJECT-type macro:

 (1) An object with BOOLEAN syntax becomes a TruthValue [3].

 (2) An object with INTEGER syntax becomes an Integer32.

 (3) An object with ENUMERATED syntax becomes an INTEGER with
 enumerations, taking any of the values given which can be
 represented with an Integer32.

 (4) An object with BIT STRING syntax but no enumerations
 becomes an OCTET STRING.

 (5) An object with a character string syntax becomes either
 an OCTET STRING, or a DisplayString [3], depending on the
 repertoire of the character string.

 (6) A non-tabular object with a complex syntax, such as REAL
 or EXTERNAL, must be decomposed, usually into an OCTET
 STRING (if sensible). As a rule, any object with a
 complicated syntax should be avoided.

 Case, McCloghrie, Rose & Waldbusser [Page 44]

 RFC 1442 SMI for SNMPv2 April 1993

 (7) Tabular objects must be decomposed into rows of columnar
 objects.

 11.1.2. Mapping to the UNITS clause

 If the description of this managed object defines a unit-
 basis, then mapping to this clause is straight-forward.

 11.1.3. Mapping to the MAX-ACCESS clause

 This is straight-forward.

 11.1.4. Mapping to the STATUS clause

 This is straight-forward.

 11.1.5. Mapping to the DESCRIPTION clause

 This is straight-forward: simply copy the text, making sure
 that any embedded double quotation marks are sanitized (i.e.,
 replaced with single-quotes or removed).

 11.1.6. Mapping to the REFERENCE clause

 This is straight-forward: simply include a textual reference
 to the object being mapped, the document which defines the
 object, and perhaps a page number in the document.

 11.1.7. Mapping to the INDEX clause

 If necessary, decide how instance-identifiers for columnar
 objects are to be formed and define this clause accordingly.

 11.1.8. Mapping to the DEFVAL clause

 Decide if a meaningful default value can be assigned to the
 object being mapped, and if so, define the DEFVAL clause
 accordingly.

 Case, McCloghrie, Rose & Waldbusser [Page 45]

 RFC 1442 SMI for SNMPv2 April 1993

 11.2. Action Mapping

 Actions are modeled as read-write objects, in which writing a
 particular value results in a state change. (Usually, as a
 part of this state change, some action might take place.)

 11.2.1. Mapping to the SYNTAX clause

 Usually the Integer32 syntax is used with a distinguished
 value provided for each action that the object provides access
 to. In addition, there is usually one other distinguished
 value, which is the one returned when the object is read.

 11.2.2. Mapping to the MAX-ACCESS clause

 Always use read-write or read-create.

 11.2.3. Mapping to the STATUS clause

 This is straight-forward.

 11.2.4. Mapping to the DESCRIPTION clause

 This is straight-forward: simply copy the text, making sure
 that any embedded double quotation marks are sanitized (i.e.,
 replaced with single-quotes or removed).

 11.2.5. Mapping to the REFERENCE clause

 This is straight-forward: simply include a textual reference
 to the action being mapped, the document which defines the
 action, and perhaps a page number in the document.

 11.3. Event Mapping

 Events are modeled as SNMPv2 notifications using
 NOTIFICATION-TYPE macro. However, recall that SNMPv2
 emphasizes trap-directed polling. As such, few, and usually
 no, notifications, need be defined for any MIB module.

 Case, McCloghrie, Rose & Waldbusser [Page 46]

 RFC 1442 SMI for SNMPv2 April 1993

 11.3.1. Mapping to the STATUS clause

 This is straight-forward.

 11.3.2. Mapping to the DESCRIPTION clause

 This is straight-forward: simply copy the text, making sure
 that any embedded double quotation marks are sanitized (i.e.,
 replaced with single-quotes or removed).

 11.3.3. Mapping to the REFERENCE clause

 This is straight-forward: simply include a textual reference
 to the notification being mapped, the document which defines
 the notification, and perhaps a page number in the document.

 Case, McCloghrie, Rose & Waldbusser [Page 47]

 RFC 1442 SMI for SNMPv2 April 1993

 12. Acknowledgements

 The section on object definitions (and MIB de-osification) is
 based, in part, on RFCs 1155 and 1212. The IMPLIED keyword is
 based on a conversation with David T. Perkins in December,
 1991.

 The section on trap definitions is based, in part, on RFC
 1215.

 Finally, the comments of the SNMP version 2 working group are
 gratefully acknowledged:

 Beth Adams, Network Management Forum
 Steve Alexander, INTERACTIVE Systems Corporation
 David Arneson, Cabletron Systems
 Toshiya Asaba
 Fred Baker, ACC
 Jim Barnes, Xylogics, Inc.
 Brian Bataille
 Andy Bierman, SynOptics Communications, Inc.
 Uri Blumenthal, IBM Corporation
 Fred Bohle, Interlink
 Jack Brown
 Theodore Brunner, Bellcore
 Stephen F. Bush, GE Information Services
 Jeffrey D. Case, University of Tennessee, Knoxville
 John Chang, IBM Corporation
 Szusin Chen, Sun Microsystems
 Robert Ching
 Chris Chiotasso, Ungermann-Bass
 Bobby A. Clay, NASA/Boeing
 John Cooke, Chipcom
 Tracy Cox, Bellcore
 Juan Cruz, Datability, Inc.
 David Cullerot, Cabletron Systems
 Cathy Cunningham, Microcom
 James R. (Chuck) Davin, Bellcore
 Michael Davis, Clearpoint
 Mike Davison, FiberCom
 Cynthia DellaTorre, MITRE
 Taso N. Devetzis, Bellcore
 Manual Diaz, DAVID Systems, Inc.
 Jon Dreyer, Sun Microsystems
 David Engel, Optical Data Systems

 Case, McCloghrie, Rose & Waldbusser [Page 48]

 RFC 1442 SMI for SNMPv2 April 1993

 Mike Erlinger, Lexcel
 Roger Fajman, NIH
 Daniel Fauvarque, Sun Microsystems
 Karen Frisa, CMU
 Shari Galitzer, MITRE
 Shawn Gallagher, Digital Equipment Corporation
 Richard Graveman, Bellcore
 Maria Greene, Xyplex, Inc.
 Michel Guittet, Apple
 Robert Gutierrez, NASA
 Bill Hagerty, Cabletron Systems
 Gary W. Haney, Martin Marietta Energy Systems
 Patrick Hanil, Nokia Telecommunications
 Matt Hecht, SNMP Research, Inc.
 Edward A. Heiner, Jr., Synernetics Inc.
 Susan E. Hicks, Martin Marietta Energy Systems
 Geral Holzhauer, Apple
 John Hopprich, DAVID Systems, Inc.
 Jeff Hughes, Hewlett-Packard
 Robin Iddon, Axon Networks, Inc.
 David Itusak
 Kevin M. Jackson, Concord Communications, Inc.
 Ole J. Jacobsen, Interop Company
 Ronald Jacoby, Silicon Graphics, Inc.
 Satish Joshi, SynOptics Communications, Inc.
 Frank Kastenholz, FTP Software
 Mark Kepke, Hewlett-Packard
 Ken Key, SNMP Research, Inc.
 Zbiginew Kielczewski, Eicon
 Jongyeoi Kim
 Andrew Knutsen, The Santa Cruz Operation
 Michael L. Kornegay, VisiSoft
 Deirdre C. Kostik, Bellcore
 Cheryl Krupczak, Georgia Tech
 Mark S. Lewis, Telebit
 David Lin
 David Lindemulder, AT&T/NCR
 Ben Lisowski, Sprint
 David Liu, Bell-Northern Research
 John Lunny, The Wollongong Group
 Robert C. Lushbaugh Martin, Marietta Energy Systems
 Michael Luufer, BBN
 Carl Madison, Star-Tek, Inc.
 Keith McCloghrie, Hughes LAN Systems
 Evan McGinnis, 3Com Corporation

 Case, McCloghrie, Rose & Waldbusser [Page 49]

 RFC 1442 SMI for SNMPv2 April 1993

 Bill McKenzie, IBM Corporation
 Donna McMaster, SynOptics Communications, Inc.
 John Medicke, IBM Corporation
 Doug Miller, Telebit
 Dave Minnich, FiberCom
 Mohammad Mirhakkak, MITRE
 Rohit Mital, Protools
 George Mouradian, AT&T Bell Labs
 Patrick Mullaney, Cabletron Systems
 Dan Myers, 3Com Corporation
 Rina Nathaniel, Rad Network Devices Ltd.
 Hien V. Nguyen, Sprint
 Mo Nikain
 Tom Nisbet
 William B. Norton, MERIT
 Steve Onishi, Wellfleet Communications, Inc.
 David T. Perkins, SynOptics Communications, Inc.
 Carl Powell, BBN
 Ilan Raab, SynOptics Communications, Inc.
 Richard Ramons, AT&T
 Venkat D. Rangan, Metric Network Systems, Inc.
 Louise Reingold, Sprint
 Sam Roberts, Farallon Computing, Inc.
 Kary Robertson, Concord Communications, Inc.
 Dan Romascanu, Lannet Data Communications Ltd.
 Marshall T. Rose, Dover Beach Consulting, Inc.
 Shawn A. Routhier, Epilogue Technology Corporation
 Chris Rozman
 Asaf Rubissa, Fibronics
 Jon Saperia, Digital Equipment Corporation
 Michael Sapich
 Mike Scanlon, Interlan
 Sam Schaen, MITRE
 John Seligson, Ultra Network Technologies
 Paul A. Serice, Corporation for Open Systems
 Chris Shaw, Banyan Systems
 Timon Sloane
 Robert Snyder, Cisco Systems
 Joo Young Song
 Roy Spitier, Sprint
 Einar Stefferud, Network Management Associates
 John Stephens, Cayman Systems, Inc.
 Robert L. Stewart, Xyplex, Inc. (chair)
 Kaj Tesink, Bellcore
 Dean Throop, Data General

 Case, McCloghrie, Rose & Waldbusser [Page 50]

 RFC 1442 SMI for SNMPv2 April 1993

 Ahmet Tuncay, France Telecom-CNET
 Maurice Turcotte, Racal Datacom
 Warren Vik, INTERACTIVE Systems Corporation
 Yannis Viniotis
 Steven L. Waldbusser, Carnegie Mellon Universitty
 Timothy M. Walden, ACC
 Alice Wang, Sun Microsystems
 James Watt, Newbridge
 Luanne Waul, Timeplex
 Donald E. Westlake III, Digital Equipment Corporation
 Gerry White
 Bert Wijnen, IBM Corporation
 Peter Wilson, 3Com Corporation
 Steven Wong, Digital Equipment Corporation
 Randy Worzella, IBM Corporation
 Daniel Woycke, MITRE
 Honda Wu
 Jeff Yarnell, Protools
 Chris Young, Cabletron
 Kiho Yum, 3Com Corporation

 Case, McCloghrie, Rose & Waldbusser [Page 51]

 RFC 1442 SMI for SNMPv2 April 1993

 13. References

 [1] Information processing systems - Open Systems
 Interconnection - Specification of Abstract Syntax
 Notation One (ASN.1), International Organization for
 Standardization. International Standard 8824, (December,
 1987).

 [2] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
 "Conformance Statements for version 2 of the the Simple
 Network Management Protocol (SNMPv2)", RFC 1444, SNMP
 Research, Inc., Hughes LAN Systems, Dover Beach
 Consulting, Inc., Carnegie Mellon University, April 1993.

 [3] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
 "Textual Conventions for version 2 of the the Simple
 Network Management Protocol (SNMPv2)", RFC 1443, SNMP
 Research, Inc., Hughes LAN Systems, Dover Beach
 Consulting, Inc., Carnegie Mellon University, April 1993.

 [4] Information processing systems - Open Systems
 Interconnection - Specification of Basic Encoding Rules
 for Abstract Syntax Notation One (ASN.1), International
 Organization for Standardization. International Standard
 8825, (December, 1987).

 [5] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
 "Management Information Base for version 2 of the Simple
 Network Management Protocol (SNMPv2)", RFC 1450, SNMP
 Research, Inc., Hughes LAN Systems, Dover Beach
 Consulting, Inc., Carnegie Mellon University, April 1993.

 [6] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
 "Protocol Operations for version 2 of the Simple Network
 Management Protocol (SNMPv2)", RFC 1448, SNMP Research,
 Inc., Hughes LAN Systems, Dover Beach Consulting, Inc.,
 Carnegie Mellon University, April 1993.

 [7] McCloghrie, K., and Rose, M., "Management Information
 Base for Network Management of TCP/IP-based internets:
 MIB-II", STD 17, RFC 1213, March 1991.

 [8] McCloghrie, K., and Galvin, J., "Party MIB for version 2
 of the Simple Network Management Protocol (SNMPv2)", RFC
 1447, Hughes LAN Systems, Trusted Information Systems,

 Case, McCloghrie, Rose & Waldbusser [Page 52]

 RFC 1442 SMI for SNMPv2 April 1993

 April 1993.

 Case, McCloghrie, Rose & Waldbusser [Page 53]

 RFC 1442 SMI for SNMPv2 April 1993

 14. Security Considerations

 Security issues are not discussed in this memo.

 15. Authors’ Addresses

 Jeffrey D. Case
 SNMP Research, Inc.
 3001 Kimberlin Heights Rd.
 Knoxville, TN 37920-9716
 US

 Phone: +1 615 573 1434
 Email: case@snmp.com

 Keith McCloghrie
 Hughes LAN Systems
 1225 Charleston Road
 Mountain View, CA 94043
 US

 Phone: +1 415 966 7934
 Email: kzm@hls.com

 Marshall T. Rose
 Dover Beach Consulting, Inc.
 420 Whisman Court
 Mountain View, CA 94043-2186
 US

 Phone: +1 415 968 1052
 Email: mrose@dbc.mtview.ca.us

 Steven Waldbusser
 Carnegie Mellon University
 4910 Forbes Ave
 Pittsburgh, PA 15213
 US

 Phone: +1 412 268 6628
 Email: waldbusser@cmu.edu

 Case, McCloghrie, Rose & Waldbusser [Page 54]

