
Network Working Group B. Callaghan
Request for Comments: 1813 B. Pawlowski
Category: Informational P. Staubach
 Sun Microsystems, Inc.
 June 1995

 NFS Version 3 Protocol Specification

Status of this Memo

 This memo provides information for the Internet community.
 This memo does not specify an Internet standard of any kind.
 Distribution of this memo is unlimited.

IESG Note

 Internet Engineering Steering Group comment: please note that
 the IETF is not involved in creating or maintaining this
 specification. This is the significance of the specification
 not being on the standards track.

Abstract

 This paper describes the NFS version 3 protocol. This paper is
 provided so that people can write compatible implementations.

Table of Contents

 1. Introduction . 3
 1.1 Scope of the NFS version 3 protocol 4
 1.2 Useful terms . 5
 1.3 Remote Procedure Call 5
 1.4 External Data Representation 5
 1.5 Authentication and Permission Checking 7
 1.6 Philosophy . 8
 1.7 Changes from the NFS version 2 protocol 11
 2. RPC Information . 14
 2.1 Authentication . 14
 2.2 Constants . 14
 2.3 Transport address 14
 2.4 Sizes . 14
 2.5 Basic Data Types . 15
 2.6 Defined Error Numbers 17
 3. Server Procedures . 27
 3.1 General comments on attributes 29
 3.2 General comments on filenames 30
 3.3.0 NULL: Do nothing . 31

Callaghan, el al Informational [Page 1]

RFC 1813 NFS Version 3 Protocol June 1995

 3.3.1 GETATTR: Get file attributes 32
 3.3.2 SETATTR: Set file attributes 33
 3.3.3 LOOKUP: Lookup filename 37
 3.3.4 ACCESS: Check access permission 40
 3.3.5 READLINK: Read from symbolic link 44
 3.3.6 READ: Read from file 46
 3.3.7 WRITE: Write to file 49
 3.3.8 CREATE: Create a file 54
 3.3.9 MKDIR: Create a directory 58
 3.3.10 SYMLINK: Create a symbolic link 61
 3.3.11 MKNOD: Create a special device 63
 3.3.12 REMOVE: Remove a file 67
 3.3.13 RMDIR: Remove a directory 69
 3.3.14 RENAME: Rename a file or directory 71
 3.3.15 LINK: Create link to an object 74
 3.3.16 READDIR: Read From directory 76
 3.3.17 READDIRPLUS: Extended read from directory 80
 3.3.18 FSSTAT: Get dynamic file system information 84
 3.3.19 FSINFO: Get static file system information 86
 3.3.20 PATHCONF: Retrieve POSIX information 90
 3.3.21 COMMIT: Commit cached data on a server to stable storage 92
 4. Implementation issues 96
 4.1 Multiple version support 96
 4.2 Server/client relationship 96
 4.3 Path name interpretation 97
 4.4 Permission issues 98
 4.5 Duplicate request cache 99
 4.6 File name component handling 101
 4.7 Synchronous modifying operations 101
 4.8 Stable storage . 101
 4.9 Lookups and name resolution 102
 4.10 Adaptive retransmission 102
 4.11 Caching policies . 102
 4.12 Stable versus unstable writes. 103
 4.13 32 bit clients/servers and 64 bit clients/servers. . . . 104
 5. Appendix I: Mount protocol 106
 5.1 RPC Information . 106
 5.1.1 Authentication . 106
 5.1.2 Constants . 106
 5.1.3 Transport address 106
 5.1.4 Sizes . 106
 5.1.5 Basic Data Types 106
 5.2 Server Procedures 107
 5.2.0 NULL: Do nothing 108
 5.2.1 MNT: Add mount entry 109
 5.2.2 DUMP: Return mount entries 110
 5.2.3 UMNT: Remove mount entry 111
 5.2.4 UMNTALL: Remove all mount entries 112

Callaghan, el al Informational [Page 2]

RFC 1813 NFS Version 3 Protocol June 1995

 5.2.5 EXPORT: Return export list 113
 6. Appendix II: Lock manager protocol 114
 6.1 RPC Information . 114
 6.1.1 Authentication . 114
 6.1.2 Constants . 114
 6.1.3 Transport Address 115
 6.1.4 Basic Data Types 115
 6.2 NLM Procedures . 118
 6.2.0 NULL: Do nothing 120
 6.3 Implementation issues 120
 6.3.1 64-bit offsets and lengths 120
 6.3.2 File handles . 120
 7. Appendix III: Bibliography 122
 8. Security Considerations 125
 9. Acknowledgements . 125
 10. Authors’ Addresses . 126

1. Introduction

 Sun’s NFS protocol provides transparent remote access to shared
 file systems across networks. The NFS protocol is designed to be
 machine, operating system, network architecture, and transport
 protocol independent. This independence is achieved through the
 use of Remote Procedure Call (RPC) primitives built on top of an
 eXternal Data Representation (XDR). Implementations of the NFS
 version 2 protocol exist for a variety of machines, from personal
 computers to supercomputers. The initial version of the NFS
 protocol is specified in the Network File System Protocol
 Specification [RFC1094]. A description of the initial
 implementation can be found in [Sandberg].

 The supporting MOUNT protocol performs the operating
 system-specific functions that allow clients to attach remote
 directory trees to a point within the local file system. The
 mount process also allows the server to grant remote access
 privileges to a restricted set of clients via export control.

 The Lock Manager provides support for file locking when used in
 the NFS environment. The Network Lock Manager (NLM) protocol
 isolates the inherently stateful aspects of file locking into a
 separate protocol.

 A complete description of the above protocols and their
 implementation is to be found in [X/OpenNFS].

 The purpose of this document is to:

Callaghan, el al Informational [Page 3]

RFC 1813 NFS Version 3 Protocol June 1995

 o Specify the NFS version 3 protocol.

 o Describe semantics of the protocol through annotation
 and description of intended implementation.

 o Specify the MOUNT version 3 protocol.

 o Briefly describe the changes between the NLM version 3
 protocol and the NLM version 4 protocol.

 The normative text is the description of the RPC procedures and
 arguments and results, which defines the over-the-wire protocol,
 and the semantics of those procedures. The material describing
 implementation practice aids the understanding of the protocol
 specification and describes some possible implementation issues
 and solutions. It is not possible to describe all implementations
 and the UNIX operating system implementation of the NFS version 3
 protocol is most often used to provide examples. Given that, the
 implementation discussion does not bear the authority of the
 description of the over-the-wire protocol itself.

1.1 Scope of the NFS version 3 protocol

 This revision of the NFS protocol addresses new requirements.
 The need to support larger files and file systems has prompted
 extensions to allow 64 bit file sizes and offsets. The revision
 enhances security by adding support for an access check to be
 done on the server. Performance modifications are of three
 types:

 1. The number of over-the-wire packets for a given
 set of file operations is reduced by returning file
 attributes on every operation, thus decreasing the number
 of calls to get modified attributes.

 2. The write throughput bottleneck caused by the synchronous
 definition of write in the NFS version 2 protocol has been
 addressed by adding support so that the NFS server can do
 unsafe writes. Unsafe writes are writes which have not
 been committed to stable storage before the operation
 returns. This specification defines a method for
 committing these unsafe writes to stable storage in a
 reliable way.

 3. Limitations on transfer sizes have been relaxed.

 The ability to support multiple versions of a protocol in RPC
 will allow implementors of the NFS version 3 protocol to define

Callaghan, el al Informational [Page 4]

RFC 1813 NFS Version 3 Protocol June 1995

 clients and servers that provide backwards compatibility with
 the existing installed base of NFS version 2 protocol
 implementations.

 The extensions described here represent an evolution of the
 existing NFS protocol and most of the design features of the
 NFS protocol described in [Sandberg] persist. See Changes
 from the NFS version 2 protocol on page 11 for a more
 detailed summary of the changes introduced by this revision.

1.2 Useful terms

 In this specification, a "server" is a machine that provides
 resources to the network; a "client" is a machine that accesses
 resources over the network; a "user" is a person logged in on a
 client; an "application" is a program that executes on a client.

1.3 Remote Procedure Call

 The Sun Remote Procedure Call specification provides a
 procedure-oriented interface to remote services. Each server
 supplies a program, which is a set of procedures. The NFS
 service is one such program. The combination of host address,
 program number, version number, and procedure number specify one
 remote service procedure. Servers can support multiple versions
 of a program by using different protocol version numbers.

 The NFS protocol was designed to not require any specific level
 of reliability from its lower levels so it could potentially be
 used on many underlying transport protocols. The NFS service is
 based on RPC which provides the abstraction above lower level
 network and transport protocols.

 The rest of this document assumes the NFS environment is
 implemented on top of Sun RPC, which is specified in [RFC1057].
 A complete discussion is found in [Corbin].

1.4 External Data Representation

 The eXternal Data Representation (XDR) specification provides a
 standard way of representing a set of data types on a network.
 This solves the problem of different byte orders, structure
 alignment, and data type representation on different,
 communicating machines.

 In this document, the RPC Data Description Language is used to
 specify the XDR format parameters and results to each of the RPC
 service procedures that an NFS server provides. The RPC Data

Callaghan, el al Informational [Page 5]

RFC 1813 NFS Version 3 Protocol June 1995

 Description Language is similar to declarations in the C
 programming language. A few new constructs have been added.
 The notation:

 string name[SIZE];
 string data<DSIZE>;

 defines name, which is a fixed size block of SIZE bytes, and
 data, which is a variable sized block of up to DSIZE bytes. This
 notation indicates fixed-length arrays and arrays with a
 variable number of elements up to a fixed maximum. A
 variable-length definition with no size specified means there is
 no maximum size for the field.

 The discriminated union definition:

 union example switch (enum status) {
 case OK:
 struct {
 filename file1;
 filename file2;
 integer count;
 }
 case ERROR:
 struct {
 errstat error;
 integer errno;
 }
 default:
 void;
 }

 defines a structure where the first thing over the network is an
 enumeration type called status. If the value of status is OK,
 the next thing on the network will be the structure containing
 file1, file2, and count. Else, if the value of status is ERROR,
 the next thing on the network will be a structure containing
 error and errno. If the value of status is neither OK nor
 ERROR, then there is no more data in the structure.

 The XDR type, hyper, is an 8 byte (64 bit) quantity. It is used
 in the same way as the integer type. For example:

 hyper foo;
 unsigned hyper bar;

 foo is an 8 byte signed value, while bar is an 8 byte unsigned
 value.

Callaghan, el al Informational [Page 6]

RFC 1813 NFS Version 3 Protocol June 1995

 Although RPC/XDR compilers exist to generate client and server
 stubs from RPC Data Description Language input, NFS
 implementations do not require their use. Any software that
 provides equivalent encoding and decoding to the canonical
 network order of data defined by XDR can be used to interoperate
 with other NFS implementations.

 XDR is described in [RFC1014].

1.5 Authentication and Permission Checking

 The RPC protocol includes a slot for authentication parameters
 on every call. The contents of the authentication parameters are
 determined by the type of authentication used by the server and
 client. A server may support several different flavors of
 authentication at once. The AUTH_NONE flavor provides null
 authentication, that is, no authentication information is
 passed. The AUTH_UNIX flavor provides UNIX-style user ID, group
 ID, and groups with each call. The AUTH_DES flavor provides
 DES-encrypted authentication parameters based on a network-wide
 name, with session keys exchanged via a public key scheme. The
 AUTH_KERB flavor provides DES encrypted authentication
 parameters based on a network-wide name with session keys
 exchanged via Kerberos secret keys.

 The NFS server checks permissions by taking the credentials from
 the RPC authentication information in each remote request. For
 example, using the AUTH_UNIX flavor of authentication, the
 server gets the user’s effective user ID, effective group ID and
 groups on each call, and uses them to check access. Using user
 ids and group ids implies that the client and server either
 share the same ID list or do local user and group ID mapping.
 Servers and clients must agree on the mapping from user to uid
 and from group to gid, for those sites that do not implement a
 consistent user ID and group ID space. In practice, such mapping
 is typically performed on the server, following a static mapping
 scheme or a mapping established by the user from a client at
 mount time.

 The AUTH_DES and AUTH_KERB style of authentication is based on a
 network-wide name. It provides greater security through the use
 of DES encryption and public keys in the case of AUTH_DES, and
 DES encryption and Kerberos secret keys (and tickets) in the
 AUTH_KERB case. Again, the server and client must agree on the
 identity of a particular name on the network, but the name to
 identity mapping is more operating system independent than the
 uid and gid mapping in AUTH_UNIX. Also, because the
 authentication parameters are encrypted, a malicious user must

Callaghan, el al Informational [Page 7]

RFC 1813 NFS Version 3 Protocol June 1995

 know another users network password or private key to masquerade
 as that user. Similarly, the server returns a verifier that is
 also encrypted so that masquerading as a server requires knowing
 a network password.

 The NULL procedure typically requires no authentication.

1.6 Philosophy

 This specification defines the NFS version 3 protocol, that is
 the over-the-wire protocol by which a client accesses a server.
 The protocol provides a well-defined interface to a server’s
 file resources. A client or server implements the protocol and
 provides a mapping of the local file system semantics and
 actions into those defined in the NFS version 3 protocol.
 Implementations may differ to varying degrees, depending on the
 extent to which a given environment can support all the
 operations and semantics defined in the NFS version 3 protocol.
 Although implementations exist and are used to illustrate
 various aspects of the NFS version 3 protocol, the protocol
 specification itself is the final description of how clients
 access server resources.

 Because the NFS version 3 protocol is designed to be
 operating-system independent, it does not necessarily match the
 semantics of any existing system. Server implementations are
 expected to make a best effort at supporting the protocol. If a
 server cannot support a particular protocol procedure, it may
 return the error, NFS3ERR_NOTSUP, that indicates that the
 operation is not supported. For example, many operating systems
 do not support the notion of a hard link. A server that cannot
 support hard links should return NFS3ERR_NOTSUP in response to a
 LINK request. FSINFO describes the most commonly unsupported
 procedures in the properties bit map. Alternatively, a server
 may not natively support a given operation, but can emulate it
 in the NFS version 3 protocol implementation to provide greater
 functionality.

 In some cases, a server can support most of the semantics
 described by the protocol but not all. For example, the ctime
 field in the fattr structure gives the time that a file’s
 attributes were last modified. Many systems do not keep this
 information. In this case, rather than not support the GETATTR
 operation, a server could simulate it by returning the last
 modified time in place of ctime. Servers must be careful when
 simulating attribute information because of possible side
 effects on clients. For example, many clients use file
 modification times as a basis for their cache consistency

Callaghan, el al Informational [Page 8]

RFC 1813 NFS Version 3 Protocol June 1995

 scheme.

 NFS servers are dumb and NFS clients are smart. It is the
 clients that do the work required to convert the generalized
 file access that servers provide into a file access method that
 is useful to applications and users. In the LINK example given
 above, a UNIX client that received an NFS3ERR_NOTSUP error from
 a server would do the recovery necessary to either make it look
 to the application like the link request had succeeded or return
 a reasonable error. In general, it is the burden of the client
 to recover.

 The NFS version 3 protocol assumes a stateless server
 implementation. Statelessness means that the server does not
 need to maintain state about any of its clients in order to
 function correctly. Stateless servers have a distinct advantage
 over stateful servers in the event of a crash. With stateless
 servers, a client need only retry a request until the server
 responds; the client does not even need to know that the server
 has crashed. See additional comments in Duplicate request cache
 on page 99.

 For a server to be useful, it holds nonvolatile state: data
 stored in the file system. Design assumptions in the NFS version
 3 protocol regarding flushing of modified data to stable storage
 reduce the number of failure modes in which data loss can occur.
 In this way, NFS version 3 protocol implementations can tolerate
 transient failures, including transient failures of the network.
 In general, server implementations of the NFS version 3 protocol
 cannot tolerate a non-transient failure of the stable storage
 itself. However, there exist fault tolerant implementations
 which attempt to address such problems.

 That is not to say that an NFS version 3 protocol server can’t
 maintain noncritical state. In many cases, servers will maintain
 state (cache) about previous operations to increase performance.
 For example, a client READ request might trigger a read-ahead of
 the next block of the file into the server’s data cache in the
 anticipation that the client is doing a sequential read and the
 next client READ request will be satisfied from the server’s
 data cache instead of from the disk. Read-ahead on the server
 increases performance by overlapping server disk I/O with client
 requests. The important point here is that the read-ahead block
 is not necessary for correct server behavior. If the server
 crashes and loses its memory cache of read buffers, recovery is
 simple on reboot - clients will continue read operations
 retrieving data from the server disk.

Callaghan, el al Informational [Page 9]

RFC 1813 NFS Version 3 Protocol June 1995

 Most data-modifying operations in the NFS protocol are
 synchronous. That is, when a data modifying procedure returns
 to the client, the client can assume that the operation has
 completed and any modified data associated with the request is
 now on stable storage. For example, a synchronous client WRITE
 request may cause the server to update data blocks, file system
 information blocks, and file attribute information - the latter
 information is usually referred to as metadata. When the WRITE
 operation completes, the client can assume that the write data
 is safe and discard it. This is a very important part of the
 stateless nature of the server. If the server did not flush
 dirty data to stable storage before returning to the client, the
 client would have no way of knowing when it was safe to discard
 modified data. The following data modifying procedures are
 synchronous: WRITE (with stable flag set to FILE_SYNC), CREATE,
 MKDIR, SYMLINK, MKNOD, REMOVE, RMDIR, RENAME, LINK, and COMMIT.

 The NFS version 3 protocol introduces safe asynchronous writes
 on the server, when the WRITE procedure is used in conjunction
 with the COMMIT procedure. The COMMIT procedure provides a way
 for the client to flush data from previous asynchronous WRITE
 requests on the server to stable storage and to detect whether
 it is necessary to retransmit the data. See the procedure
 descriptions of WRITE on page 49 and COMMIT on page 92.

 The LOOKUP procedure is used by the client to traverse
 multicomponent file names (pathnames). Each call to LOOKUP is
 used to resolve one segment of a pathname. There are two reasons
 for restricting LOOKUP to a single segment: it is hard to
 standardize a common format for hierarchical file names and the
 client and server may have different mappings of pathnames to
 file systems. This would imply that either the client must break
 the path name at file system attachment points, or the server
 must know about the client’s file system attachment points. In
 NFS version 3 protocol implementations, it is the client that
 constructs the hierarchical file name space using mounts to
 build a hierarchy. Support utilities, such as the Automounter,
 provide a way to manage a shared, consistent image of the file
 name space while still being driven by the client mount
 process.

 Clients can perform caching in varied manner. The general
 practice with the NFS version 2 protocol was to implement a
 time-based client-server cache consistency mechanism. It is
 expected NFS version 3 protocol implementations will use a
 similar mechanism. The NFS version 3 protocol has some explicit
 support, in the form of additional attribute information to
 eliminate explicit attribute checks. However, caching is not

Callaghan, el al Informational [Page 10]

RFC 1813 NFS Version 3 Protocol June 1995

 required, nor is any caching policy defined by the protocol.
 Neither the NFS version 2 protocol nor the NFS version 3
 protocol provide a means of maintaining strict client-server
 consistency (and, by implication, consistency across client
 caches).

1.7 Changes from the NFS Version 2 Protocol

 The ROOT and WRITECACHE procedures have been removed. A MKNOD
 procedure has been defined to allow the creation of special
 files, eliminating the overloading of CREATE. Caching on the
 client is not defined nor dictated by the NFS version 3
 protocol, but additional information and hints have been added
 to the protocol to allow clients that implement caching to
 manage their caches more effectively. Procedures that affect the
 attributes of a file or directory may now return the new
 attributes after the operation has completed to optimize out a
 subsequent GETATTR used in validating attribute caches. In
 addition, operations that modify the directory in which the
 target object resides return the old and new attributes of the
 directory to allow clients to implement more intelligent cache
 invalidation procedures. The ACCESS procedure provides access
 permission checking on the server, the FSSTAT procedure returns
 dynamic information about a file system, the FSINFO procedure
 returns static information about a file system and server, the
 READDIRPLUS procedure returns file handles and attributes in
 addition to directory entries, and the PATHCONF procedure
 returns POSIX pathconf information about a file.

 Below is a list of the important changes between the NFS version
 2 protocol and the NFS version 3 protocol.

 File handle size
 The file handle has been increased to a variable-length
 array of 64 bytes maximum from a fixed array of 32
 bytes. This addresses some known requirements for a
 slightly larger file handle size. The file handle was
 converted from fixed length to variable length to
 reduce local storage and network bandwidth requirements
 for systems which do not utilize the full 64 bytes of
 length.

 Maximum data sizes
 The maximum size of a data transfer used in the READ
 and WRITE procedures is now set by values in the FSINFO
 return structure. In addition, preferred transfer sizes
 are returned by FSINFO. The protocol does not place any
 artificial limits on the maximum transfer sizes.

Callaghan, el al Informational [Page 11]

RFC 1813 NFS Version 3 Protocol June 1995

 Filenames and pathnames are now specified as strings of
 variable length. The actual length restrictions are
 determined by the client and server implementations as
 appropriate. The protocol does not place any
 artificial limits on the length. The error,
 NFS3ERR_NAMETOOLONG, is provided to allow the server to
 return an indication to the client that it received a
 pathname that was too long for it to handle.

 Error return
 Error returns in some instances now return data (for
 example, attributes). nfsstat3 now defines the full set
 of errors that can be returned by a server. No other
 values are allowed.

 File type
 The file type now includes NF3CHR and NF3BLK for
 special files. Attributes for these types include
 subfields for UNIX major and minor devices numbers.
 NF3SOCK and NF3FIFO are now defined for sockets and
 fifos in the file system.

 File attributes
 The blocksize (the size in bytes of a block in the
 file) field has been removed. The mode field no longer
 contains file type information. The size and fileid
 fields have been widened to eight-byte unsigned
 integers from four-byte integers. Major and minor
 device information is now presented in a distinct
 structure. The blocks field name has been changed to
 used and now contains the total number of bytes used by
 the file. It is also an eight-byte unsigned integer.

 Set file attributes
 In the NFS version 2 protocol, the settable attributes
 were represented by a subset of the file attributes
 structure; the client indicated those attributes which
 were not to be modified by setting the corresponding
 field to -1, overloading some unsigned fields. The set
 file attributes structure now uses a discriminated
 union for each field to tell whether or how to set that
 field. The atime and mtime fields can be set to either
 the server’s current time or a time supplied by the
 client.

 LOOKUP
 The LOOKUP return structure now includes the attributes
 for the directory searched.

Callaghan, el al Informational [Page 12]

RFC 1813 NFS Version 3 Protocol June 1995

 ACCESS
 An ACCESS procedure has been added to allow an explicit
 over-the-wire permissions check. This addresses known
 problems with the superuser ID mapping feature in many
 server implementations (where, due to mapping of root
 user, unexpected permission denied errors could occur
 while reading from or writing to a file). This also
 removes the assumption which was made in the NFS
 version 2 protocol that access to files was based
 solely on UNIX style mode bits.

 READ
 The reply structure includes a Boolean that is TRUE if
 the end-of-file was encountered during the READ. This
 allows the client to correctly detect end-of-file.

 WRITE
 The beginoffset and totalcount fields were removed from
 the WRITE arguments. The reply now includes a count so
 that the server can write less than the requested
 amount of data, if required. An indicator was added to
 the arguments to instruct the server as to the level of
 cache synchronization that is required by the client.

 CREATE
 An exclusive flag and a create verifier was added for
 the exclusive creation of regular files.

 MKNOD
 This procedure was added to support the creation of
 special files. This avoids overloading fields of CREATE
 as was done in some NFS version 2 protocol
 implementations.

 READDIR
 The READDIR arguments now include a verifier to allow
 the server to validate the cookie. The cookie is now a
 64 bit unsigned integer instead of the 4 byte array
 which was used in the NFS version 2 protocol. This
 will help to reduce interoperability problems.

 READDIRPLUS
 This procedure was added to return file handles and
 attributes in an extended directory list.

 FSINFO
 FSINFO was added to provide nonvolatile information
 about a file system. The reply includes preferred and

Callaghan, el al Informational [Page 13]

RFC 1813 NFS Version 3 Protocol June 1995

 maximum read transfer size, preferred and maximum write
 transfer size, and flags stating whether links or
 symbolic links are supported. Also returned are
 preferred transfer size for READDIR procedure replies,
 server time granularity, and whether times can be set
 in a SETATTR request.

 FSSTAT
 FSSTAT was added to provide volatile information about
 a file system, for use by utilities such as the Unix
 system df command. The reply includes the total size
 and free space in the file system specified in bytes,
 the total number of files and number of free file slots
 in the file system, and an estimate of time between
 file system modifications (for use in cache consistency
 checking algorithms).

 COMMIT
 The COMMIT procedure provides the synchronization
 mechanism to be used with asynchronous WRITE
 operations.

2. RPC Information

2.1 Authentication

 The NFS service uses AUTH_NONE in the NULL procedure. AUTH_UNIX,
 AUTH_DES, or AUTH_KERB are used for all other procedures. Other
 authentication types may be supported in the future.

2.2 Constants

 These are the RPC constants needed to call the NFS Version 3
 service. They are given in decimal.

 PROGRAM 100003
 VERSION 3

2.3 Transport address

 The NFS protocol is normally supported over the TCP and UDP
 protocols. It uses port 2049, the same as the NFS version 2
 protocol.

2.4 Sizes

 These are the sizes, given in decimal bytes, of various XDR
 structures used in the NFS version 3 protocol:

Callaghan, el al Informational [Page 14]

RFC 1813 NFS Version 3 Protocol June 1995

 NFS3_FHSIZE 64
 The maximum size in bytes of the opaque file handle.

 NFS3_COOKIEVERFSIZE 8
 The size in bytes of the opaque cookie verifier passed by
 READDIR and READDIRPLUS.

 NFS3_CREATEVERFSIZE 8
 The size in bytes of the opaque verifier used for
 exclusive CREATE.

 NFS3_WRITEVERFSIZE 8
 The size in bytes of the opaque verifier used for
 asynchronous WRITE.

2.5 Basic Data Types

 The following XDR definitions are basic definitions that are
 used in other structures.

 uint64
 typedef unsigned hyper uint64;

 int64
 typedef hyper int64;

 uint32
 typedef unsigned long uint32;

 int32
 typedef long int32;

 filename3
 typedef string filename3<>;

 nfspath3
 typedef string nfspath3<>;

 fileid3
 typedef uint64 fileid3;

 cookie3
 typedef uint64 cookie3;

 cookieverf3
 typedef opaque cookieverf3[NFS3_COOKIEVERFSIZE];

Callaghan, el al Informational [Page 15]

RFC 1813 NFS Version 3 Protocol June 1995

 createverf3
 typedef opaque createverf3[NFS3_CREATEVERFSIZE];

 writeverf3
 typedef opaque writeverf3[NFS3_WRITEVERFSIZE];

 uid3
 typedef uint32 uid3;

 gid3
 typedef uint32 gid3;

 size3
 typedef uint64 size3;

 offset3
 typedef uint64 offset3;

 mode3
 typedef uint32 mode3;

 count3
 typedef uint32 count3;

 nfsstat3
 enum nfsstat3 {
 NFS3_OK = 0,
 NFS3ERR_PERM = 1,
 NFS3ERR_NOENT = 2,
 NFS3ERR_IO = 5,
 NFS3ERR_NXIO = 6,
 NFS3ERR_ACCES = 13,
 NFS3ERR_EXIST = 17,
 NFS3ERR_XDEV = 18,
 NFS3ERR_NODEV = 19,
 NFS3ERR_NOTDIR = 20,
 NFS3ERR_ISDIR = 21,
 NFS3ERR_INVAL = 22,
 NFS3ERR_FBIG = 27,
 NFS3ERR_NOSPC = 28,
 NFS3ERR_ROFS = 30,
 NFS3ERR_MLINK = 31,
 NFS3ERR_NAMETOOLONG = 63,
 NFS3ERR_NOTEMPTY = 66,
 NFS3ERR_DQUOT = 69,
 NFS3ERR_STALE = 70,
 NFS3ERR_REMOTE = 71,
 NFS3ERR_BADHANDLE = 10001,

Callaghan, el al Informational [Page 16]

RFC 1813 NFS Version 3 Protocol June 1995

 NFS3ERR_NOT_SYNC = 10002,
 NFS3ERR_BAD_COOKIE = 10003,
 NFS3ERR_NOTSUPP = 10004,
 NFS3ERR_TOOSMALL = 10005,
 NFS3ERR_SERVERFAULT = 10006,
 NFS3ERR_BADTYPE = 10007,
 NFS3ERR_JUKEBOX = 10008
 };

 The nfsstat3 type is returned with every procedure’s results
 except for the NULL procedure. A value of NFS3_OK indicates that
 the call completed successfully. Any other value indicates that
 some error occurred on the call, as identified by the error
 code. Note that the precise numeric encoding must be followed.
 No other values may be returned by a server. Servers are
 expected to make a best effort mapping of error conditions to
 the set of error codes defined. In addition, no error
 precedences are specified by this specification. Error
 precedences determine the error value that should be returned
 when more than one error applies in a given situation. The error
 precedence will be determined by the individual server
 implementation. If the client requires specific error
 precedences, it should check for the specific errors for
 itself.

2.6 Defined Error Numbers

 A description of each defined error follows:

 NFS3_OK
 Indicates the call completed successfully.

 NFS3ERR_PERM
 Not owner. The operation was not allowed because the
 caller is either not a privileged user (root) or not the
 owner of the target of the operation.

 NFS3ERR_NOENT
 No such file or directory. The file or directory name
 specified does not exist.

 NFS3ERR_IO
 I/O error. A hard error (for example, a disk error)
 occurred while processing the requested operation.

 NFS3ERR_NXIO
 I/O error. No such device or address.

Callaghan, el al Informational [Page 17]

RFC 1813 NFS Version 3 Protocol June 1995

 NFS3ERR_ACCES
 Permission denied. The caller does not have the correct
 permission to perform the requested operation. Contrast
 this with NFS3ERR_PERM, which restricts itself to owner
 or privileged user permission failures.

 NFS3ERR_EXIST
 File exists. The file specified already exists.

 NFS3ERR_XDEV
 Attempt to do a cross-device hard link.

 NFS3ERR_NODEV
 No such device.

 NFS3ERR_NOTDIR
 Not a directory. The caller specified a non-directory in
 a directory operation.

 NFS3ERR_ISDIR
 Is a directory. The caller specified a directory in a
 non-directory operation.

 NFS3ERR_INVAL
 Invalid argument or unsupported argument for an
 operation. Two examples are attempting a READLINK on an
 object other than a symbolic link or attempting to
 SETATTR a time field on a server that does not support
 this operation.

 NFS3ERR_FBIG
 File too large. The operation would have caused a file to
 grow beyond the server’s limit.

 NFS3ERR_NOSPC
 No space left on device. The operation would have caused
 the server’s file system to exceed its limit.

 NFS3ERR_ROFS
 Read-only file system. A modifying operation was
 attempted on a read-only file system.

 NFS3ERR_MLINK
 Too many hard links.

 NFS3ERR_NAMETOOLONG
 The filename in an operation was too long.

Callaghan, el al Informational [Page 18]

RFC 1813 NFS Version 3 Protocol June 1995

 NFS3ERR_NOTEMPTY

 An attempt was made to remove a directory that was not
 empty.

 NFS3ERR_DQUOT
 Resource (quota) hard limit exceeded. The user’s resource
 limit on the server has been exceeded.

 NFS3ERR_STALE
 Invalid file handle. The file handle given in the
 arguments was invalid. The file referred to by that file
 handle no longer exists or access to it has been
 revoked.

 NFS3ERR_REMOTE
 Too many levels of remote in path. The file handle given
 in the arguments referred to a file on a non-local file
 system on the server.

 NFS3ERR_BADHANDLE
 Illegal NFS file handle. The file handle failed internal
 consistency checks.

 NFS3ERR_NOT_SYNC
 Update synchronization mismatch was detected during a
 SETATTR operation.

 NFS3ERR_BAD_COOKIE
 READDIR or READDIRPLUS cookie is stale.

 NFS3ERR_NOTSUPP
 Operation is not supported.

 NFS3ERR_TOOSMALL
 Buffer or request is too small.

 NFS3ERR_SERVERFAULT
 An error occurred on the server which does not map to any
 of the legal NFS version 3 protocol error values. The
 client should translate this into an appropriate error.
 UNIX clients may choose to translate this to EIO.

 NFS3ERR_BADTYPE
 An attempt was made to create an object of a type not
 supported by the server.

Callaghan, el al Informational [Page 19]

RFC 1813 NFS Version 3 Protocol June 1995

 NFS3ERR_JUKEBOX
 The server initiated the request, but was not able to
 complete it in a timely fashion. The client should wait
 and then try the request with a new RPC transaction ID.
 For example, this error should be returned from a server
 that supports hierarchical storage and receives a request
 to process a file that has been migrated. In this case,
 the server should start the immigration process and
 respond to client with this error.

 ftype3

 enum ftype3 {
 NF3REG = 1,
 NF3DIR = 2,
 NF3BLK = 3,
 NF3CHR = 4,
 NF3LNK = 5,
 NF3SOCK = 6,
 NF3FIFO = 7
 };

 The enumeration, ftype3, gives the type of a file. The type,
 NF3REG, is a regular file, NF3DIR is a directory, NF3BLK is a
 block special device file, NF3CHR is a character special device
 file, NF3LNK is a symbolic link, NF3SOCK is a socket, and
 NF3FIFO is a named pipe. Note that the precise enum encoding
 must be followed.

 specdata3

 struct specdata3 {
 uint32 specdata1;
 uint32 specdata2;
 };

 The interpretation of the two words depends on the type of file
 system object. For a block special (NF3BLK) or character special
 (NF3CHR) file, specdata1 and specdata2 are the major and minor
 device numbers, respectively. (This is obviously a
 UNIX-specific interpretation.) For all other file types, these
 two elements should either be set to 0 or the values should be
 agreed upon by the client and server. If the client and server
 do not agree upon the values, the client should treat these
 fields as if they are set to 0. This data field is returned as
 part of the fattr3 structure and so is available from all
 replies returning attributes. Since these fields are otherwise
 unused for objects which are not devices, out of band

Callaghan, el al Informational [Page 20]

RFC 1813 NFS Version 3 Protocol June 1995

 information can be passed from the server to the client.
 However, once again, both the server and the client must agree
 on the values passed.

 nfs_fh3

 struct nfs_fh3 {
 opaque data<NFS3_FHSIZE>;
 };

 The nfs_fh3 is the variable-length opaque object returned by the
 server on LOOKUP, CREATE, SYMLINK, MKNOD, LINK, or READDIRPLUS
 operations, which is used by the client on subsequent operations
 to reference the file. The file handle contains all the
 information the server needs to distinguish an individual file.
 To the client, the file handle is opaque. The client stores file
 handles for use in a later request and can compare two file
 handles from the same server for equality by doing a
 byte-by-byte comparison, but cannot otherwise interpret the
 contents of file handles. If two file handles from the same
 server are equal, they must refer to the same file, but if they
 are not equal, no conclusions can be drawn. Servers should try
 to maintain a one-to-one correspondence between file handles and
 files, but this is not required. Clients should use file handle
 comparisons only to improve performance, not for correct
 behavior.

 Servers can revoke the access provided by a file handle at any
 time. If the file handle passed in a call refers to a file
 system object that no longer exists on the server or access for
 that file handle has been revoked, the error, NFS3ERR_STALE,
 should be returned.

 nfstime3

 struct nfstime3 {
 uint32 seconds;
 uint32 nseconds;
 };

 The nfstime3 structure gives the number of seconds and
 nanoseconds since midnight January 1, 1970 Greenwich Mean Time.
 It is used to pass time and date information. The times
 associated with files are all server times except in the case of
 a SETATTR operation where the client can explicitly set the file
 time. A server converts to and from local time when processing
 time values, preserving as much accuracy as possible. If the
 precision of timestamps stored for a file is less than that

Callaghan, el al Informational [Page 21]

RFC 1813 NFS Version 3 Protocol June 1995

 defined by NFS version 3 protocol, loss of precision can occur.
 An adjunct time maintenance protocol is recommended to reduce
 client and server time skew.

 fattr3

 struct fattr3 {
 ftype3 type;
 mode3 mode;
 uint32 nlink;
 uid3 uid;
 gid3 gid;
 size3 size;
 size3 used;
 specdata3 rdev;
 uint64 fsid;
 fileid3 fileid;
 nfstime3 atime;
 nfstime3 mtime;
 nfstime3 ctime;
 };

 This structure defines the attributes of a file system object.
 It is returned by most operations on an object; in the case of
 operations that affect two objects (for example, a MKDIR that
 modifies the target directory attributes and defines new
 attributes for the newly created directory), the attributes for
 both may be returned. In some cases, the attributes are returned
 in the structure, wcc_data, which is defined below; in other
 cases the attributes are returned alone. The main changes from
 the NFS version 2 protocol are that many of the fields have been
 widened and the major/minor device information is now presented
 in a distinct structure rather than being packed into a word.

 The fattr3 structure contains the basic attributes of a file.
 All servers should support this set of attributes even if they
 have to simulate some of the fields. Type is the type of the
 file. Mode is the protection mode bits. Nlink is the number of
 hard links to the file - that is, the number of different names
 for the same file. Uid is the user ID of the owner of the file.
 Gid is the group ID of the group of the file. Size is the size
 of the file in bytes. Used is the number of bytes of disk space
 that the file actually uses (which can be smaller than the size
 because the file may have holes or it may be larger due to
 fragmentation). Rdev describes the device file if the file type
 is NF3CHR or NF3BLK - see specdata3 on page 20. Fsid is the file
 system identifier for the file system. Fileid is a number which
 uniquely identifies the file within its file system (on UNIX

Callaghan, el al Informational [Page 22]

RFC 1813 NFS Version 3 Protocol June 1995

 this would be the inumber). Atime is the time when the file data
 was last accessed. Mtime is the time when the file data was last
 modified. Ctime is the time when the attributes of the file
 were last changed. Writing to the file changes the ctime in
 addition to the mtime.

 The mode bits are defined as follows:

 0x00800 Set user ID on execution.
 0x00400 Set group ID on execution.
 0x00200 Save swapped text (not defined in POSIX).
 0x00100 Read permission for owner.
 0x00080 Write permission for owner.
 0x00040 Execute permission for owner on a file. Or lookup
 (search) permission for owner in directory.
 0x00020 Read permission for group.
 0x00010 Write permission for group.
 0x00008 Execute permission for group on a file. Or lookup
 (search) permission for group in directory.
 0x00004 Read permission for others.
 0x00002 Write permission for others.
 0x00001 Execute permission for others on a file. Or lookup
 (search) permission for others in directory.

 post_op_attr

 union post_op_attr switch (bool attributes_follow) {
 case TRUE:
 fattr3 attributes;
 case FALSE:
 void;
 };

 This structure is used for returning attributes in those
 operations that are not directly involved with manipulating
 attributes. One of the principles of this revision of the NFS
 protocol is to return the real value from the indicated
 operation and not an error from an incidental operation. The
 post_op_attr structure was designed to allow the server to
 recover from errors encountered while getting attributes.

 This appears to make returning attributes optional. However,
 server implementors are strongly encouraged to make best effort
 to return attributes whenever possible, even when returning an
 error.

Callaghan, el al Informational [Page 23]

RFC 1813 NFS Version 3 Protocol June 1995

 wcc_attr

 struct wcc_attr {
 size3 size;
 nfstime3 mtime;
 nfstime3 ctime;
 };

 This is the subset of pre-operation attributes needed to better
 support the weak cache consistency semantics. Size is the file
 size in bytes of the object before the operation. Mtime is the
 time of last modification of the object before the operation.
 Ctime is the time of last change to the attributes of the object
 before the operation. See discussion in wcc_attr on page 24.

 The use of mtime by clients to detect changes to file system
 objects residing on a server is dependent on the granularity of
 the time base on the server.

 pre_op_attr

 union pre_op_attr switch (bool attributes_follow) {
 case TRUE:
 wcc_attr attributes;
 case FALSE:
 void;
 };

 wcc_data

 struct wcc_data {
 pre_op_attr before;
 post_op_attr after;
 };

 When a client performs an operation that modifies the state of a
 file or directory on the server, it cannot immediately determine
 from the post-operation attributes whether the operation just
 performed was the only operation on the object since the last
 time the client received the attributes for the object. This is
 important, since if an intervening operation has changed the
 object, the client will need to invalidate any cached data for
 the object (except for the data that it just wrote).

 To deal with this, the notion of weak cache consistency data or
 wcc_data is introduced. A wcc_data structure consists of certain
 key fields from the object attributes before the operation,
 together with the object attributes after the operation. This

Callaghan, el al Informational [Page 24]

RFC 1813 NFS Version 3 Protocol June 1995

 information allows the client to manage its cache more
 accurately than in NFS version 2 protocol implementations. The
 term, weak cache consistency, emphasizes the fact that this
 mechanism does not provide the strict server-client consistency
 that a cache consistency protocol would provide.

 In order to support the weak cache consistency model, the server
 will need to be able to get the pre-operation attributes of the
 object, perform the intended modify operation, and then get the
 post-operation attributes atomically. If there is a window for
 the object to get modified between the operation and either of
 the get attributes operations, then the client will not be able
 to determine whether it was the only entity to modify the
 object. Some information will have been lost, thus weakening the
 weak cache consistency guarantees.

 post_op_fh3

 union post_op_fh3 switch (bool handle_follows) {
 case TRUE:
 nfs_fh3 handle;
 case FALSE:
 void;
 };

 One of the principles of this revision of the NFS protocol is to
 return the real value from the indicated operation and not an
 error from an incidental operation. The post_op_fh3 structure
 was designed to allow the server to recover from errors
 encountered while constructing a file handle.

 This is the structure used to return a file handle from the
 CREATE, MKDIR, SYMLINK, MKNOD, and READDIRPLUS requests. In each
 case, the client can get the file handle by issuing a LOOKUP
 request after a successful return from one of the listed
 operations. Returning the file handle is an optimization so that
 the client is not forced to immediately issue a LOOKUP request
 to get the file handle.

 sattr3

 enum time_how {
 DONT_CHANGE = 0,
 SET_TO_SERVER_TIME = 1,
 SET_TO_CLIENT_TIME = 2
 };

 union set_mode3 switch (bool set_it) {

Callaghan, el al Informational [Page 25]

RFC 1813 NFS Version 3 Protocol June 1995

 case TRUE:
 mode3 mode;
 default:
 void;
 };

 union set_uid3 switch (bool set_it) {
 case TRUE:
 uid3 uid;
 default:
 void;
 };

 union set_gid3 switch (bool set_it) {
 case TRUE:
 gid3 gid;
 default:
 void;
 };

 union set_size3 switch (bool set_it) {
 case TRUE:
 size3 size;
 default:
 void;
 };

 union set_atime switch (time_how set_it) {
 case SET_TO_CLIENT_TIME:
 nfstime3 atime;
 default:
 void;
 };

 union set_mtime switch (time_how set_it) {
 case SET_TO_CLIENT_TIME:
 nfstime3 mtime;
 default:
 void;
 };

 struct sattr3 {
 set_mode3 mode;
 set_uid3 uid;
 set_gid3 gid;
 set_size3 size;
 set_atime atime;
 set_mtime mtime;

Callaghan, el al Informational [Page 26]

RFC 1813 NFS Version 3 Protocol June 1995

 };

 The sattr3 structure contains the file attributes that can be
 set from the client. The fields are the same as the similarly
 named fields in the fattr3 structure. In the NFS version 3
 protocol, the settable attributes are described by a structure
 containing a set of discriminated unions. Each union indicates
 whether the corresponding attribute is to be updated, and if so,
 how.

 There are two forms of discriminated unions used. In setting the
 mode, uid, gid, or size, the discriminated union is switched on
 a boolean, set_it; if it is TRUE, a value of the appropriate
 type is then encoded.

 In setting the atime or mtime, the union is switched on an
 enumeration type, set_it. If set_it has the value DONT_CHANGE,
 the corresponding attribute is unchanged. If it has the value,
 SET_TO_SERVER_TIME, the corresponding attribute is set by the
 server to its local time; no data is provided by the client.
 Finally, if set_it has the value, SET_TO_CLIENT_TIME, the
 attribute is set to the time passed by the client in an nfstime3
 structure. (See FSINFO on page 86, which addresses the issue of
 time granularity).

 diropargs3

 struct diropargs3 {
 nfs_fh3 dir;
 filename3 name;
 };

 The diropargs3 structure is used in directory operations. The
 file handle, dir, identifies the directory in which to
 manipulate or access the file, name. See additional comments in
 File name component handling on page 101.

3. Server Procedures

 The following sections define the RPC procedures that are
 supplied by an NFS version 3 protocol server. The RPC
 procedure number is given at the top of the page with the
 name. The SYNOPSIS provides the name of the procedure, the
 list of the names of the arguments, the list of the names of
 the results, followed by the XDR argument declarations and
 results declarations. The information in the SYNOPSIS is
 specified in RPC Data Description Language as defined in
 [RFC1014]. The DESCRIPTION section tells what the procedure

Callaghan, el al Informational [Page 27]

RFC 1813 NFS Version 3 Protocol June 1995

 is expected to do and how its arguments and results are used.
 The ERRORS section lists the errors returned for specific
 types of failures. These lists are not intended to be the
 definitive statement of all of the errors which can be
 returned by any specific procedure, but as a guide for the
 more common errors which may be returned. Client
 implementations should be prepared to deal with unexpected
 errors coming from a server. The IMPLEMENTATION field gives
 information about how the procedure is expected to work and
 how it should be used by clients.

 program NFS_PROGRAM {
 version NFS_V3 {

 void
 NFSPROC3_NULL(void) = 0;

 GETATTR3res
 NFSPROC3_GETATTR(GETATTR3args) = 1;

 SETATTR3res
 NFSPROC3_SETATTR(SETATTR3args) = 2;

 LOOKUP3res
 NFSPROC3_LOOKUP(LOOKUP3args) = 3;

 ACCESS3res
 NFSPROC3_ACCESS(ACCESS3args) = 4;

 READLINK3res
 NFSPROC3_READLINK(READLINK3args) = 5;

 READ3res
 NFSPROC3_READ(READ3args) = 6;

 WRITE3res
 NFSPROC3_WRITE(WRITE3args) = 7;

 CREATE3res
 NFSPROC3_CREATE(CREATE3args) = 8;

 MKDIR3res
 NFSPROC3_MKDIR(MKDIR3args) = 9;

 SYMLINK3res
 NFSPROC3_SYMLINK(SYMLINK3args) = 10;

Callaghan, el al Informational [Page 28]

RFC 1813 NFS Version 3 Protocol June 1995

 MKNOD3res
 NFSPROC3_MKNOD(MKNOD3args) = 11;

 REMOVE3res
 NFSPROC3_REMOVE(REMOVE3args) = 12;

 RMDIR3res
 NFSPROC3_RMDIR(RMDIR3args) = 13;

 RENAME3res
 NFSPROC3_RENAME(RENAME3args) = 14;

 LINK3res
 NFSPROC3_LINK(LINK3args) = 15;

 READDIR3res
 NFSPROC3_READDIR(READDIR3args) = 16;

 READDIRPLUS3res
 NFSPROC3_READDIRPLUS(READDIRPLUS3args) = 17;

 FSSTAT3res
 NFSPROC3_FSSTAT(FSSTAT3args) = 18;

 FSINFO3res
 NFSPROC3_FSINFO(FSINFO3args) = 19;

 PATHCONF3res
 NFSPROC3_PATHCONF(PATHCONF3args) = 20;

 COMMIT3res
 NFSPROC3_COMMIT(COMMIT3args) = 21;

 } = 3;
 } = 100003;

 Out of range (undefined) procedure numbers result in RPC
 errors. Refer to [RFC1057] for more detail.

3.1 General comments on attributes and consistency data on failure

 For those procedures that return either post_op_attr or wcc_data
 structures on failure, the discriminated union may contain the
 pre-operation attributes of the object or object parent
 directory. This depends on the error encountered and may also
 depend on the particular server implementation. Implementors are
 strongly encouraged to return as much attribute data as possible
 upon failure, but client implementors need to be aware that

Callaghan, el al Informational [Page 29]

RFC 1813 NFS Version 3 Protocol June 1995

 their implementation must correctly handle the variant return
 instance where no attributes or consistency data is returned.

3.2 General comments on filenames

 The following comments apply to all NFS version 3 protocol
 procedures in which the client provides one or more filenames in
 the arguments: LOOKUP, CREATE, MKDIR, SYMLINK, MKNOD, REMOVE,
 RMDIR, RENAME, and LINK.

 1. The filename must not be null nor may it be the null
 string. The server should return the error, NFS3ERR_ACCES, if
 it receives such a filename. On some clients, the filename, ‘‘’’
 or a null string, is assumed to be an alias for the current
 directory. Clients which require this functionality should
 implement it for themselves and not depend upon the server to
 support such semantics.

 2. A filename having the value of "." is assumed to be an
 alias for the current directory. Clients which require this
 functionality should implement it for themselves and not depend
 upon the server to support such semantics. However, the server
 should be able to handle such a filename correctly.

 3. A filename having the value of ".." is assumed to be an
 alias for the parent of the current directory, i.e. the
 directory which contains the current directory. The server
 should be prepared to handle this semantic, if it supports
 directories, even if those directories do not contain UNIX-style
 "." or ".." entries.

 4. If the filename is longer than the maximum for the file
 system (see PATHCONF on page 90, specifically name_max), the
 result depends on the value of the PATHCONF flag, no_trunc. If
 no_trunc is FALSE, the filename will be silently truncated to
 name_max bytes. If no_trunc is TRUE and the filename exceeds the
 server’s file system maximum filename length, the operation will
 fail with the error, NFS3ERR_NAMETOOLONG.

 5. In general, there will be characters that a server will
 not be able to handle as part of a filename. This set of
 characters will vary from server to server and from
 implementation to implementation. In most cases, it is the
 server which will control the client’s view of the file system.
 If the server receives a filename containing characters that it
 can not handle, the error, NFS3ERR_EACCES, should be returned.
 Client implementations should be prepared to handle this side
 affect of heterogeneity.

Callaghan, el al Informational [Page 30]

RFC 1813 NFS Version 3 Protocol June 1995

 See also comments in File name component handling on page 101.

3.3.0 Procedure 0: NULL - Do nothing

 SYNOPSIS

 void NFSPROC3_NULL(void) = 0;

 DESCRIPTION

 Procedure NULL does not do any work. It is made available to
 allow server response testing and timing.

 IMPLEMENTATION

 It is important that this procedure do no work at all so
 that it can be used to measure the overhead of processing
 a service request. By convention, the NULL procedure
 should never require any authentication. A server may
 choose to ignore this convention, in a more secure
 implementation, where responding to the NULL procedure
 call acknowledges the existence of a resource to an
 unauthenticated client.

 ERRORS

 Since the NULL procedure takes no NFS version 3 protocol
 arguments and returns no NFS version 3 protocol response,
 it can not return an NFS version 3 protocol error.
 However, it is possible that some server implementations
 may return RPC errors based on security and authentication
 requirements.

Callaghan, el al Informational [Page 31]

RFC 1813 NFS Version 3 Protocol June 1995

3.3.1 Procedure 1: GETATTR - Get file attributes

 SYNOPSIS

 GETATTR3res NFSPROC3_GETATTR(GETATTR3args) = 1;

 struct GETATTR3args {
 nfs_fh3 object;
 };

 struct GETATTR3resok {
 fattr3 obj_attributes;
 };

 union GETATTR3res switch (nfsstat3 status) {
 case NFS3_OK:
 GETATTR3resok resok;
 default:
 void;
 };

 DESCRIPTION

 Procedure GETATTR retrieves the attributes for a specified
 file system object. The object is identified by the file
 handle that the server returned as part of the response
 from a LOOKUP, CREATE, MKDIR, SYMLINK, MKNOD, or
 READDIRPLUS procedure (or from the MOUNT service,
 described elsewhere). On entry, the arguments in
 GETATTR3args are:

 object
 The file handle of an object whose attributes are to be
 retrieved.

 On successful return, GETATTR3res.status is NFS3_OK and
 GETATTR3res.resok contains:

 obj_attributes
 The attributes for the object.

 Otherwise, GETATTR3res.status contains the error on failure and
 no other results are returned.

 IMPLEMENTATION

 The attributes of file system objects is a point of major
 disagreement between different operating systems. Servers

Callaghan, el al Informational [Page 32]

RFC 1813 NFS Version 3 Protocol June 1995

 should make a best attempt to support all of the
 attributes in the fattr3 structure so that clients can
 count on this as a common ground. Some mapping may be
 required to map local attributes to those in the fattr3
 structure.

 Today, most client NFS version 3 protocol implementations
 implement a time-bounded attribute caching scheme to
 reduce over-the-wire attribute checks.

 ERRORS

 NFS3ERR_IO
 NFS3ERR_STALE
 NFS3ERR_BADHANDLE
 NFS3ERR_SERVERFAULT

 SEE ALSO

 ACCESS.

3.3.2 Procedure 2: SETATTR - Set file attributes

 SYNOPSIS

 SETATTR3res NFSPROC3_SETATTR(SETATTR3args) = 2;

 union sattrguard3 switch (bool check) {
 case TRUE:
 nfstime3 obj_ctime;
 case FALSE:
 void;
 };

 struct SETATTR3args {
 nfs_fh3 object;
 sattr3 new_attributes;
 sattrguard3 guard;
 };

 struct SETATTR3resok {
 wcc_data obj_wcc;
 };

 struct SETATTR3resfail {
 wcc_data obj_wcc;
 };

Callaghan, el al Informational [Page 33]

RFC 1813 NFS Version 3 Protocol June 1995

 union SETATTR3res switch (nfsstat3 status) {
 case NFS3_OK:
 SETATTR3resok resok;
 default:
 SETATTR3resfail resfail;
 };

 DESCRIPTION

 Procedure SETATTR changes one or more of the attributes of
 a file system object on the server. The new attributes are
 specified by a sattr3 structure. On entry, the arguments
 in SETATTR3args are:

 object
 The file handle for the object.

 new_attributes
 A sattr3 structure containing booleans and
 enumerations describing the attributes to be set and the new
 values for those attributes.

 guard
 A sattrguard3 union:

 check
 TRUE if the server is to verify that guard.obj_ctime
 matches the ctime for the object; FALSE otherwise.

 A client may request that the server check that the object
 is in an expected state before performing the SETATTR
 operation. To do this, it sets the argument guard.check to
 TRUE and the client passes a time value in guard.obj_ctime.
 If guard.check is TRUE, the server must compare the value of
 guard.obj_ctime to the current ctime of the object. If the
 values are different, the server must preserve the object
 attributes and must return a status of NFS3ERR_NOT_SYNC.
 If guard.check is FALSE, the server will not perform this
 check.

 On successful return, SETATTR3res.status is NFS3_OK and
 SETATTR3res.resok contains:

 obj_wcc
 A wcc_data structure containing the old and new
 attributes for the object.

Callaghan, el al Informational [Page 34]

RFC 1813 NFS Version 3 Protocol June 1995

 Otherwise, SETATTR3res.status contains the error on
 failure and SETATTR3res.resfail contains the following:

 obj_wcc
 A wcc_data structure containing the old and new
 attributes for the object.

 IMPLEMENTATION

 The guard.check mechanism allows the client to avoid
 changing the attributes of an object on the basis of stale
 attributes. It does not guarantee exactly-once semantics.
 In particular, if a reply is lost and the server does not
 detect the retransmission of the request, the procedure
 can fail with the error, NFS3ERR_NOT_SYNC, even though the
 attribute setting was previously performed successfully.
 The client can attempt to recover from this error by
 getting fresh attributes from the server and sending a new
 SETATTR request using the new ctime. The client can
 optionally check the attributes to avoid the second
 SETATTR request if the new attributes show that the
 attributes have already been set as desired (though it may
 not have been the issuing client that set the
 attributes).

 The new_attributes.size field is used to request changes
 to the size of a file. A value of 0 causes the file to be
 truncated, a value less than the current size of the file
 causes data from new size to the end of the file to be
 discarded, and a size greater than the current size of the
 file causes logically zeroed data bytes to be added to the
 end of the file. Servers are free to implement this using
 holes or actual zero data bytes. Clients should not make
 any assumptions regarding a server’s implementation of
 this feature, beyond that the bytes returned will be
 zeroed. Servers must support extending the file size via
 SETATTR.

 SETATTR is not guaranteed atomic. A failed SETATTR may
 partially change a file’s attributes.

 Changing the size of a file with SETATTR indirectly
 changes the mtime. A client must account for this as size
 changes can result in data deletion.

 If server and client times differ, programs that compare
 client time to file times can break. A time maintenance
 protocol should be used to limit client/server time skew.

Callaghan, el al Informational [Page 35]

RFC 1813 NFS Version 3 Protocol June 1995

 In a heterogeneous environment, it is quite possible that
 the server will not be able to support the full range of
 SETATTR requests. The error, NFS3ERR_INVAL, may be
 returned if the server can not store a uid or gid in its
 own representation of uids or gids, respectively. If the
 server can only support 32 bit offsets and sizes, a
 SETATTR request to set the size of a file to larger than
 can be represented in 32 bits will be rejected with this
 same error.

 ERRORS

 NFS3ERR_PERM
 NFS3ERR_IO
 NFS3ERR_ACCES
 NFS3ERR_INVAL
 NFS3ERR_NOSPC
 NFS3ERR_ROFS
 NFS3ERR_DQUOT
 NFS3ERR_NOT_SYNC
 NFS3ERR_STALE
 NFS3ERR_BADHANDLE
 NFS3ERR_SERVERFAULT

 SEE ALSO

 CREATE, MKDIR, SYMLINK, and MKNOD.

Callaghan, el al Informational [Page 36]

RFC 1813 NFS Version 3 Protocol June 1995

3.3.3 Procedure 3: LOOKUP - Lookup filename

 SYNOPSIS

 LOOKUP3res NFSPROC3_LOOKUP(LOOKUP3args) = 3;

 struct LOOKUP3args {
 diropargs3 what;
 };

 struct LOOKUP3resok {
 nfs_fh3 object;
 post_op_attr obj_attributes;
 post_op_attr dir_attributes;
 };

 struct LOOKUP3resfail {
 post_op_attr dir_attributes;
 };

 union LOOKUP3res switch (nfsstat3 status) {
 case NFS3_OK:
 LOOKUP3resok resok;
 default:
 LOOKUP3resfail resfail;
 };

 DESCRIPTION

 Procedure LOOKUP searches a directory for a specific name
 and returns the file handle for the corresponding file
 system object. On entry, the arguments in LOOKUP3args
 are:

 what
 Object to look up:

 dir
 The file handle for the directory to search.

 name
 The filename to be searched for. Refer to General
 comments on filenames on page 30.

 On successful return, LOOKUP3res.status is NFS3_OK and
 LOOKUP3res.resok contains:

Callaghan, el al Informational [Page 37]

RFC 1813 NFS Version 3 Protocol June 1995

 object
 The file handle of the object corresponding to
 what.name.

 obj_attributes
 The attributes of the object corresponding to
 what.name.

 dir_attributes
 The post-operation attributes of the directory,
 what.dir.

 Otherwise, LOOKUP3res.status contains the error on failure and
 LOOKUP3res.resfail contains the following:

 dir_attributes
 The post-operation attributes for the directory,
 what.dir.

 IMPLEMENTATION

 At first glance, in the case where what.name refers to a
 mount point on the server, two different replies seem
 possible. The server can return either the file handle for
 the underlying directory that is mounted on or the file
 handle of the root of the mounted directory. This
 ambiguity is simply resolved. A server will not allow a
 LOOKUP operation to cross a mountpoint to the root of a
 different filesystem, even if the filesystem is exported.
 This does not prevent a client from accessing a hierarchy
 of filesystems exported by a server, but the client must
 mount each of the filesystems individually so that the
 mountpoint crossing takes place on the client. A given
 server implementation may refine these rules given
 capabilities or limitations particular to that
 implementation. Refer to [X/OpenNFS] for a discussion on
 exporting file systems.

 Two filenames are distinguished, as in the NFS version 2
 protocol. The name, ".", is an alias for the current
 directory and the name, "..", is an alias for the parent
 directory; that is, the directory that includes the
 specified directory as a member. There is no facility for
 dealing with a multiparented directory and the NFS
 protocol assumes a hierarchical organization, organized as
 a single-rooted tree.

Callaghan, el al Informational [Page 38]

RFC 1813 NFS Version 3 Protocol June 1995

 Note that this procedure does not follow symbolic links.
 The client is responsible for all parsing of filenames
 including filenames that are modified by symbolic links
 encountered during the lookup process.

 ERRORS

 NFS3ERR_IO
 NFS3ERR_NOENT
 NFS3ERR_ACCES
 NFS3ERR_NOTDIR
 NFS3ERR_NAMETOOLONG
 NFS3ERR_STALE
 NFS3ERR_BADHANDLE
 NFS3ERR_SERVERFAULT

 SEE ALSO

 CREATE, MKDIR, SYMLINK, MKNOD, READDIRPLUS, and PATHCONF.

Callaghan, el al Informational [Page 39]

RFC 1813 NFS Version 3 Protocol June 1995

3.3.4 Procedure 4: ACCESS - Check Access Permission

 SYNOPSIS

 ACCESS3res NFSPROC3_ACCESS(ACCESS3args) = 4;

 const ACCESS3_READ = 0x0001;
 const ACCESS3_LOOKUP = 0x0002;
 const ACCESS3_MODIFY = 0x0004;
 const ACCESS3_EXTEND = 0x0008;
 const ACCESS3_DELETE = 0x0010;
 const ACCESS3_EXECUTE = 0x0020;

 struct ACCESS3args {
 nfs_fh3 object;
 uint32 access;
 };

 struct ACCESS3resok {
 post_op_attr obj_attributes;
 uint32 access;
 };

 struct ACCESS3resfail {
 post_op_attr obj_attributes;
 };

 union ACCESS3res switch (nfsstat3 status) {
 case NFS3_OK:
 ACCESS3resok resok;
 default:
 ACCESS3resfail resfail;
 };

 DESCRIPTION

 Procedure ACCESS determines the access rights that a user,
 as identified by the credentials in the request, has with
 respect to a file system object. The client encodes the
 set of permissions that are to be checked in a bit mask.
 The server checks the permissions encoded in the bit mask.
 A status of NFS3_OK is returned along with a bit mask
 encoded with the permissions that the client is allowed.

 The results of this procedure are necessarily advisory in
 nature. That is, a return status of NFS3_OK and the
 appropriate bit set in the bit mask does not imply that
 such access will be allowed to the file system object in

Callaghan, el al Informational [Page 40]

RFC 1813 NFS Version 3 Protocol June 1995

 the future, as access rights can be revoked by the server
 at any time.

 On entry, the arguments in ACCESS3args are:

 object
 The file handle for the file system object to which
 access is to be checked.

 access
 A bit mask of access permissions to check.

 The following access permissions may be requested:

 ACCESS3_READ
 Read data from file or read a directory.

 ACCESS3_LOOKUP
 Look up a name in a directory (no meaning for
 non-directory objects).

 ACCESS3_MODIFY
 Rewrite existing file data or modify existing
 directory entries.

 ACCESS3_EXTEND
 Write new data or add directory entries.

 ACCESS3_DELETE
 Delete an existing directory entry.

 ACCESS3_EXECUTE
 Execute file (no meaning for a directory).

 On successful return, ACCESS3res.status is NFS3_OK. The
 server should return a status of NFS3_OK if no errors
 occurred that prevented the server from making the
 required access checks. The results in ACCESS3res.resok
 are:

 obj_attributes
 The post-operation attributes of object.

 access
 A bit mask of access permissions indicating access
 rights for the authentication credentials provided with
 the request.

Callaghan, el al Informational [Page 41]

RFC 1813 NFS Version 3 Protocol June 1995

 Otherwise, ACCESS3res.status contains the error on failure
 and ACCESS3res.resfail contains the following:

 obj_attributes
 The attributes of object - if access to attributes is
 permitted.

 IMPLEMENTATION

 In general, it is not sufficient for the client to attempt
 to deduce access permissions by inspecting the uid, gid,
 and mode fields in the file attributes, since the server
 may perform uid or gid mapping or enforce additional
 access control restrictions. It is also possible that the
 NFS version 3 protocol server may not be in the same ID
 space as the NFS version 3 protocol client. In these cases
 (and perhaps others), the NFS version 3 protocol client
 can not reliably perform an access check with only current
 file attributes.

 In the NFS version 2 protocol, the only reliable way to
 determine whether an operation was allowed was to try it
 and see if it succeeded or failed. Using the ACCESS
 procedure in the NFS version 3 protocol, the client can
 ask the server to indicate whether or not one or more
 classes of operations are permitted. The ACCESS operation
 is provided to allow clients to check before doing a
 series of operations. This is useful in operating systems
 (such as UNIX) where permission checking is done only when
 a file or directory is opened. This procedure is also
 invoked by NFS client access procedure (called possibly
 through access(2)). The intent is to make the behavior of
 opening a remote file more consistent with the behavior of
 opening a local file.

 The information returned by the server in response to an
 ACCESS call is not permanent. It was correct at the exact
 time that the server performed the checks, but not
 necessarily afterwards. The server can revoke access
 permission at any time.

 The NFS version 3 protocol client should use the effective
 credentials of the user to build the authentication
 information in the ACCESS request used to determine access
 rights. It is the effective user and group credentials
 that are used in subsequent read and write operations. See
 the comments in Permission issues on page 98 for more
 information on this topic.

Callaghan, el al Informational [Page 42]

RFC 1813 NFS Version 3 Protocol June 1995

 Many implementations do not directly support the
 ACCESS3_DELETE permission. Operating systems like UNIX
 will ignore the ACCESS3_DELETE bit if set on an access
 request on a non-directory object. In these systems,
 delete permission on a file is determined by the access
 permissions on the directory in which the file resides,
 instead of being determined by the permissions of the file
 itself. Thus, the bit mask returned for such a request
 will have the ACCESS3_DELETE bit set to 0, indicating that
 the client does not have this permission.

 ERRORS

 NFS3ERR_IO
 NFS3ERR_STALE
 NFS3ERR_BADHANDLE
 NFS3ERR_SERVERFAULT

 SEE ALSO

 GETATTR.

Callaghan, el al Informational [Page 43]

RFC 1813 NFS Version 3 Protocol June 1995

3.3.5 Procedure 5: READLINK - Read from symbolic link

 SYNOPSIS

 READLINK3res NFSPROC3_READLINK(READLINK3args) = 5;

 struct READLINK3args {
 nfs_fh3 symlink;
 };

 struct READLINK3resok {
 post_op_attr symlink_attributes;
 nfspath3 data;
 };

 struct READLINK3resfail {
 post_op_attr symlink_attributes;
 };

 union READLINK3res switch (nfsstat3 status) {
 case NFS3_OK:
 READLINK3resok resok;
 default:
 READLINK3resfail resfail;
 };

 DESCRIPTION

 Procedure READLINK reads the data associated with a
 symbolic link. The data is an ASCII string that is opaque
 to the server. That is, whether created by the NFS
 version 3 protocol software from a client or created
 locally on the server, the data in a symbolic link is not
 interpreted when created, but is simply stored. On entry,
 the arguments in READLINK3args are:

 symlink
 The file handle for a symbolic link (file system object
 of type NF3LNK).

 On successful return, READLINK3res.status is NFS3_OK and
 READLINK3res.resok contains:

 data
 The data associated with the symbolic link.

 symlink_attributes
 The post-operation attributes for the symbolic link.

Callaghan, el al Informational [Page 44]

RFC 1813 NFS Version 3 Protocol June 1995

 Otherwise, READLINK3res.status contains the error on
 failure and READLINK3res.resfail contains the following:

 symlink_attributes
 The post-operation attributes for the symbolic link.

 IMPLEMENTATION

 A symbolic link is nominally a pointer to another file.
 The data is not necessarily interpreted by the server,
 just stored in the file. It is possible for a client
 implementation to store a path name that is not meaningful
 to the server operating system in a symbolic link. A
 READLINK operation returns the data to the client for
 interpretation. If different implementations want to share
 access to symbolic links, then they must agree on the
 interpretation of the data in the symbolic link.

 The READLINK operation is only allowed on objects of type,
 NF3LNK. The server should return the error,
 NFS3ERR_INVAL, if the object is not of type, NF3LNK.
 (Note: The X/Open XNFS Specification for the NFS version 2
 protocol defined the error status in this case as
 NFSERR_NXIO. This is inconsistent with existing server
 practice.)

 ERRORS

 NFS3ERR_IO
 NFS3ERR_INVAL
 NFS3ERR_ACCES
 NFS3ERR_STALE
 NFS3ERR_BADHANDLE
 NFS3ERR_NOTSUPP
 NFS3ERR_SERVERFAULT

 SEE ALSO

 READLINK, SYMLINK.

Callaghan, el al Informational [Page 45]

RFC 1813 NFS Version 3 Protocol June 1995

3.3.6 Procedure 6: READ - Read From file

 SYNOPSIS

 READ3res NFSPROC3_READ(READ3args) = 6;

 struct READ3args {
 nfs_fh3 file;
 offset3 offset;
 count3 count;
 };

 struct READ3resok {
 post_op_attr file_attributes;
 count3 count;
 bool eof;
 opaque data<>;
 };

 struct READ3resfail {
 post_op_attr file_attributes;
 };

 union READ3res switch (nfsstat3 status) {
 case NFS3_OK:
 READ3resok resok;
 default:
 READ3resfail resfail;
 };

 DESCRIPTION

 Procedure READ reads data from a file. On entry, the
 arguments in READ3args are:

 file
 The file handle of the file from which data is to be
 read. This must identify a file system object of type,
 NF3REG.

 offset
 The position within the file at which the read is to
 begin. An offset of 0 means to read data starting at
 the beginning of the file. If offset is greater than or
 equal to the size of the file, the status, NFS3_OK, is
 returned with count set to 0 and eof set to TRUE,
 subject to access permissions checking.

Callaghan, el al Informational [Page 46]

RFC 1813 NFS Version 3 Protocol June 1995

 count
 The number of bytes of data that are to be read. If
 count is 0, the READ will succeed and return 0 bytes of
 data, subject to access permissions checking. count
 must be less than or equal to the value of the rtmax
 field in the FSINFO reply structure for the file system
 that contains file. If greater, the server may return
 only rtmax bytes, resulting in a short read.

 On successful return, READ3res.status is NFS3_OK and
 READ3res.resok contains:

 file_attributes
 The attributes of the file on completion of the read.

 count
 The number of bytes of data returned by the read.

 eof
 If the read ended at the end-of-file (formally, in a
 correctly formed READ request, if READ3args.offset plus
 READ3resok.count is equal to the size of the file), eof
 is returned as TRUE; otherwise it is FALSE. A
 successful READ of an empty file will always return eof
 as TRUE.

 data
 The counted data read from the file.

 Otherwise, READ3res.status contains the error on failure
 and READ3res.resfail contains the following:

 file_attributes
 The post-operation attributes of the file.

 IMPLEMENTATION

 The nfsdata type used for the READ and WRITE operations in
 the NFS version 2 protocol defining the data portion of a
 request or reply has been changed to a variable-length
 opaque byte array. The maximum size allowed by the
 protocol is now limited by what XDR and underlying
 transports will allow. There are no artificial limits
 imposed by the NFS version 3 protocol. Consult the FSINFO
 procedure description for details.

Callaghan, el al Informational [Page 47]

RFC 1813 NFS Version 3 Protocol June 1995

 It is possible for the server to return fewer than count
 bytes of data. If the server returns less than the count
 requested and eof set to FALSE, the client should issue
 another READ to get the remaining data. A server may
 return less data than requested under several
 circumstances. The file may have been truncated by another
 client or perhaps on the server itself, changing the file
 size from what the requesting client believes to be the
 case. This would reduce the actual amount of data
 available to the client. It is possible that the server
 may back off the transfer size and reduce the read request
 return. Server resource exhaustion may also occur
 necessitating a smaller read return.

 Some NFS version 2 protocol client implementations chose
 to interpret a short read response as indicating EOF. The
 addition of the eof flag in the NFS version 3 protocol
 provides a correct way of handling EOF.

 Some NFS version 2 protocol server implementations
 incorrectly returned NFSERR_ISDIR if the file system
 object type was not a regular file. The correct return
 value for the NFS version 3 protocol is NFS3ERR_INVAL.

 ERRORS

 NFS3ERR_IO
 NFS3ERR_NXIO
 NFS3ERR_ACCES
 NFS3ERR_INVAL
 NFS3ERR_STALE
 NFS3ERR_BADHANDLE
 NFS3ERR_SERVERFAULT

 SEE ALSO

 READLINK.

Callaghan, el al Informational [Page 48]

RFC 1813 NFS Version 3 Protocol June 1995

3.3.7 Procedure 7: WRITE - Write to file

 SYNOPSIS

 WRITE3res NFSPROC3_WRITE(WRITE3args) = 7;

 enum stable_how {
 UNSTABLE = 0,
 DATA_SYNC = 1,
 FILE_SYNC = 2
 };

 struct WRITE3args {
 nfs_fh3 file;
 offset3 offset;
 count3 count;
 stable_how stable;
 opaque data<>;
 };

 struct WRITE3resok {
 wcc_data file_wcc;
 count3 count;
 stable_how committed;
 writeverf3 verf;
 };

 struct WRITE3resfail {
 wcc_data file_wcc;
 };

 union WRITE3res switch (nfsstat3 status) {
 case NFS3_OK:
 WRITE3resok resok;
 default:
 WRITE3resfail resfail;
 };

 DESCRIPTION

 Procedure WRITE writes data to a file. On entry, the
 arguments in WRITE3args are:

 file
 The file handle for the file to which data is to be
 written. This must identify a file system object of
 type, NF3REG.

Callaghan, el al Informational [Page 49]

RFC 1813 NFS Version 3 Protocol June 1995

 offset
 The position within the file at which the write is to
 begin. An offset of 0 means to write data starting at
 the beginning of the file.

 count
 The number of bytes of data to be written. If count is
 0, the WRITE will succeed and return a count of 0,
 barring errors due to permissions checking. The size of
 data must be less than or equal to the value of the
 wtmax field in the FSINFO reply structure for the file
 system that contains file. If greater, the server may
 write only wtmax bytes, resulting in a short write.

 stable
 If stable is FILE_SYNC, the server must commit the data
 written plus all file system metadata to stable storage
 before returning results. This corresponds to the NFS
 version 2 protocol semantics. Any other behavior
 constitutes a protocol violation. If stable is
 DATA_SYNC, then the server must commit all of the data
 to stable storage and enough of the metadata to
 retrieve the data before returning. The server
 implementor is free to implement DATA_SYNC in the same
 fashion as FILE_SYNC, but with a possible performance
 drop. If stable is UNSTABLE, the server is free to
 commit any part of the data and the metadata to stable
 storage, including all or none, before returning a
 reply to the client. There is no guarantee whether or
 when any uncommitted data will subsequently be
 committed to stable storage. The only guarantees made
 by the server are that it will not destroy any data
 without changing the value of verf and that it will not
 commit the data and metadata at a level less than that
 requested by the client. See the discussion on COMMIT
 on page 92 for more information on if and when
 data is committed to stable storage.

 data
 The data to be written to the file.

 On successful return, WRITE3res.status is NFS3_OK and
 WRITE3res.resok contains:

 file_wcc
 Weak cache consistency data for the file. For a client
 that requires only the post-write file attributes,
 these can be found in file_wcc.after.

Callaghan, el al Informational [Page 50]

RFC 1813 NFS Version 3 Protocol June 1995

 count
 The number of bytes of data written to the file. The
 server may write fewer bytes than requested. If so, the
 actual number of bytes written starting at location,
 offset, is returned.

 committed
 The server should return an indication of the level of
 commitment of the data and metadata via committed. If
 the server committed all data and metadata to stable
 storage, committed should be set to FILE_SYNC. If the
 level of commitment was at least as strong as
 DATA_SYNC, then committed should be set to DATA_SYNC.
 Otherwise, committed must be returned as UNSTABLE. If
 stable was FILE_SYNC, then committed must also be
 FILE_SYNC: anything else constitutes a protocol
 violation. If stable was DATA_SYNC, then committed may
 be FILE_SYNC or DATA_SYNC: anything else constitutes a
 protocol violation. If stable was UNSTABLE, then
 committed may be either FILE_SYNC, DATA_SYNC, or
 UNSTABLE.

 verf
 This is a cookie that the client can use to determine
 whether the server has changed state between a call to
 WRITE and a subsequent call to either WRITE or COMMIT.
 This cookie must be consistent during a single instance
 of the NFS version 3 protocol service and must be
 unique between instances of the NFS version 3 protocol
 server, where uncommitted data may be lost.

 Otherwise, WRITE3res.status contains the error on failure
 and WRITE3res.resfail contains the following:

 file_wcc
 Weak cache consistency data for the file. For a client
 that requires only the post-write file attributes,
 these can be found in file_wcc.after. Even though the
 write failed, full wcc_data is returned to allow the
 client to determine whether the failed write resulted
 in any change to the file.

 If a client writes data to the server with the stable
 argument set to UNSTABLE and the reply yields a committed
 response of DATA_SYNC or UNSTABLE, the client will follow
 up some time in the future with a COMMIT operation to
 synchronize outstanding asynchronous data and metadata
 with the server’s stable storage, barring client error. It

Callaghan, el al Informational [Page 51]

RFC 1813 NFS Version 3 Protocol June 1995

 is possible that due to client crash or other error that a
 subsequent COMMIT will not be received by the server.

 IMPLEMENTATION

 The nfsdata type used for the READ and WRITE operations in
 the NFS version 2 protocol defining the data portion of a
 request or reply has been changed to a variable-length
 opaque byte array. The maximum size allowed by the
 protocol is now limited by what XDR and underlying
 transports will allow. There are no artificial limits
 imposed by the NFS version 3 protocol. Consult the FSINFO
 procedure description for details.

 It is possible for the server to write fewer than count
 bytes of data. In this case, the server should not return
 an error unless no data was written at all. If the server
 writes less than count bytes, the client should issue
 another WRITE to write the remaining data.

 It is assumed that the act of writing data to a file will
 cause the mtime of the file to be updated. However, the
 mtime of the file should not be changed unless the
 contents of the file are changed. Thus, a WRITE request
 with count set to 0 should not cause the mtime of the file
 to be updated.

 The NFS version 3 protocol introduces safe asynchronous
 writes. The combination of WRITE with stable set to
 UNSTABLE followed by a COMMIT addresses the performance
 bottleneck found in the NFS version 2 protocol, the need
 to synchronously commit all writes to stable storage.

 The definition of stable storage has been historically a
 point of contention. The following expected properties of
 stable storage may help in resolving design issues in the
 implementation. Stable storage is persistent storage that
 survives:

 1. Repeated power failures.

 2. Hardware failures (of any board, power supply, and so on.).

 3. Repeated software crashes, including reboot cycle.

 This definition does not address failure of the stable
 storage module itself.

Callaghan, el al Informational [Page 52]

RFC 1813 NFS Version 3 Protocol June 1995

 A cookie, verf, is defined to allow a client to detect
 different instances of an NFS version 3 protocol server
 over which cached, uncommitted data may be lost. In the
 most likely case, the verf allows the client to detect
 server reboots. This information is required so that the
 client can safely determine whether the server could have
 lost cached data. If the server fails unexpectedly and the
 client has uncommitted data from previous WRITE requests
 (done with the stable argument set to UNSTABLE and in
 which the result committed was returned as UNSTABLE as
 well) it may not have flushed cached data to stable
 storage. The burden of recovery is on the client and the
 client will need to retransmit the data to the server.

 A suggested verf cookie would be to use the time that the
 server was booted or the time the server was last started
 (if restarting the server without a reboot results in lost
 buffers).

 The committed field in the results allows the client to do
 more effective caching. If the server is committing all
 WRITE requests to stable storage, then it should return
 with committed set to FILE_SYNC, regardless of the value
 of the stable field in the arguments. A server that uses
 an NVRAM accelerator may choose to implement this policy.
 The client can use this to increase the effectiveness of
 the cache by discarding cached data that has already been
 committed on the server.

 Some implementations may return NFS3ERR_NOSPC instead of
 NFS3ERR_DQUOT when a user’s quota is exceeded.

 Some NFS version 2 protocol server implementations
 incorrectly returned NFSERR_ISDIR if the file system
 object type was not a regular file. The correct return
 value for the NFS version 3 protocol is NFS3ERR_INVAL.

 ERRORS

 NFS3ERR_IO
 NFS3ERR_ACCES
 NFS3ERR_FBIG
 NFS3ERR_DQUOT
 NFS3ERR_NOSPC
 NFS3ERR_ROFS
 NFS3ERR_INVAL
 NFS3ERR_STALE
 NFS3ERR_BADHANDLE

Callaghan, el al Informational [Page 53]

RFC 1813 NFS Version 3 Protocol June 1995

 NFS3ERR_SERVERFAULT

 SEE ALSO

 COMMIT.

3.3.8 Procedure 8: CREATE - Create a file

 SYNOPSIS

 CREATE3res NFSPROC3_CREATE(CREATE3args) = 8;

 enum createmode3 {
 UNCHECKED = 0,
 GUARDED = 1,
 EXCLUSIVE = 2
 };

 union createhow3 switch (createmode3 mode) {
 case UNCHECKED:
 case GUARDED:
 sattr3 obj_attributes;
 case EXCLUSIVE:
 createverf3 verf;
 };

 struct CREATE3args {
 diropargs3 where;
 createhow3 how;
 };

 struct CREATE3resok {
 post_op_fh3 obj;
 post_op_attr obj_attributes;
 wcc_data dir_wcc;
 };

 struct CREATE3resfail {
 wcc_data dir_wcc;
 };

 union CREATE3res switch (nfsstat3 status) {
 case NFS3_OK:
 CREATE3resok resok;
 default:
 CREATE3resfail resfail;
 };

Callaghan, el al Informational [Page 54]

RFC 1813 NFS Version 3 Protocol June 1995

 DESCRIPTION

 Procedure CREATE creates a regular file. On entry, the
 arguments in CREATE3args are:

 where
 The location of the file to be created:

 dir
 The file handle for the directory in which the file
 is to be created.

 name
 The name that is to be associated with the created
 file. Refer to General comments on filenames on
 page 30.

 When creating a regular file, there are three ways to
 create the file as defined by:

 how
 A discriminated union describing how the server is to
 handle the file creation along with the appropriate
 attributes:

 mode
 One of UNCHECKED, GUARDED, and EXCLUSIVE. UNCHECKED
 means that the file should be created without checking
 for the existence of a duplicate file in the same
 directory. In this case, how.obj_attributes is a sattr3
 describing the initial attributes for the file. GUARDED
 specifies that the server should check for the presence
 of a duplicate file before performing the create and
 should fail the request with NFS3ERR_EXIST if a
 duplicate file exists. If the file does not exist, the
 request is performed as described for UNCHECKED.
 EXCLUSIVE specifies that the server is to follow
 exclusive creation semantics, using the verifier to
 ensure exclusive creation of the target. No attributes
 may be provided in this case, since the server may use
 the target file metadata to store the createverf3
 verifier.

 On successful return, CREATE3res.status is NFS3_OK and the
 results in CREATE3res.resok are:

 obj
 The file handle of the newly created regular file.

Callaghan, el al Informational [Page 55]

RFC 1813 NFS Version 3 Protocol June 1995

 obj_attributes
 The attributes of the regular file just created.

 dir_wcc
 Weak cache consistency data for the directory,
 where.dir. For a client that requires on the
 post-CREATE directory attributes, these can be found in
 dir_wcc.after.

 Otherwise, CREATE3res.status contains the error on failure
 and CREATE3res.resfail contains the following:

 dir_wcc
 Weak cache consistency data for the directory,
 where.dir. For a client that requires only the
 post-CREATE directory attributes, these can be found in
 dir_wcc.after. Even though the CREATE failed, full
 wcc_data is returned to allow the client to determine
 whether the failing CREATE resulted in any change to
 the directory.

 IMPLEMENTATION

 Unlike the NFS version 2 protocol, in which certain fields
 in the initial attributes structure were overloaded to
 indicate creation of devices and FIFOs in addition to
 regular files, this procedure only supports the creation
 of regular files. The MKNOD procedure was introduced in
 the NFS version 3 protocol to handle creation of devices
 and FIFOs. Implementations should have no reason in the
 NFS version 3 protocol to overload CREATE semantics.

 One aspect of the NFS version 3 protocol CREATE procedure
 warrants particularly careful consideration: the mechanism
 introduced to support the reliable exclusive creation of
 regular files. The mechanism comes into play when how.mode
 is EXCLUSIVE. In this case, how.verf contains a verifier
 that can reasonably be expected to be unique. A
 combination of a client identifier, perhaps the client
 network address, and a unique number generated by the
 client, perhaps the RPC transaction identifier, may be
 appropriate.

 If the file does not exist, the server creates the file
 and stores the verifier in stable storage. For file
 systems that do not provide a mechanism for the storage of
 arbitrary file attributes, the server may use one or more
 elements of the file metadata to store the verifier. The

Callaghan, el al Informational [Page 56]

RFC 1813 NFS Version 3 Protocol June 1995

 verifier must be stored in stable storage to prevent
 erroneous failure on retransmission of the request. It is
 assumed that an exclusive create is being performed
 because exclusive semantics are critical to the
 application. Because of the expected usage, exclusive
 CREATE does not rely solely on the normally volatile
 duplicate request cache for storage of the verifier. The
 duplicate request cache in volatile storage does not
 survive a crash and may actually flush on a long network
 partition, opening failure windows. In the UNIX local
 file system environment, the expected storage location for
 the verifier on creation is the metadata (time stamps) of
 the file. For this reason, an exclusive file create may
 not include initial attributes because the server would
 have nowhere to store the verifier.

 If the server can not support these exclusive create
 semantics, possibly because of the requirement to commit
 the verifier to stable storage, it should fail the CREATE
 request with the error, NFS3ERR_NOTSUPP.

 During an exclusive CREATE request, if the file already
 exists, the server reconstructs the file’s verifier and
 compares it with the verifier in the request. If they
 match, the server treats the request as a success. The
 request is presumed to be a duplicate of an earlier,
 successful request for which the reply was lost and that
 the server duplicate request cache mechanism did not
 detect. If the verifiers do not match, the request is
 rejected with the status, NFS3ERR_EXIST.

 Once the client has performed a successful exclusive
 create, it must issue a SETATTR to set the correct file
 attributes. Until it does so, it should not rely upon any
 of the file attributes, since the server implementation
 may need to overload file metadata to store the verifier.

 Use of the GUARDED attribute does not provide exactly-once
 semantics. In particular, if a reply is lost and the
 server does not detect the retransmission of the request,
 the procedure can fail with NFS3ERR_EXIST, even though the
 create was performed successfully.

 Refer to General comments on filenames on page 30.

Callaghan, el al Informational [Page 57]

RFC 1813 NFS Version 3 Protocol June 1995

 ERRORS

 NFS3ERR_IO
 NFS3ERR_ACCES
 NFS3ERR_EXIST
 NFS3ERR_NOTDIR
 NFS3ERR_NOSPC
 NFS3ERR_ROFS
 NFS3ERR_NAMETOOLONG
 NFS3ERR_DQUOT
 NFS3ERR_STALE
 NFS3ERR_BADHANDLE
 NFS3ERR_NOTSUPP
 NFS3ERR_SERVERFAULT

 SEE ALSO

 MKDIR, SYMLINK, MKNOD, and PATHCONF.

3.3.9 Procedure 9: MKDIR - Create a directory

 SYNOPSIS

 MKDIR3res NFSPROC3_MKDIR(MKDIR3args) = 9;

 struct MKDIR3args {
 diropargs3 where;
 sattr3 attributes;
 };

 struct MKDIR3resok {
 post_op_fh3 obj;
 post_op_attr obj_attributes;
 wcc_data dir_wcc;
 };

 struct MKDIR3resfail {
 wcc_data dir_wcc;
 };

 union MKDIR3res switch (nfsstat3 status) {
 case NFS3_OK:
 MKDIR3resok resok;
 default:
 MKDIR3resfail resfail;
 };

Callaghan, el al Informational [Page 58]

RFC 1813 NFS Version 3 Protocol June 1995

 DESCRIPTION

 Procedure MKDIR creates a new subdirectory. On entry, the
 arguments in MKDIR3args are:

 where
 The location of the subdirectory to be created:

 dir
 The file handle for the directory in which the
 subdirectory is to be created.

 name
 The name that is to be associated with the created
 subdirectory. Refer to General comments on filenames
 on page 30.

 attributes
 The initial attributes for the subdirectory.

 On successful return, MKDIR3res.status is NFS3_OK and the
 results in MKDIR3res.resok are:

 obj
 The file handle for the newly created directory.

 obj_attributes
 The attributes for the newly created subdirectory.

 dir_wcc
 Weak cache consistency data for the directory,
 where.dir. For a client that requires only the
 post-MKDIR directory attributes, these can be found in
 dir_wcc.after.

 Otherwise, MKDIR3res.status contains the error on failure
 and MKDIR3res.resfail contains the following:

 dir_wcc
 Weak cache consistency data for the directory,
 where.dir. For a client that requires only the
 post-MKDIR directory attributes, these can be found in
 dir_wcc.after. Even though the MKDIR failed, full
 wcc_data is returned to allow the client to determine
 whether the failing MKDIR resulted in any change to the
 directory.

Callaghan, el al Informational [Page 59]

RFC 1813 NFS Version 3 Protocol June 1995

 IMPLEMENTATION

 Many server implementations will not allow the filenames,
 "." or "..", to be used as targets in a MKDIR operation.
 In this case, the server should return NFS3ERR_EXIST.
 Refer to General comments on filenames on page 30.

 ERRORS

 NFS3ERR_IO
 NFS3ERR_ACCES
 NFS3ERR_EXIST
 NFS3ERR_NOTDIR
 NFS3ERR_NOSPC
 NFS3ERR_ROFS
 NFS3ERR_NAMETOOLONG
 NFS3ERR_DQUOT
 NFS3ERR_STALE
 NFS3ERR_BADHANDLE
 NFS3ERR_NOTSUPP
 NFS3ERR_SERVERFAULT

 SEE ALSO

 CREATE, SYMLINK, MKNOD, and PATHCONF.

Callaghan, el al Informational [Page 60]

RFC 1813 NFS Version 3 Protocol June 1995

3.3.10 Procedure 10: SYMLINK - Create a symbolic link

 SYNOPSIS

 SYMLINK3res NFSPROC3_SYMLINK(SYMLINK3args) = 10;

 struct symlinkdata3 {
 sattr3 symlink_attributes;
 nfspath3 symlink_data;
 };

 struct SYMLINK3args {
 diropargs3 where;
 symlinkdata3 symlink;
 };

 struct SYMLINK3resok {
 post_op_fh3 obj;
 post_op_attr obj_attributes;
 wcc_data dir_wcc;
 };

 struct SYMLINK3resfail {
 wcc_data dir_wcc;
 };

 union SYMLINK3res switch (nfsstat3 status) {
 case NFS3_OK:
 SYMLINK3resok resok;
 default:
 SYMLINK3resfail resfail;
 };

 DESCRIPTION

 Procedure SYMLINK creates a new symbolic link. On entry,
 the arguments in SYMLINK3args are:

 where
 The location of the symbolic link to be created:

 dir
 The file handle for the directory in which the
 symbolic link is to be created.

Callaghan, el al Informational [Page 61]

RFC 1813 NFS Version 3 Protocol June 1995

 name
 The name that is to be associated with the created
 symbolic link. Refer to General comments on
 filenames on page 30.

 symlink
 The symbolic link to create:

 symlink_attributes
 The initial attributes for the symbolic link.

 symlink_data
 The string containing the symbolic link data.

 On successful return, SYMLINK3res.status is NFS3_OK and
 SYMLINK3res.resok contains:

 obj
 The file handle for the newly created symbolic link.

 obj_attributes
 The attributes for the newly created symbolic link.

 dir_wcc
 Weak cache consistency data for the directory,
 where.dir. For a client that requires only the
 post-SYMLINK directory attributes, these can be found
 in dir_wcc.after.

 Otherwise, SYMLINK3res.status contains the error on
 failure and SYMLINK3res.resfail contains the following:

 dir_wcc
 Weak cache consistency data for the directory,
 where.dir. For a client that requires only the
 post-SYMLINK directory attributes, these can be found
 in dir_wcc.after. Even though the SYMLINK failed, full
 wcc_data is returned to allow the client to determine
 whether the failing SYMLINK changed the directory.

 IMPLEMENTATION

 Refer to General comments on filenames on page 30.

 For symbolic links, the actual file system node and its
 contents are expected to be created in a single atomic
 operation. That is, once the symbolic link is visible,
 there must not be a window where a READLINK would fail or

Callaghan, el al Informational [Page 62]

RFC 1813 NFS Version 3 Protocol June 1995

 return incorrect data.

 ERRORS

 NFS3ERR_IO
 NFS3ERR_ACCES
 NFS3ERR_EXIST
 NFS3ERR_NOTDIR
 NFS3ERR_NOSPC
 NFS3ERR_ROFS
 NFS3ERR_NAMETOOLONG
 NFS3ERR_DQUOT
 NFS3ERR_STALE
 NFS3ERR_BADHANDLE
 NFS3ERR_NOTSUPP
 NFS3ERR_SERVERFAULT

 SEE ALSO

 READLINK, CREATE, MKDIR, MKNOD, FSINFO, and PATHCONF.

3.3.11 Procedure 11: MKNOD - Create a special device

 SYNOPSIS

 MKNOD3res NFSPROC3_MKNOD(MKNOD3args) = 11;

 struct devicedata3 {
 sattr3 dev_attributes;
 specdata3 spec;
 };

 union mknoddata3 switch (ftype3 type) {
 case NF3CHR:
 case NF3BLK:
 devicedata3 device;
 case NF3SOCK:
 case NF3FIFO:
 sattr3 pipe_attributes;
 default:
 void;
 };

 struct MKNOD3args {
 diropargs3 where;
 mknoddata3 what;
 };

Callaghan, el al Informational [Page 63]

RFC 1813 NFS Version 3 Protocol June 1995

 struct MKNOD3resok {
 post_op_fh3 obj;
 post_op_attr obj_attributes;
 wcc_data dir_wcc;
 };

 struct MKNOD3resfail {
 wcc_data dir_wcc;
 };

 union MKNOD3res switch (nfsstat3 status) {
 case NFS3_OK:
 MKNOD3resok resok;
 default:
 MKNOD3resfail resfail;
 };

 DESCRIPTION

 Procedure MKNOD creates a new special file of the type,
 what.type. Special files can be device files or named
 pipes. On entry, the arguments in MKNOD3args are:

 where
 The location of the special file to be created:

 dir
 The file handle for the directory in which the
 special file is to be created.

 name
 The name that is to be associated with the created
 special file. Refer to General comments on filenames
 on page 30.

 what
 A discriminated union identifying the type of the
 special file to be created along with the data and
 attributes appropriate to the type of the special
 file:

 type
 The type of the object to be created.

 When creating a character special file (what.type is
 NF3CHR) or a block special file (what.type is NF3BLK),
 what includes:

Callaghan, el al Informational [Page 64]

RFC 1813 NFS Version 3 Protocol June 1995

 device
 A structure devicedata3 with the following components:

 dev_attributes
 The initial attributes for the special file.

 spec
 The major number stored in device.spec.specdata1 and
 the minor number stored in device.spec.specdata2.

 When creating a socket (what.type is NF3SOCK) or a FIFO
 (what.type is NF3FIFO), what includes:

 pipe_attributes
 The initial attributes for the special file.

 On successful return, MKNOD3res.status is NFS3_OK and
 MKNOD3res.resok contains:

 obj
 The file handle for the newly created special file.

 obj_attributes
 The attributes for the newly created special file.

 dir_wcc
 Weak cache consistency data for the directory,
 where.dir. For a client that requires only the
 post-MKNOD directory attributes, these can be found in
 dir_wcc.after.

 Otherwise, MKNOD3res.status contains the error on failure
 and MKNOD3res.resfail contains the following:

 dir_wcc
 Weak cache consistency data for the directory,
 where.dir. For a client that requires only the
 post-MKNOD directory attributes, these can be found in
 dir_wcc.after. Even though the MKNOD failed, full
 wcc_data is returned to allow the client to determine
 whether the failing MKNOD changed the directory.

 IMPLEMENTATION

 Refer to General comments on filenames on page 30.

 Without explicit support for special file type creation in
 the NFS version 2 protocol, fields in the CREATE arguments

Callaghan, el al Informational [Page 65]

RFC 1813 NFS Version 3 Protocol June 1995

 were overloaded to indicate creation of certain types of
 objects. This overloading is not necessary in the NFS
 version 3 protocol.

 If the server does not support any of the defined types,
 the error, NFS3ERR_NOTSUPP, should be returned. Otherwise,
 if the server does not support the target type or the
 target type is illegal, the error, NFS3ERR_BADTYPE, should
 be returned. Note that NF3REG, NF3DIR, and NF3LNK are
 illegal types for MKNOD. The procedures, CREATE, MKDIR,
 and SYMLINK should be used to create these file types,
 respectively, instead of MKNOD.

 ERRORS

 NFS3ERR_IO
 NFS3ERR_ACCES
 NFS3ERR_EXIST
 NFS3ERR_NOTDIR
 NFS3ERR_NOSPC
 NFS3ERR_ROFS
 NFS3ERR_NAMETOOLONG
 NFS3ERR_DQUOT
 NFS3ERR_STALE
 NFS3ERR_BADHANDLE
 NFS3ERR_NOTSUPP
 NFS3ERR_SERVERFAULT
 NFS3ERR_BADTYPE

 SEE ALSO

 CREATE, MKDIR, SYMLINK, and PATHCONF.

Callaghan, el al Informational [Page 66]

RFC 1813 NFS Version 3 Protocol June 1995

3.3.12 Procedure 12: REMOVE - Remove a File

 SYNOPSIS

 REMOVE3res NFSPROC3_REMOVE(REMOVE3args) = 12;

 struct REMOVE3args {
 diropargs3 object;
 };

 struct REMOVE3resok {
 wcc_data dir_wcc;
 };

 struct REMOVE3resfail {
 wcc_data dir_wcc;
 };

 union REMOVE3res switch (nfsstat3 status) {
 case NFS3_OK:
 REMOVE3resok resok;
 default:
 REMOVE3resfail resfail;
 };

 DESCRIPTION

 Procedure REMOVE removes (deletes) an entry from a
 directory. If the entry in the directory was the last
 reference to the corresponding file system object, the
 object may be destroyed. On entry, the arguments in
 REMOVE3args are:

 object
 A diropargs3 structure identifying the entry to be
 removed:

 dir
 The file handle for the directory from which the entry
 is to be removed.

 name
 The name of the entry to be removed. Refer to General
 comments on filenames on page 30.

 On successful return, REMOVE3res.status is NFS3_OK and
 REMOVE3res.resok contains:

Callaghan, el al Informational [Page 67]

RFC 1813 NFS Version 3 Protocol June 1995

 dir_wcc
 Weak cache consistency data for the directory,
 object.dir. For a client that requires only the
 post-REMOVE directory attributes, these can be found in
 dir_wcc.after.

 Otherwise, REMOVE3res.status contains the error on failure
 and REMOVE3res.resfail contains the following:

 dir_wcc
 Weak cache consistency data for the directory,
 object.dir. For a client that requires only the
 post-REMOVE directory attributes, these can be found in
 dir_wcc.after. Even though the REMOVE failed, full
 wcc_data is returned to allow the client to determine
 whether the failing REMOVE changed the directory.

 IMPLEMENTATION

 In general, REMOVE is intended to remove non-directory
 file objects and RMDIR is to be used to remove
 directories. However, REMOVE can be used to remove
 directories, subject to restrictions imposed by either the
 client or server interfaces. This had been a source of
 confusion in the NFS version 2 protocol.

 The concept of last reference is server specific. However,
 if the nlink field in the previous attributes of the
 object had the value 1, the client should not rely on
 referring to the object via a file handle. Likewise, the
 client should not rely on the resources (disk space,
 directory entry, and so on.) formerly associated with the
 object becoming immediately available. Thus, if a client
 needs to be able to continue to access a file after using
 REMOVE to remove it, the client should take steps to make
 sure that the file will still be accessible. The usual
 mechanism used is to use RENAME to rename the file from
 its old name to a new hidden name.

 Refer to General comments on filenames on page 30.

 ERRORS

 NFS3ERR_NOENT
 NFS3ERR_IO
 NFS3ERR_ACCES
 NFS3ERR_NOTDIR
 NFS3ERR_NAMETOOLONG

Callaghan, el al Informational [Page 68]

RFC 1813 NFS Version 3 Protocol June 1995

 NFS3ERR_ROFS
 NFS3ERR_STALE
 NFS3ERR_BADHANDLE
 NFS3ERR_SERVERFAULT

 SEE ALSO

 RMDIR and RENAME.

3.3.13 Procedure 13: RMDIR - Remove a Directory

 SYNOPSIS

 RMDIR3res NFSPROC3_RMDIR(RMDIR3args) = 13;

 struct RMDIR3args {
 diropargs3 object;
 };

 struct RMDIR3resok {
 wcc_data dir_wcc;
 };

 struct RMDIR3resfail {
 wcc_data dir_wcc;
 };

 union RMDIR3res switch (nfsstat3 status) {
 case NFS3_OK:
 RMDIR3resok resok;
 default:
 RMDIR3resfail resfail;
 };

 DESCRIPTION

 Procedure RMDIR removes (deletes) a subdirectory from a
 directory. If the directory entry of the subdirectory is
 the last reference to the subdirectory, the subdirectory
 may be destroyed. On entry, the arguments in RMDIR3args
 are:

 object
 A diropargs3 structure identifying the directory entry
 to be removed:

Callaghan, el al Informational [Page 69]

RFC 1813 NFS Version 3 Protocol June 1995

 dir
 The file handle for the directory from which the
 subdirectory is to be removed.

 name
 The name of the subdirectory to be removed. Refer to
 General comments on filenames on page 30.

 On successful return, RMDIR3res.status is NFS3_OK and
 RMDIR3res.resok contains:

 dir_wcc
 Weak cache consistency data for the directory,
 object.dir. For a client that requires only the
 post-RMDIR directory attributes, these can be found in
 dir_wcc.after.

 Otherwise, RMDIR3res.status contains the error on failure
 and RMDIR3res.resfail contains the following:

 dir_wcc
 Weak cache consistency data for the directory,
 object.dir. For a client that requires only the
 post-RMDIR directory attributes, these can be found in
 dir_wcc.after. Note that even though the RMDIR failed,
 full wcc_data is returned to allow the client to
 determine whether the failing RMDIR changed the
 directory.

 IMPLEMENTATION

 Note that on some servers, removal of a non-empty
 directory is disallowed.

 On some servers, the filename, ".", is illegal. These
 servers will return the error, NFS3ERR_INVAL. On some
 servers, the filename, "..", is illegal. These servers
 will return the error, NFS3ERR_EXIST. This would seem
 inconsistent, but allows these servers to comply with
 their own specific interface definitions. Clients should
 be prepared to handle both cases.

 The client should not rely on the resources (disk space,
 directory entry, and so on.) formerly associated with the
 directory becoming immediately available.

Callaghan, el al Informational [Page 70]

RFC 1813 NFS Version 3 Protocol June 1995

 ERRORS

 NFS3ERR_NOENT
 NFS3ERR_IO
 NFS3ERR_ACCES
 NFS3ERR_INVAL
 NFS3ERR_EXIST
 NFS3ERR_NOTDIR
 NFS3ERR_NAMETOOLONG
 NFS3ERR_ROFS
 NFS3ERR_NOTEMPTY
 NFS3ERR_STALE
 NFS3ERR_BADHANDLE
 NFS3ERR_NOTSUPP
 NFS3ERR_SERVERFAULT

 SEE ALSO

 REMOVE.

3.3.14 Procedure 14: RENAME - Rename a File or Directory

 SYNOPSIS

 RENAME3res NFSPROC3_RENAME(RENAME3args) = 14;

 struct RENAME3args {
 diropargs3 from;
 diropargs3 to;
 };

 struct RENAME3resok {
 wcc_data fromdir_wcc;
 wcc_data todir_wcc;
 };

 struct RENAME3resfail {
 wcc_data fromdir_wcc;
 wcc_data todir_wcc;
 };

 union RENAME3res switch (nfsstat3 status) {
 case NFS3_OK:
 RENAME3resok resok;
 default:
 RENAME3resfail resfail;
 };

Callaghan, el al Informational [Page 71]

RFC 1813 NFS Version 3 Protocol June 1995

 DESCRIPTION

 Procedure RENAME renames the file identified by from.name
 in the directory, from.dir, to to.name in the di- rectory,
 to.dir. The operation is required to be atomic to the
 client. To.dir and from.dir must reside on the same file
 system and server. On entry, the arguments in RENAME3args
 are:

 from
 A diropargs3 structure identifying the source (the file
 system object to be re-named):

 from.dir
 The file handle for the directory from which the
 entry is to be renamed.

 from.name
 The name of the entry that identifies the object to
 be renamed. Refer to General comments on filenames
 on page 30.

 to
 A diropargs3 structure identifying the target (the new
 name of the object):

 to.dir
 The file handle for the directory to which the
 object is to be renamed.

 to.name
 The new name for the object. Refer to General
 comments on filenames on page 30.

 If the directory, to.dir, already contains an entry with
 the name, to.name, the source object must be compatible
 with the target: either both are non-directories or both
 are directories and the target must be empty. If
 compatible, the existing target is removed before the
 rename occurs. If they are not compatible or if the target
 is a directory but not empty, the server should return the
 error, NFS3ERR_EXIST.

 On successful return, RENAME3res.status is NFS3_OK and
 RENAME3res.resok contains:

Callaghan, el al Informational [Page 72]

RFC 1813 NFS Version 3 Protocol June 1995

 fromdir_wcc
 Weak cache consistency data for the directory,
 from.dir.

 todir_wcc
 Weak cache consistency data for the directory, to.dir.

 Otherwise, RENAME3res.status contains the error on failure
 and RENAME3res.resfail contains the following:

 fromdir_wcc
 Weak cache consistency data for the directory,
 from.dir.

 todir_wcc
 Weak cache consistency data for the directory, to.dir.

 IMPLEMENTATION
 The RENAME operation must be atomic to the client. The
 message "to.dir and from.dir must reside on the same file
 system on the server, [or the operation will fail]" means
 that the fsid fields in the attributes for the directories
 are the same. If they reside on different file systems,
 the error, NFS3ERR_XDEV, is returned. Even though the
 operation is atomic, the status, NFS3ERR_MLINK, may be
 returned if the server used a "unlink/link/unlink"
 sequence internally.

 A file handle may or may not become stale on a rename.
 However, server implementors are strongly encouraged to
 attempt to keep file handles from becoming stale in this
 fashion.

 On some servers, the filenames, "." and "..", are illegal
 as either from.name or to.name. In addition, neither
 from.name nor to.name can be an alias for from.dir. These
 servers will return the error, NFS3ERR_INVAL, in these
 cases.

 If from and to both refer to the same file (they might
 be hard links of each other), then RENAME should perform
 no action and return NFS3_OK.

 Refer to General comments on filenames on page 30.

Callaghan, el al Informational [Page 73]

RFC 1813 NFS Version 3 Protocol June 1995

 ERRORS

 NFS3ERR_NOENT
 NFS3ERR_IO
 NFS3ERR_ACCES
 NFS3ERR_EXIST
 NFS3ERR_XDEV
 NFS3ERR_NOTDIR
 NFS3ERR_ISDIR
 NFS3ERR_INVAL
 NFS3ERR_NOSPC
 NFS3ERR_ROFS
 NFS3ERR_MLINK
 NFS3ERR_NAMETOOLONG
 NFS3ERR_NOTEMPTY
 NFS3ERR_DQUOT
 NFS3ERR_STALE
 NFS3ERR_BADHANDLE
 NFS3ERR_NOTSUPP
 NFS3ERR_SERVERFAULT

 SEE ALSO

 REMOVE and LINK.

3.3.15 Procedure 15: LINK - Create Link to an object

 SYNOPSIS

 LINK3res NFSPROC3_LINK(LINK3args) = 15;

 struct LINK3args {
 nfs_fh3 file;
 diropargs3 link;
 };

 struct LINK3resok {
 post_op_attr file_attributes;
 wcc_data linkdir_wcc;
 };

 struct LINK3resfail {
 post_op_attr file_attributes;
 wcc_data linkdir_wcc;
 };

 union LINK3res switch (nfsstat3 status) {
 case NFS3_OK:

Callaghan, el al Informational [Page 74]

RFC 1813 NFS Version 3 Protocol June 1995

 LINK3resok resok;
 default:
 LINK3resfail resfail;
 };

 DESCRIPTION

 Procedure LINK creates a hard link from file to link.name,
 in the directory, link.dir. file and link.dir must reside
 on the same file system and server. On entry, the
 arguments in LINK3args are:

 file
 The file handle for the existing file system object.

 link
 The location of the link to be created:

 link.dir
 The file handle for the directory in which the link
 is to be created.

 link.name
 The name that is to be associated with the created
 link. Refer to General comments on filenames on page
 17.

 On successful return, LINK3res.status is NFS3_OK and
 LINK3res.resok contains:

 file_attributes
 The post-operation attributes of the file system object
 identified by file.

 linkdir_wcc
 Weak cache consistency data for the directory,
 link.dir.

 Otherwise, LINK3res.status contains the error on failure
 and LINK3res.resfail contains the following:

 file_attributes
 The post-operation attributes of the file system object
 identified by file.

 linkdir_wcc
 Weak cache consistency data for the directory,
 link.dir.

Callaghan, el al Informational [Page 75]

RFC 1813 NFS Version 3 Protocol June 1995

 IMPLEMENTATION

 Changes to any property of the hard-linked files are
 reflected in all of the linked files. When a hard link is
 made to a file, the attributes for the file should have a
 value for nlink that is one greater than the value before
 the LINK.

 The comments under RENAME regarding object and target
 residing on the same file system apply here as well. The
 comments regarding the target name applies as well. Refer
 to General comments on filenames on page 30.

 ERRORS

 NFS3ERR_IO
 NFS3ERR_ACCES
 NFS3ERR_EXIST
 NFS3ERR_XDEV
 NFS3ERR_NOTDIR
 NFS3ERR_INVAL
 NFS3ERR_NOSPC
 NFS3ERR_ROFS
 NFS3ERR_MLINK
 NFS3ERR_NAMETOOLONG
 NFS3ERR_DQUOT
 NFS3ERR_STALE
 NFS3ERR_BADHANDLE
 NFS3ERR_NOTSUPP
 NFS3ERR_SERVERFAULT

 SEE ALSO

 SYMLINK, RENAME and FSINFO.

3.3.16 Procedure 16: READDIR - Read From Directory

 SYNOPSIS

 READDIR3res NFSPROC3_READDIR(READDIR3args) = 16;

 struct READDIR3args {
 nfs_fh3 dir;
 cookie3 cookie;
 cookieverf3 cookieverf;
 count3 count;
 };

Callaghan, el al Informational [Page 76]

RFC 1813 NFS Version 3 Protocol June 1995

 struct entry3 {
 fileid3 fileid;
 filename3 name;
 cookie3 cookie;
 entry3 *nextentry;
 };

 struct dirlist3 {
 entry3 *entries;
 bool eof;
 };

 struct READDIR3resok {
 post_op_attr dir_attributes;
 cookieverf3 cookieverf;
 dirlist3 reply;
 };

 struct READDIR3resfail {
 post_op_attr dir_attributes;
 };

 union READDIR3res switch (nfsstat3 status) {
 case NFS3_OK:
 READDIR3resok resok;
 default:
 READDIR3resfail resfail;
 };

 DESCRIPTION

 Procedure READDIR retrieves a variable number of entries,
 in sequence, from a directory and returns the name and
 file identifier for each, with information to allow the
 client to request additional directory entries in a
 subsequent READDIR request. On entry, the arguments in
 READDIR3args are:

 dir
 The file handle for the directory to be read.

 cookie
 This should be set to 0 in the first request to read
 the directory. On subsequent requests, it should be a
 cookie as returned by the server.

Callaghan, el al Informational [Page 77]

RFC 1813 NFS Version 3 Protocol June 1995

 cookieverf
 This should be set to 0 in the first request to read
 the directory. On subsequent requests, it should be a
 cookieverf as returned by the server. The cookieverf
 must match that returned by the READDIR in which the
 cookie was acquired.

 count
 The maximum size of the READDIR3resok structure, in
 bytes. The size must include all XDR overhead. The
 server is free to return less than count bytes of
 data.

 On successful return, READDIR3res.status is NFS3_OK and
 READDIR3res.resok contains:

 dir_attributes
 The attributes of the directory, dir.

 cookieverf
 The cookie verifier.

 reply
 The directory list:

 entries
 Zero or more directory (entry3) entries.

 eof
 TRUE if the last member of reply.entries is the last
 entry in the directory or the list reply.entries is
 empty and the cookie corresponded to the end of the
 directory. If FALSE, there may be more entries to
 read.

 Otherwise, READDIR3res.status contains the error on
 failure and READDIR3res.resfail contains the following:

 dir_attributes
 The attributes of the directory, dir.

 IMPLEMENTATION

 In the NFS version 2 protocol, each directory entry
 returned included a cookie identifying a point in the
 directory. By including this cookie in a subsequent
 READDIR, the client could resume the directory read at any
 point in the directory. One problem with this scheme was

Callaghan, el al Informational [Page 78]

RFC 1813 NFS Version 3 Protocol June 1995

 that there was no easy way for a server to verify that a
 cookie was valid. If two READDIRs were separated by one or
 more operations that changed the directory in some way
 (for example, reordering or compressing it), it was
 possible that the second READDIR could miss entries, or
 process entries more than once. If the cookie was no
 longer usable, for example, pointing into the middle of a
 directory entry, the server would have to either round the
 cookie down to the cookie of the previous entry or round
 it up to the cookie of the next entry in the directory.
 Either way would possibly lead to incorrect results and
 the client would be unaware that any problem existed.

 In the NFS version 3 protocol, each READDIR request
 includes both a cookie and a cookie verifier. For the
 first call, both are set to 0. The response includes a
 new cookie verifier, with a cookie per entry. For
 subsequent READDIRs, the client must present both the
 cookie and the corresponding cookie verifier. If the
 server detects that the cookie is no longer valid, the
 server will reject the READDIR request with the status,
 NFS3ERR_BAD_COOKIE. The client should be careful to
 avoid holding directory entry cookies across operations
 that modify the directory contents, such as REMOVE and
 CREATE.

 One implementation of the cookie-verifier mechanism might
 be for the server to use the modification time of the
 directory. This might be overly restrictive, however. A
 better approach would be to record the time of the last
 directory modification that changed the directory
 organization in a way that would make it impossible to
 reliably interpret a cookie. Servers in which directory
 cookies are always valid are free to use zero as the
 verifier always.

 The server may return fewer than count bytes of
 XDR-encoded entries. The count specified by the client in
 the request should be greater than or equal to FSINFO
 dtpref.

 Since UNIX clients give a special meaning to the fileid
 value zero, UNIX clients should be careful to map zero
 fileid values to some other value and servers should try
 to avoid sending a zero fileid.

Callaghan, el al Informational [Page 79]

RFC 1813 NFS Version 3 Protocol June 1995

 ERRORS

 NFS3ERR_IO
 NFS3ERR_ACCES
 NFS3ERR_NOTDIR
 NFS3ERR_BAD_COOKIE
 NFS3ERR_TOOSMALL
 NFS3ERR_STALE
 NFS3ERR_BADHANDLE
 NFS3ERR_SERVERFAULT

 SEE ALSO

 READDIRPLUS and FSINFO.

3.3.17 Procedure 17: READDIRPLUS - Extended read from directory

 SYNOPSIS

 READDIRPLUS3res NFSPROC3_READDIRPLUS(READDIRPLUS3args) = 17;

 struct READDIRPLUS3args {
 nfs_fh3 dir;
 cookie3 cookie;
 cookieverf3 cookieverf;
 count3 dircount;
 count3 maxcount;
 };

 struct entryplus3 {
 fileid3 fileid;
 filename3 name;
 cookie3 cookie;
 post_op_attr name_attributes;
 post_op_fh3 name_handle;
 entryplus3 *nextentry;
 };

 struct dirlistplus3 {
 entryplus3 *entries;
 bool eof;
 };

 struct READDIRPLUS3resok {
 post_op_attr dir_attributes;
 cookieverf3 cookieverf;
 dirlistplus3 reply;
 };

Callaghan, el al Informational [Page 80]

RFC 1813 NFS Version 3 Protocol June 1995

 struct READDIRPLUS3resfail {
 post_op_attr dir_attributes;
 };

 union READDIRPLUS3res switch (nfsstat3 status) {
 case NFS3_OK:
 READDIRPLUS3resok resok;
 default:
 READDIRPLUS3resfail resfail;
 };

 DESCRIPTION

 Procedure READDIRPLUS retrieves a variable number of
 entries from a file system directory and returns complete
 information about each along with information to allow the
 client to request additional directory entries in a
 subsequent READDIRPLUS. READDIRPLUS differs from READDIR
 only in the amount of information returned for each
 entry. In READDIR, each entry returns the filename and
 the fileid. In READDIRPLUS, each entry returns the name,
 the fileid, attributes (including the fileid), and file
 handle. On entry, the arguments in READDIRPLUS3args are:

 dir
 The file handle for the directory to be read.

 cookie
 This should be set to 0 on the first request to read a
 directory. On subsequent requests, it should be a
 cookie as returned by the server.

 cookieverf
 This should be set to 0 on the first request to read a
 directory. On subsequent requests, it should be a
 cookieverf as returned by the server. The cookieverf
 must match that returned by the READDIRPLUS call in
 which the cookie was acquired.

 dircount
 The maximum number of bytes of directory information
 returned. This number should not include the size of
 the attributes and file handle portions of the result.

 maxcount
 The maximum size of the READDIRPLUS3resok structure, in
 bytes. The size must include all XDR overhead. The

Callaghan, el al Informational [Page 81]

RFC 1813 NFS Version 3 Protocol June 1995

 server is free to return fewer than maxcount bytes of
 data.

 On successful return, READDIRPLUS3res.status is NFS3_OK
 and READDIRPLUS3res.resok contains:

 dir_attributes
 The attributes of the directory, dir.

 cookieverf
 The cookie verifier.

 reply
 The directory list:

 entries
 Zero or more directory (entryplus3) entries.

 eof
 TRUE if the last member of reply.entries is the last
 entry in the directory or the list reply.entries is
 empty and the cookie corresponded to the end of the
 directory. If FALSE, there may be more entries to
 read.

 Otherwise, READDIRPLUS3res.status contains the error on
 failure and READDIRPLUS3res.resfail contains the following:

 dir_attributes
 The attributes of the directory, dir.

 IMPLEMENTATION

 Issues that need to be understood for this procedure
 include increased cache flushing activity on the client
 (as new file handles are returned with names which are
 entered into caches) and over-the-wire overhead versus
 expected subsequent LOOKUP elimination. It is thought that
 this procedure may improve performance for directory
 browsing where attributes are always required as on the
 Apple Macintosh operating system and for MS-DOS.

 The dircount and maxcount fields are included as an
 optimization. Consider a READDIRPLUS call on a UNIX
 operating system implementation for 1048 bytes; the reply
 does not contain many entries because of the overhead due
 to attributes and file handles. An alternative is to issue
 a READDIRPLUS call for 8192 bytes and then only use the

Callaghan, el al Informational [Page 82]

RFC 1813 NFS Version 3 Protocol June 1995

 first 1048 bytes of directory information. However, the
 server doesn’t know that all that is needed is 1048 bytes
 of directory information (as would be returned by
 READDIR). It sees the 8192 byte request and issues a
 VOP_READDIR for 8192 bytes. It then steps through all of
 those directory entries, obtaining attributes and file
 handles for each entry. When it encodes the result, the
 server only encodes until it gets 8192 bytes of results
 which include the attributes and file handles. Thus, it
 has done a larger VOP_READDIR and many more attribute
 fetches than it needed to. The ratio of the directory
 entry size to the size of the attributes plus the size of
 the file handle is usually at least 8 to 1. The server has
 done much more work than it needed to.

 The solution to this problem is for the client to provide
 two counts to the server. The first is the number of bytes
 of directory information that the client really wants,
 dircount. The second is the maximum number of bytes in
 the result, including the attributes and file handles,
 maxcount. Thus, the server will issue a VOP_READDIR for
 only the number of bytes that the client really wants to
 get, not an inflated number. This should help to reduce
 the size of VOP_READDIR requests on the server, thus
 reducing the amount of work done there, and to reduce the
 number of VOP_LOOKUP, VOP_GETATTR, and other calls done by
 the server to construct attributes and file handles.

 ERRORS

 NFS3ERR_IO
 NFS3ERR_ACCES
 NFS3ERR_NOTDIR
 NFS3ERR_BAD_COOKIE
 NFS3ERR_TOOSMALL
 NFS3ERR_STALE
 NFS3ERR_BADHANDLE
 NFS3ERR_NOTSUPP
 NFS3ERR_SERVERFAULT

 SEE ALSO

 READDIR.

Callaghan, el al Informational [Page 83]

RFC 1813 NFS Version 3 Protocol June 1995

3.3.18 Procedure 18: FSSTAT - Get dynamic file system information

 SYNOPSIS

 FSSTAT3res NFSPROC3_FSSTAT(FSSTAT3args) = 18;

 struct FSSTAT3args {
 nfs_fh3 fsroot;
 };

 struct FSSTAT3resok {
 post_op_attr obj_attributes;
 size3 tbytes;
 size3 fbytes;
 size3 abytes;
 size3 tfiles;
 size3 ffiles;
 size3 afiles;
 uint32 invarsec;
 };

 struct FSSTAT3resfail {
 post_op_attr obj_attributes;
 };

 union FSSTAT3res switch (nfsstat3 status) {
 case NFS3_OK:
 FSSTAT3resok resok;
 default:
 FSSTAT3resfail resfail;
 };

 DESCRIPTION

 Procedure FSSTAT retrieves volatile file system state
 information. On entry, the arguments in FSSTAT3args are:

 fsroot
 A file handle identifying a object in the file system.
 This is normally a file handle for a mount point for a
 file system, as originally obtained from the MOUNT
 service on the server.

 On successful return, FSSTAT3res.status is NFS3_OK and
 FSSTAT3res.resok contains:

Callaghan, el al Informational [Page 84]

RFC 1813 NFS Version 3 Protocol June 1995

 obj_attributes
 The attributes of the file system object specified in
 fsroot.

 tbytes
 The total size, in bytes, of the file system.

 fbytes
 The amount of free space, in bytes, in the file
 system.

 abytes
 The amount of free space, in bytes, available to the
 user identified by the authentication information in
 the RPC. (This reflects space that is reserved by the
 file system; it does not reflect any quota system
 implemented by the server.)

 tfiles
 The total number of file slots in the file system. (On
 a UNIX server, this often corresponds to the number of
 inodes configured.)

 ffiles
 The number of free file slots in the file system.

 afiles
 The number of free file slots that are available to the
 user corresponding to the authentication information in
 the RPC. (This reflects slots that are reserved by the
 file system; it does not reflect any quota system
 implemented by the server.)

 invarsec
 A measure of file system volatility: this is the number
 of seconds for which the file system is not expected to
 change. For a volatile, frequently updated file system,
 this will be 0. For an immutable file system, such as a
 CD-ROM, this would be the largest unsigned integer. For
 file systems that are infrequently modified, for
 example, one containing local executable programs and
 on-line documentation, a value corresponding to a few
 hours or days might be used. The client may use this as
 a hint in tuning its cache management. Note however,
 this measure is assumed to be dynamic and may change at
 any time.

Callaghan, el al Informational [Page 85]

RFC 1813 NFS Version 3 Protocol June 1995

 Otherwise, FSSTAT3res.status contains the error on failure
 and FSSTAT3res.resfail contains the following:

 obj_attributes
 The attributes of the file system object specified in
 fsroot.

 IMPLEMENTATION

 Not all implementations can support the entire list of
 attributes. It is expected that servers will make a best
 effort at supporting all the attributes.

 ERRORS

 NFS3ERR_IO
 NFS3ERR_STALE
 NFS3ERR_BADHANDLE
 NFS3ERR_SERVERFAULT

 SEE ALSO

 FSINFO.

3.3.19 Procedure 19: FSINFO - Get static file system Information

 SYNOPSIS

 FSINFO3res NFSPROC3_FSINFO(FSINFO3args) = 19;

 const FSF3_LINK = 0x0001;
 const FSF3_SYMLINK = 0x0002;
 const FSF3_HOMOGENEOUS = 0x0008;
 const FSF3_CANSETTIME = 0x0010;

 struct FSINFOargs {
 nfs_fh3 fsroot;
 };

 struct FSINFO3resok {
 post_op_attr obj_attributes;
 uint32 rtmax;
 uint32 rtpref;
 uint32 rtmult;
 uint32 wtmax;
 uint32 wtpref;
 uint32 wtmult;
 uint32 dtpref;

Callaghan, el al Informational [Page 86]

RFC 1813 NFS Version 3 Protocol June 1995

 size3 maxfilesize;
 nfstime3 time_delta;
 uint32 properties;
 };

 struct FSINFO3resfail {
 post_op_attr obj_attributes;
 };

 union FSINFO3res switch (nfsstat3 status) {
 case NFS3_OK:
 FSINFO3resok resok;
 default:
 FSINFO3resfail resfail;
 };

 DESCRIPTION

 Procedure FSINFO retrieves nonvolatile file system state
 information and general information about the NFS version
 3 protocol server implementation. On entry, the arguments
 in FSINFO3args are:

 fsroot
 A file handle identifying a file object. Normal usage
 is to provide a file handle for a mount point for a
 file system, as originally obtained from the MOUNT
 service on the server.

 On successful return, FSINFO3res.status is NFS3_OK and
 FSINFO3res.resok contains:

 obj_attributes
 The attributes of the file system object specified in
 fsroot.

 rtmax
 The maximum size in bytes of a READ request supported
 by the server. Any READ with a number greater than
 rtmax will result in a short read of rtmax bytes or
 less.

 rtpref
 The preferred size of a READ request. This should be
 the same as rtmax unless there is a clear benefit in
 performance or efficiency.

Callaghan, el al Informational [Page 87]

RFC 1813 NFS Version 3 Protocol June 1995

 rtmult
 The suggested multiple for the size of a READ request.

 wtmax
 The maximum size of a WRITE request supported by the
 server. In general, the client is limited by wtmax
 since there is no guarantee that a server can handle a
 larger write. Any WRITE with a count greater than wtmax
 will result in a short write of at most wtmax bytes.

 wtpref
 The preferred size of a WRITE request. This should be
 the same as wtmax unless there is a clear benefit in
 performance or efficiency.

 wtmult
 The suggested multiple for the size of a WRITE
 request.

 dtpref
 The preferred size of a READDIR request.

 maxfilesize
 The maximum size of a file on the file system.

 time_delta
 The server time granularity. When setting a file time
 using SETATTR, the server guarantees only to preserve
 times to this accuracy. If this is {0, 1}, the server
 can support nanosecond times, {0, 1000000} denotes
 millisecond precision, and {1, 0} indicates that times
 are accurate only to the nearest second.

 properties
 A bit mask of file system properties. The following
 values are defined:

 FSF_LINK
 If this bit is 1 (TRUE), the file system supports
 hard links.

 FSF_SYMLINK
 If this bit is 1 (TRUE), the file system supports
 symbolic links.

 FSF_HOMOGENEOUS
 If this bit is 1 (TRUE), the information returned by
 PATHCONF is identical for every file and directory

Callaghan, el al Informational [Page 88]

RFC 1813 NFS Version 3 Protocol June 1995

 in the file system. If it is 0 (FALSE), the client
 should retrieve PATHCONF information for each file
 and directory as required.

 FSF_CANSETTIME
 If this bit is 1 (TRUE), the server will set the
 times for a file via SETATTR if requested (to the
 accuracy indicated by time_delta). If it is 0
 (FALSE), the server cannot set times as requested.

 Otherwise, FSINFO3res.status contains the error on failure
 and FSINFO3res.resfail contains the following:

 attributes
 The attributes of the file system object specified in
 fsroot.

 IMPLEMENTATION

 Not all implementations can support the entire list of
 attributes. It is expected that a server will make a best
 effort at supporting all the attributes.

 The file handle provided is expected to be the file handle
 of the file system root, as returned to the MOUNT
 operation. Since mounts may occur anywhere within an
 exported tree, the server should expect FSINFO requests
 specifying file handles within the exported file system.
 A server may export different types of file systems with
 different attributes returned to the FSINFO call. The
 client should retrieve FSINFO information for each mount
 completed. Though a server may return different FSINFO
 information for different files within a file system,
 there is no requirement that a client obtain FSINFO
 information for other than the file handle returned at
 mount.

 The maxfilesize field determines whether a server’s
 particular file system uses 32 bit sizes and offsets or 64
 bit file sizes and offsets. This may affect a client’s
 processing.

 The preferred sizes for requests are nominally tied to an
 exported file system mounted by a client. A surmountable
 issue arises in that the transfer size for an NFS version
 3 protocol request is not only dependent on
 characteristics of the file system but also on
 characteristics of the network interface, particularly the

Callaghan, el al Informational [Page 89]

RFC 1813 NFS Version 3 Protocol June 1995

 maximum transfer unit (MTU). A server implementation can
 advertise different transfer sizes (for the fields, rtmax,
 rtpref, wtmax, wtpref, and dtpref) depending on the
 interface on which the FSINFO request is received. This is
 an implementation issue.

 ERRORS

 NFS3ERR_STALE
 NFS3ERR_BADHANDLE
 NFS3ERR_SERVERFAULT

 SEE ALSO

 READLINK, WRITE, READDIR, FSSTAT and PATHCONF.

3.3.20 Procedure 20: PATHCONF - Retrieve POSIX information

 SYNOPSIS

 PATHCONF3res NFSPROC3_PATHCONF(PATHCONF3args) = 20;

 struct PATHCONF3args {
 nfs_fh3 object;
 };

 struct PATHCONF3resok {
 post_op_attr obj_attributes;
 uint32 linkmax;
 uint32 name_max;
 bool no_trunc;
 bool chown_restricted;
 bool case_insensitive;
 bool case_preserving;
 };

 struct PATHCONF3resfail {
 post_op_attr obj_attributes;
 };

 union PATHCONF3res switch (nfsstat3 status) {
 case NFS3_OK:
 PATHCONF3resok resok;
 default:
 PATHCONF3resfail resfail;
 };

Callaghan, el al Informational [Page 90]

RFC 1813 NFS Version 3 Protocol June 1995

 DESCRIPTION

 Procedure PATHCONF retrieves the pathconf information for
 a file or directory. If the FSF_HOMOGENEOUS bit is set in
 FSFINFO3resok.properties, the pathconf information will be
 the same for all files and directories in the exported
 file system in which this file or directory resides. On
 entry, the arguments in PATHCONF3args are:

 object
 The file handle for the file system object.

 On successful return, PATHCONF3res.status is NFS3_OK and
 PATHCONF3res.resok contains:

 obj_attributes
 The attributes of the object specified by object.

 linkmax
 The maximum number of hard links to an object.

 name_max
 The maximum length of a component of a filename.

 no_trunc
 If TRUE, the server will reject any request that
 includes a name longer than name_max with the error,
 NFS3ERR_NAMETOOLONG. If FALSE, any length name over
 name_max bytes will be silently truncated to name_max
 bytes.

 chown_restricted
 If TRUE, the server will reject any request to change
 either the owner or the group associated with a file if
 the caller is not the privileged user. (Uid 0.)

 case_insensitive
 If TRUE, the server file system does not distinguish
 case when interpreting filenames.

 case_preserving
 If TRUE, the server file system will preserve the case
 of a name during a CREATE, MKDIR, MKNOD, SYMLINK,
 RENAME, or LINK operation.

 Otherwise, PATHCONF3res.status contains the error on
 failure and PATHCONF3res.resfail contains the following:

Callaghan, el al Informational [Page 91]

RFC 1813 NFS Version 3 Protocol June 1995

 obj_attributes
 The attributes of the object specified by object.

 IMPLEMENTATION

 In some implementations of the NFS version 2 protocol,
 pathconf information was obtained at mount time through
 the MOUNT protocol. The proper place to obtain it, is as
 here, in the NFS version 3 protocol itself.

 ERRORS

 NFS3ERR_STALE
 NFS3ERR_BADHANDLE
 NFS3ERR_SERVERFAULT

 SEE ALSO

 LOOKUP, CREATE, MKDIR, SYMLINK, MKNOD, RENAME, LINK and FSINFO.

3.3.21 Procedure 21: COMMIT - Commit cached data on a server to stable
 storage

 SYNOPSIS

 COMMIT3res NFSPROC3_COMMIT(COMMIT3args) = 21;

 struct COMMIT3args {
 nfs_fh3 file;
 offset3 offset;
 count3 count;
 };

 struct COMMIT3resok {
 wcc_data file_wcc;
 writeverf3 verf;
 };

 struct COMMIT3resfail {
 wcc_data file_wcc;
 };

 union COMMIT3res switch (nfsstat3 status) {
 case NFS3_OK:
 COMMIT3resok resok;
 default:
 COMMIT3resfail resfail;
 };

Callaghan, el al Informational [Page 92]

RFC 1813 NFS Version 3 Protocol June 1995

 DESCRIPTION

 Procedure COMMIT forces or flushes data to stable storage
 that was previously written with a WRITE procedure call
 with the stable field set to UNSTABLE. On entry, the
 arguments in COMMIT3args are:

 file
 The file handle for the file to which data is to be
 flushed (committed). This must identify a file system
 object of type, NF3REG.

 offset
 The position within the file at which the flush is to
 begin. An offset of 0 means to flush data starting at
 the beginning of the file.

 count
 The number of bytes of data to flush. If count is 0, a
 flush from offset to the end of file is done.

 On successful return, COMMIT3res.status is NFS3_OK and
 COMMIT3res.resok contains:

 file_wcc
 Weak cache consistency data for the file. For a client
 that requires only the post-operation file attributes,
 these can be found in file_wcc.after.

 verf
 This is a cookie that the client can use to determine
 whether the server has rebooted between a call to WRITE
 and a subsequent call to COMMIT. This cookie must be
 consistent during a single boot session and must be
 unique between instances of the NFS version 3 protocol
 server where uncommitted data may be lost.

 Otherwise, COMMIT3res.status contains the error on failure
 and COMMIT3res.resfail contains the following:

 file_wcc
 Weak cache consistency data for the file. For a client
 that requires only the post-write file attributes,
 these can be found in file_wcc.after. Even though the
 COMMIT failed, full wcc_data is returned to allow the
 client to determine whether the file changed on the
 server between calls to WRITE and COMMIT.

Callaghan, el al Informational [Page 93]

RFC 1813 NFS Version 3 Protocol June 1995

 IMPLEMENTATION

 Procedure COMMIT is similar in operation and semantics to
 the POSIX fsync(2) system call that synchronizes a file’s
 state with the disk, that is it flushes the file’s data
 and metadata to disk. COMMIT performs the same operation
 for a client, flushing any unsynchronized data and
 metadata on the server to the server’s disk for the
 specified file. Like fsync(2), it may be that there is
 some modified data or no modified data to synchronize. The
 data may have been synchronized by the server’s normal
 periodic buffer synchronization activity. COMMIT will
 always return NFS3_OK, unless there has been an unexpected
 error.

 COMMIT differs from fsync(2) in that it is possible for
 the client to flush a range of the file (most likely
 triggered by a buffer-reclamation scheme on the client
 before file has been completely written).

 The server implementation of COMMIT is reasonably simple.
 If the server receives a full file COMMIT request, that is
 starting at offset 0 and count 0, it should do the
 equivalent of fsync()’ing the file. Otherwise, it should
 arrange to have the cached data in the range specified by
 offset and count to be flushed to stable storage. In both
 cases, any metadata associated with the file must be
 flushed to stable storage before returning. It is not an
 error for there to be nothing to flush on the server.
 This means that the data and metadata that needed to be
 flushed have already been flushed or lost during the last
 server failure.

 The client implementation of COMMIT is a little more
 complex. There are two reasons for wanting to commit a
 client buffer to stable storage. The first is that the
 client wants to reuse a buffer. In this case, the offset
 and count of the buffer are sent to the server in the
 COMMIT request. The server then flushes any cached data
 based on the offset and count, and flushes any metadata
 associated with the file. It then returns the status of
 the flush and the verf verifier. The other reason for the
 client to generate a COMMIT is for a full file flush, such
 as may be done at close. In this case, the client would
 gather all of the buffers for this file that contain
 uncommitted data, do the COMMIT operation with an offset
 of 0 and count of 0, and then free all of those buffers.
 Any other dirty buffers would be sent to the server in the

Callaghan, el al Informational [Page 94]

RFC 1813 NFS Version 3 Protocol June 1995

 normal fashion.

 This implementation will require some modifications to the
 buffer cache on the client. After a buffer is written with
 stable UNSTABLE, it must be considered as dirty by the
 client system until it is either flushed via a COMMIT
 operation or written via a WRITE operation with stable set
 to FILE_SYNC or DATA_SYNC. This is done to prevent the
 buffer from being freed and reused before the data can be
 flushed to stable storage on the server.

 When a response comes back from either a WRITE or a COMMIT
 operation that contains an unexpected verf, the client
 will need to retransmit all of the buffers containing
 uncommitted cached data to the server. How this is to be
 done is up to the implementor. If there is only one buffer
 of interest, then it should probably be sent back over in
 a WRITE request with the appropriate stable flag. If there
 more than one, it might be worthwhile retransmitting all
 of the buffers in WRITE requests with stable set to
 UNSTABLE and then retransmitting the COMMIT operation to
 flush all of the data on the server to stable storage. The
 timing of these retransmissions is left to the
 implementor.

 The above description applies to page-cache-based systems
 as well as buffer-cache-based systems. In those systems,
 the virtual memory system will need to be modified instead
 of the buffer cache.

 See additional comments on WRITE on page 49.

 ERRORS

 NFS3ERR_IO
 NFS3ERR_STALE
 NFS3ERR_BADHANDLE
 NFS3ERR_SERVERFAULT

 SEE ALSO

 WRITE.

Callaghan, el al Informational [Page 95]

RFC 1813 NFS Version 3 Protocol June 1995

4. Implementation issues

 The NFS version 3 protocol was designed to allow different
 operating systems to share files. However, since it was
 designed in a UNIX environment, many operations have
 semantics similar to the operations of the UNIX file system.
 This section discusses some of the general
 implementation-specific details and semantic issues.
 Procedure descriptions have implementation comments specific
 to that procedure.

 A number of papers have been written describing issues
 encountered when constructing an NFS version 2 protocol
 implementation. The best overview paper is still [Sandberg].
 [Israel], [Macklem], and [Pawlowski] describe other
 implementations. [X/OpenNFS] provides a complete description
 of the NFS version 2 protocol and supporting protocols, as
 well as a discussion on implementation issues and procedure
 and error semantics. Many of the issues encountered when
 constructing an NFS version 2 protocol implementation will be
 encountered when constructing an NFS version 3 protocol
 implementation.

4.1 Multiple version support

 The RPC protocol provides explicit support for versioning of
 a service. Client and server implementations of NFS version 3
 protocol should support both versions, for full backwards
 compatibility, when possible. Default behavior of the RPC
 binding protocol is the client and server bind using the
 highest version number they both support. Client or server
 implementations that cannot easily support both versions (for
 example, because of memory restrictions) will have to choose
 what version to support. The NFS version 2 protocol would be
 a safe choice since fully capable clients and servers should
 support both versions. However, this choice would need to be
 made keeping all requirements in mind.

4.2 Server/client relationship

 The NFS version 3 protocol is designed to allow servers to be
 as simple and general as possible. Sometimes the simplicity
 of the server can be a problem, if the client implements
 complicated file system semantics.

 For example, some operating systems allow removal of open
 files. A process can open a file and, while it is open,
 remove it from the directory. The file can be read and

Callaghan, el al Informational [Page 96]

RFC 1813 NFS Version 3 Protocol June 1995

 written as long as the process keeps it open, even though the
 file has no name in the file system. It is impossible for a
 stateless server to implement these semantics. The client
 can do some tricks such as renaming the file on remove (to a
 hidden name), and only physically deleting it on close. The
 NFS version 3 protocol provides sufficient functionality to
 implement most file system semantics on a client.

 Every NFS version 3 protocol client can also potentially be a
 server, and remote and local mounted file systems can be
 freely mixed. This leads to some problems when a client
 travels down the directory tree of a remote file system and
 reaches the mount point on the server for another remote file
 system. Allowing the server to follow the second remote mount
 would require loop detection, server lookup, and user
 revalidation. Instead, both NFS version 2 protocol and NFS
 version 3 protocol implementations do not typically let
 clients cross a server’s mount point. When a client does a
 LOOKUP on a directory on which the server has mounted a file
 system, the client sees the underlying directory instead of
 the mounted directory.

 For example, if a server has a file system called /usr and
 mounts another file system on /usr/src, if a client mounts
 /usr, it does not see the mounted version of /usr/src. A
 client could do remote mounts that match the server’s mount
 points to maintain the server’s view. In this example, the
 client would also have to mount /usr/src in addition to /usr,
 even if they are from the same server.

4.3 Path name interpretation

 There are a few complications to the rule that path names are
 always parsed on the client. For example, symbolic links
 could have different interpretations on different clients.
 There is no answer to this problem in this specification.

 Another common problem for non-UNIX implementations is the
 special interpretation of the pathname, "..", to mean the
 parent of a given directory. A future revision of the
 protocol may use an explicit flag to indicate the parent
 instead - however it is not a problem as many working
 non-UNIX implementations exist.

Callaghan, el al Informational [Page 97]

RFC 1813 NFS Version 3 Protocol June 1995

4.4 Permission issues

 The NFS version 3 protocol, strictly speaking, does not
 define the permission checking used by servers. However, it
 is expected that a server will do normal operating system
 permission checking using AUTH_UNIX style authentication as
 the basis of its protection mechanism, or another stronger
 form of authentication such as AUTH_DES or AUTH_KERB. With
 AUTH_UNIX authentication, the server gets the client’s
 effective uid, effective gid, and groups on each call and
 uses them to check permission. These are the so-called UNIX
 credentials. AUTH_DES and AUTH_KERB use a network name, or
 netname, as the basis for identification (from which a UNIX
 server derives the necessary standard UNIX credentials).
 There are problems with this method that have been solved.

 Using uid and gid implies that the client and server share
 the same uid list. Every server and client pair must have the
 same mapping from user to uid and from group to gid. Since
 every client can also be a server, this tends to imply that
 the whole network shares the same uid/gid space. If this is
 not the case, then it usually falls upon the server to
 perform some custom mapping of credentials from one
 authentication domain into another. A discussion of
 techniques for managing a shared user space or for providing
 mechanisms for user ID mapping is beyond the scope of this
 specification.

 Another problem arises due to the usually stateful open
 operation. Most operating systems check permission at open
 time, and then check that the file is open on each read and
 write request. With stateless servers, the server cannot
 detect that the file is open and must do permission checking
 on each read and write call. UNIX client semantics of access
 permission checking on open can be provided with the ACCESS
 procedure call in this revision, which allows a client to
 explicitly check access permissions without resorting to
 trying the operation. On a local file system, a user can open
 a file and then change the permissions so that no one is
 allowed to touch it, but will still be able to write to the
 file because it is open. On a remote file system, by
 contrast, the write would fail. To get around this problem,
 the server’s permission checking algorithm should allow the
 owner of a file to access it regardless of the permission
 setting. This is needed in a practical NFS version 3 protocol
 server implementation, but it does depart from correct local
 file system semantics. This should not affect the return
 result of access permissions as returned by the ACCESS

Callaghan, el al Informational [Page 98]

RFC 1813 NFS Version 3 Protocol June 1995

 procedure, however.

 A similar problem has to do with paging in an executable
 program over the network. The operating system usually checks
 for execute permission before opening a file for demand
 paging, and then reads blocks from the open file. In a local
 UNIX file system, an executable file does not need read
 permission to execute (pagein). An NFS version 3 protocol
 server can not tell the difference between a normal file read
 (where the read permission bit is meaningful) and a demand
 pagein read (where the server should allow access to the
 executable file if the execute bit is set for that user or
 group or public). To make this work, the server allows
 reading of files if the uid given in the call has either
 execute or read permission on the file, through ownership,
 group membership or public access. Again, this departs from
 correct local file system semantics.

 In most operating systems, a particular user (on UNIX, the
 uid 0) has access to all files, no matter what permission and
 ownership they have. This superuser permission may not be
 allowed on the server, since anyone who can become superuser
 on their client could gain access to all remote files. A UNIX
 server by default maps uid 0 to a distinguished value
 (UID_NOBODY), as well as mapping the groups list, before
 doing its access checking. A server implementation may
 provide a mechanism to change this mapping. This works except
 for NFS version 3 protocol root file systems (required for
 diskless NFS version 3 protocol client support), where
 superuser access cannot be avoided. Export options are used,
 on the server, to restrict the set of clients allowed
 superuser access.

4.5 Duplicate request cache

 The typical NFS version 3 protocol failure recovery model
 uses client time-out and retry to handle server crashes,
 network partitions, and lost server replies. A retried
 request is called a duplicate of the original.

 When used in a file server context, the term idempotent can
 be used to distinguish between operation types. An idempotent
 request is one that a server can perform more than once with
 equivalent results (though it may in fact change, as a side
 effect, the access time on a file, say for READ). Some NFS
 operations are obviously non-idempotent. They cannot be
 reprocessed without special attention simply because they may
 fail if tried a second time. The CREATE request, for example,

Callaghan, el al Informational [Page 99]

RFC 1813 NFS Version 3 Protocol June 1995

 can be used to create a file for which the owner does not
 have write permission. A duplicate of this request cannot
 succeed if the original succeeded. Likewise, a file can be
 removed only once.

 The side effects caused by performing a duplicate
 non-idempotent request can be destructive (for example, a
 truncate operation causing lost writes). The combination of a
 stateless design with the common choice of an unreliable
 network transport (UDP) implies the possibility of
 destructive replays of non-idempotent requests. Though to be
 more accurate, it is the inherent stateless design of the NFS
 version 3 protocol on top of an unreliable RPC mechanism that
 yields the possibility of destructive replays of
 non-idempotent requests, since even in an implementation of
 the NFS version 3 protocol over a reliable
 connection-oriented transport, a connection break with
 automatic reestablishment requires duplicate request
 processing (the client will retransmit the request, and the
 server needs to deal with a potential duplicate
 non-idempotent request).

 Most NFS version 3 protocol server implementations use a
 cache of recent requests (called the duplicate request cache)
 for the processing of duplicate non-idempotent requests. The
 duplicate request cache provides a short-term memory
 mechanism in which the original completion status of a
 request is remembered and the operation attempted only once.
 If a duplicate copy of this request is received, then the
 original completion status is returned.

 The duplicate-request cache mechanism has been useful in
 reducing destructive side effects caused by duplicate NFS
 version 3 protocol requests. This mechanism, however, does
 not guarantee against these destructive side effects in all
 failure modes. Most servers store the duplicate request cache
 in RAM, so the contents are lost if the server crashes. The
 exception to this may possibly occur in a redundant server
 approach to high availability, where the file system itself
 may be used to share the duplicate request cache state. Even
 if the cache survives server reboots (or failovers in the
 high availability case), its effectiveness is a function of
 its size. A network partition can cause a cache entry to be
 reused before a client receives a reply for the corresponding
 request. If this happens, the duplicate request will be
 processed as a new one, possibly with destructive side
 effects.

Callaghan, el al Informational [Page 100]

RFC 1813 NFS Version 3 Protocol June 1995

 A good description of the implementation and use of a
 duplicate request cache can be found in [Juszczak].

4.6 File name component handling

 Server implementations of NFS version 3 protocol will
 frequently impose restrictions on the names which can be
 created. Many servers will also forbid the use of names that
 contain certain characters, such as the path component
 separator used by the server operating system. For example,
 the UFS file system will reject a name which contains "/",
 while "." and ".." are distinguished in UFS, and may not be
 specified as the name when creating a file system object.
 The exact error status values return for these errors is
 specified in the description of each procedure argument. The
 values (which conform to NFS version 2 protocol server
 practice) are not necessarily obvious, nor are they
 consistent from one procedure to the next.

4.7 Synchronous modifying operations

 Data-modifying operations in the NFS version 3 protocol are
 synchronous. When a procedure returns to the client, the
 client can assume that the operation has completed and any
 data associated with the request is now on stable storage.

4.8 Stable storage

 NFS version 3 protocol servers must be able to recover
 without data loss from multiple power failures (including
 cascading power failures, that is, several power failures in
 quick succession), operating system failures, and hardware
 failure of components other than the storage medium itself
 (for example, disk, nonvolatile RAM).

 Some examples of stable storage that are allowable for an NFS
 server include:

 1. Media commit of data, that is, the modified data has
 been successfully written to the disk media, for example,
 the disk platter.

 2. An immediate reply disk drive with battery-backed
 on-drive intermediate storage or uninterruptible power
 system (UPS).

 3. Server commit of data with battery-backed intermediate
 storage and recovery software.

Callaghan, el al Informational [Page 101]

RFC 1813 NFS Version 3 Protocol June 1995

 4. Cache commit with uninterruptible power system (UPS) and
 recovery software.

 Conversely, the following are not examples of stable
 storage:

 1. An immediate reply disk drive without battery-backed
 on-drive intermediate storage or uninterruptible power
 system (UPS).

 2. Cache commit without both uninterruptible power system
 (UPS) and recovery software.

 The only exception to this (introduced in this protocol
 revision) is as described under the WRITE procedure on the
 handling of the stable bit, and the use of the COMMIT
 procedure. It is the use of the synchronous COMMIT procedure
 that provides the necessary semantic support in the NFS
 version 3 protocol.

4.9 Lookups and name resolution

 A common objection to the NFS version 3 protocol is the
 philosophy of component-by-component LOOKUP by the client in
 resolving a name. The objection is that this is inefficient,
 as latencies for component-by-component LOOKUP would be
 unbearable.

 Implementation practice solves this issue. A name cache,
 providing component to file-handle mapping, is kept on the
 client to short circuit actual LOOKUP invocations over the
 wire. The cache is subject to cache timeout parameters that
 bound attributes.

4.10 Adaptive retransmission

 Most client implementations use either an exponential
 back-off strategy to some maximum retransmission value, or a
 more adaptive strategy that attempts congestion avoidance.
 Congestion avoidance schemes in NFS request retransmission
 are modelled on the work presented in [Jacobson]. [Nowicki]
 and [Macklem] describe congestion avoidance schemes to be
 applied to the NFS protocol over UDP.

4.11 Caching policies

 The NFS version 3 protocol does not define a policy for
 caching on the client or server. In particular, there is no

Callaghan, el al Informational [Page 102]

RFC 1813 NFS Version 3 Protocol June 1995

 support for strict cache consistency between a client and
 server, nor between different clients. See [Kazar] for a
 discussion of the issues of cache synchronization and
 mechanisms in several distributed file systems.

4.12 Stable versus unstable writes

 The setting of the stable field in the WRITE arguments, that
 is whether or not to do asynchronous WRITE requests, is
 straightforward on a UNIX client. If the NFS version 3
 protocol client receives a write request that is not marked
 as being asynchronous, it should generate the RPC with stable
 set to TRUE. If the request is marked as being asynchronous,
 the RPC should be generated with stable set to FALSE. If the
 response comes back with the committed field set to TRUE, the
 client should just mark the write request as done and no
 further action is required. If committed is set to FALSE,
 indicating that the buffer was not synchronized with the
 server’s disk, the client will need to mark the buffer in
 some way which indicates that a copy of the buffer lives on
 the server and that a new copy does not need to be sent to
 the server, but that a commit is required.

 Note that this algorithm introduces a new state for buffers,
 thus there are now three states for buffers. The three states
 are dirty, done but needs to be committed, and done. This
 extra state on the client will likely require modifications
 to the system outside of the NFS version 3 protocol client.

 One proposal that was rejected was the addition of a boolean
 commit argument to the WRITE operation. It would be used to
 indicate whether the server should do a full file commit
 after doing the write. This seems as if it could be useful if
 the client knew that it was doing the last write on the file.
 It is difficult to see how this could be used, given existing
 client architectures though.

 The asynchronous write opens up the window of problems
 associated with write sharing. For example: client A writes
 some data asynchronously. Client A is still holding the
 buffers cached, waiting to commit them later. Client B reads
 the modified data and writes it back to the server. The
 server then crashes. When it comes back up, client A issues a
 COMMIT operation which returns with a different cookie as
 well as changed attributes. In this case, the correct action
 may or may not be to retransmit the cached buffers.
 Unfortunately, client A can’t tell for sure, so it will need
 to retransmit the buffers, thus overwriting the changes from

Callaghan, el al Informational [Page 103]

RFC 1813 NFS Version 3 Protocol June 1995

 client B. Fortunately, write sharing is rare and the
 solution matches the current write sharing situation. Without
 using locking for synchronization, the behaviour will be
 indeterminate.

 In a high availability (redundant system) server
 implementation, two cases exist which relate to the verf
 changing. If the high availability server implementation
 does not use a shared-memory scheme, then the verf should
 change on failover, since the unsynchronized data is not
 available to the second processor and there is no guarantee
 that the system which had the data cached was able to flush
 it to stable storage before going down. The client will need
 to retransmit the data to be safe. In a shared-memory high
 availability server implementation, the verf would not need
 to change because the server would still have the cached data
 available to it to be flushed. The exact policy regarding the
 verf in a shared memory high availability implementation,
 however, is up to the server implementor.

4.13 32 bit clients/servers and 64 bit clients/servers

 The 64 bit nature of the NFS version 3 protocol introduces
 several compatibility problems. The most notable two are
 mismatched clients and servers, that is, a 32 bit client and
 a 64 bit server or a 64 bit client and a 32 bit server.

 The problems of a 64 bit client and a 32 bit server are easy
 to handle. The client will never encounter a file that it can
 not handle. If it sends a request to the server that the
 server can not handle, the server should reject the request
 with an appropriate error.

 The problems of a 32 bit client and a 64 bit server are much
 harder to handle. In this situation, the server does not have
 a problem because it can handle anything that the client can
 generate. However, the client may encounter a file that it
 can not handle. The client will not be able to handle a file
 whose size can not be expressed in 32 bits. Thus, the client
 will not be able to properly decode the size of the file into
 its local attributes structure. Also, a file can grow beyond
 the limit of the client while the client is accessing the
 file.

 The solutions to these problems are left up to the individual
 implementor. However, there are two common approaches used to
 resolve this situation. The implementor can choose between
 them or even can invent a new solution altogether.

Callaghan, el al Informational [Page 104]

RFC 1813 NFS Version 3 Protocol June 1995

 The most common solution is for the client to deny access to
 any file whose size can not be expressed in 32 bits. This is
 probably the safest, but does introduce some strange
 semantics when the file grows beyond the limit of the client
 while it is being access by that client. The file becomes
 inaccessible even while it is being accessed.

 The second solution is for the client to map any size greater
 than it can handle to the maximum size that it can handle.
 Effectively, it is lying to the application program. This
 allows the application access as much of the file as possible
 given the 32 bit offset restriction. This eliminates the
 strange semantic of the file effectively disappearing after
 it has been accessed, but does introduce other problems. The
 client will not be able to access the entire file.

 Currently, the first solution is the recommended solution.
 However, client implementors are encouraged to do the best
 that they can to reduce the effects of this situation.

Callaghan, el al Informational [Page 105]

RFC 1813 NFS Version 3 Protocol June 1995

5.0 Appendix I: Mount protocol

 The changes from the NFS version 2 protocol to the NFS version 3
 protocol have required some changes to be made in the MOUNT
 protocol. To meet the needs of the NFS version 3 protocol, a
 new version of the MOUNT protocol has been defined. This new
 protocol satisfies the requirements of the NFS version 3
 protocol and addresses several other current market
 requirements.

5.1 RPC Information

5.1.1 Authentication

 The MOUNT service uses AUTH_NONE in the NULL procedure.
 AUTH_UNIX, AUTH_SHORT, AUTH_DES, or AUTH_KERB are used for all
 other procedures. Other authentication types may be supported
 in the future.

5.1.2 Constants

 These are the RPC constants needed to call the MOUNT service.
 They are given in decimal.

 PROGRAM 100005
 VERSION 3

5.1.3 Transport address

 The MOUNT service is normally supported over the TCP and UDP
 protocols. The rpcbind daemon should be queried for the correct
 transport address.

5.1.4 Sizes

 const MNTPATHLEN = 1024; /* Maximum bytes in a path name */
 const MNTNAMLEN = 255; /* Maximum bytes in a name */
 const FHSIZE3 = 64; /* Maximum bytes in a V3 file handle */

5.1.5 Basic Data Types

 typedef opaque fhandle3<FHSIZE3>;
 typedef string dirpath<MNTPATHLEN>;
 typedef string name<MNTNAMLEN>;

Callaghan, el al Informational [Page 106]

RFC 1813 NFS Version 3 Protocol June 1995

 enum mountstat3 {
 MNT3_OK = 0, /* no error */
 MNT3ERR_PERM = 1, /* Not owner */
 MNT3ERR_NOENT = 2, /* No such file or directory */
 MNT3ERR_IO = 5, /* I/O error */
 MNT3ERR_ACCES = 13, /* Permission denied */
 MNT3ERR_NOTDIR = 20, /* Not a directory */
 MNT3ERR_INVAL = 22, /* Invalid argument */
 MNT3ERR_NAMETOOLONG = 63, /* Filename too long */
 MNT3ERR_NOTSUPP = 10004, /* Operation not supported */
 MNT3ERR_SERVERFAULT = 10006 /* A failure on the server */
 };

5.2 Server Procedures

 The following sections define the RPC procedures supplied by a
 MOUNT version 3 protocol server. The RPC procedure number is
 given at the top of the page with the name and version. The
 SYNOPSIS provides the name of the procedure, the list of the
 names of the arguments, the list of the names of the results,
 followed by the XDR argument declarations and results
 declarations. The information in the SYNOPSIS is specified in
 RPC Data Description Language as defined in [RFC1014]. The
 DESCRIPTION section tells what the procedure is expected to do
 and how its arguments and results are used. The ERRORS section
 lists the errors returned for specific types of failures. The
 IMPLEMENTATION field describes how the procedure is expected to
 work and how it should be used by clients.

 program MOUNT_PROGRAM {
 version MOUNT_V3 {
 void MOUNTPROC3_NULL(void) = 0;
 mountres3 MOUNTPROC3_MNT(dirpath) = 1;
 mountlist MOUNTPROC3_DUMP(void) = 2;
 void MOUNTPROC3_UMNT(dirpath) = 3;
 void MOUNTPROC3_UMNTALL(void) = 4;
 exports MOUNTPROC3_EXPORT(void) = 5;
 } = 3;
 } = 100005;

Callaghan, el al Informational [Page 107]

RFC 1813 NFS Version 3 Protocol June 1995

5.2.0 Procedure 0: Null - Do nothing

 SYNOPSIS

 void MOUNTPROC3_NULL(void) = 0;

 DESCRIPTION

 Procedure NULL does not do any work. It is made available
 to allow server response testing and timing.

 IMPLEMENTATION

 It is important that this procedure do no work at all so
 that it can be used to measure the overhead of processing
 a service request. By convention, the NULL procedure
 should never require any authentication. A server may
 choose to ignore this convention, in a more secure
 implementation, where responding to the NULL procedure
 call acknowledges the existence of a resource to an
 unauthenticated client.

 ERRORS

 Since the NULL procedure takes no MOUNT protocol arguments
 and returns no MOUNT protocol response, it can not return
 a MOUNT protocol error. However, it is possible that some
 server implementations may return RPC errors based on
 security and authentication requirements.

Callaghan, el al Informational [Page 108]

RFC 1813 NFS Version 3 Protocol June 1995

5.2.1 Procedure 1: MNT - Add mount entry

 SYNOPSIS

 mountres3 MOUNTPROC3_MNT(dirpath) = 1;

 struct mountres3_ok {
 fhandle3 fhandle;
 int auth_flavors<>;
 };

 union mountres3 switch (mountstat3 fhs_status) {
 case MNT_OK:
 mountres3_ok mountinfo;
 default:
 void;
 };

 DESCRIPTION

 Procedure MNT maps a pathname on the server to a file
 handle. The pathname is an ASCII string that describes a
 directory on the server. If the call is successful
 (MNT3_OK), the server returns an NFS version 3 protocol
 file handle and a vector of RPC authentication flavors
 that are supported with the client’s use of the file
 handle (or any file handles derived from it). The
 authentication flavors are defined in Section 7.2 and
 section 9 of [RFC1057].

 IMPLEMENTATION

 If mountres3.fhs_status is MNT3_OK, then
 mountres3.mountinfo contains the file handle for the
 directory and a list of acceptable authentication
 flavors. This file handle may only be used in the NFS
 version 3 protocol. This procedure also results in the
 server adding a new entry to its mount list recording that
 this client has mounted the directory. AUTH_UNIX
 authentication or better is required.

 ERRORS

 MNT3ERR_NOENT
 MNT3ERR_IO
 MNT3ERR_ACCES
 MNT3ERR_NOTDIR
 MNT3ERR_NAMETOOLONG

Callaghan, el al Informational [Page 109]

RFC 1813 NFS Version 3 Protocol June 1995

5.2.2 Procedure 2: DUMP - Return mount entries

 SYNOPSIS

 mountlist MOUNTPROC3_DUMP(void) = 2;

 typedef struct mountbody *mountlist;

 struct mountbody {
 name ml_hostname;
 dirpath ml_directory;
 mountlist ml_next;
 };

 DESCRIPTION

 Procedure DUMP returns the list of remotely mounted file
 systems. The mountlist contains one entry for each client
 host name and directory pair.

 IMPLEMENTATION

 This list is derived from a list maintained on the server
 of clients that have requested file handles with the MNT
 procedure. Entries are removed from this list only when a
 client calls the UMNT or UMNTALL procedure. Entries may
 become stale if a client crashes and does not issue either
 UMNT calls for all of the file systems that it had
 previously mounted or a UMNTALL to remove all entries that
 existed for it on the server.

 ERRORS

 There are no MOUNT protocol errors which can be returned
 from this procedure. However, RPC errors may be returned
 for authentication or other RPC failures.

Callaghan, el al Informational [Page 110]

RFC 1813 NFS Version 3 Protocol June 1995

5.2.3 Procedure 3: UMNT - Remove mount entry

 SYNOPSIS

 void MOUNTPROC3_UMNT(dirpath) = 3;

 DESCRIPTION

 Procedure UMNT removes the mount list entry for the
 directory that was previously the subject of a MNT call
 from this client. AUTH_UNIX authentication or better is
 required.

 IMPLEMENTATION

 Typically, server implementations have maintained a list
 of clients which have file systems mounted. In the past,
 this list has been used to inform clients that the server
 was going to be shutdown.

 ERRORS

 There are no MOUNT protocol errors which can be returned
 from this procedure. However, RPC errors may be returned
 for authentication or other RPC failures.

Callaghan, el al Informational [Page 111]

RFC 1813 NFS Version 3 Protocol June 1995

5.2.4 Procedure 4: UMNTALL - Remove all mount entries

 SYNOPSIS

 void MOUNTPROC3_UMNTALL(void) = 4;

 DESCRIPTION

 Procedure UMNTALL removes all of the mount entries for
 this client previously recorded by calls to MNT. AUTH_UNIX
 authentication or better is required.

 IMPLEMENTATION

 This procedure should be used by clients when they are
 recovering after a system shutdown. If the client could
 not successfully unmount all of its file systems before
 being shutdown or the client crashed because of a software
 or hardware problem, there may be servers which still have
 mount entries for this client. This is an easy way for the
 client to inform all servers at once that it does not have
 any mounted file systems. However, since this procedure
 is generally implemented using broadcast RPC, it is only
 of limited usefullness.

 ERRORS

 There are no MOUNT protocol errors which can be returned
 from this procedure. However, RPC errors may be returned
 for authentication or other RPC failures.

Callaghan, el al Informational [Page 112]

RFC 1813 NFS Version 3 Protocol June 1995

5.2.5 Procedure 5: EXPORT - Return export list

 SYNOPSIS

 exports MOUNTPROC3_EXPORT(void) = 5;

 typedef struct groupnode *groups;

 struct groupnode {
 name gr_name;
 groups gr_next;
 };

 typedef struct exportnode *exports;

 struct exportnode {
 dirpath ex_dir;
 groups ex_groups;
 exports ex_next;
 };

 DESCRIPTION

 Procedure EXPORT returns a list of all the exported file
 systems and which clients are allowed to mount each one.
 The names in the group list are implementation-specific
 and cannot be directly interpreted by clients. These names
 can represent hosts or groups of hosts.

 IMPLEMENTATION

 This procedure generally returns the contents of a list of
 shared or exported file systems. These are the file
 systems which are made available to NFS version 3 protocol
 clients.

 ERRORS

 There are no MOUNT protocol errors which can be returned
 from this procedure. However, RPC errors may be returned
 for authentication or other RPC failures.

Callaghan, el al Informational [Page 113]

RFC 1813 NFS Version 3 Protocol June 1995

6.0 Appendix II: Lock manager protocol

 Because the NFS version 2 protocol as well as the NFS version 3
 protocol is stateless, an additional Network Lock Manager (NLM)
 protocol is required to support locking of NFS-mounted files.
 The NLM version 3 protocol, which is used with the NFS version 2
 protocol, is documented in [X/OpenNFS].

 Some of the changes in the NFS version 3 protocol require a
 new version of the NLM protocol. This new protocol is the NLM
 version 4 protocol. The following table summarizes the
 correspondence between versions of the NFS protocol and NLM
 protocol.

 NFS and NLM protocol compatibility

 +---------+---------+
 | NFS | NLM |
 | Version | Version |
 +===================+
 | 2 | 1,3 |
 +---------+---------+
 | 3 | 4 |
 +---------+---------+

 This appendix only discusses the differences between the NLM
 version 3 protocol and the NLM version 4 protocol. As in the
 NFS version 3 protocol, almost all the names in the NLM version
 4 protocol have been changed to include a version number. This
 appendix does not discuss changes that consist solely of a name
 change.

6.1 RPC Information

6.1.1 Authentication

 The NLM service uses AUTH_NONE in the NULL procedure.
 AUTH_UNIX, AUTH_SHORT, AUTH_DES, and AUTH_KERB are used for
 all other procedures. Other authentication types may be
 supported in the future.

6.1.2 Constants

 These are the RPC constants needed to call the NLM service.
 They are given in decimal.

 PROGRAM 100021
 VERSION 4

Callaghan, el al Informational [Page 114]

RFC 1813 NFS Version 3 Protocol June 1995

6.1.3 Transport Address

 The NLM service is normally supported over the TCP and UDP
 protocols. The rpcbind daemon should be queried for the
 correct transport address.

6.1.4 Basic Data Types

 uint64
 typedef unsigned hyper uint64;

 int64
 typedef hyper int64;

 uint32
 typedef unsigned long uint32;

 int32
 typedef long int32;

 These types are new for the NLM version 4 protocol. They are
 the same as in the NFS version 3 protocol.

 nlm4_stats

 enum nlm4_stats {
 NLM4_GRANTED = 0,
 NLM4_DENIED = 1,
 NLM4_DENIED_NOLOCKS = 2,
 NLM4_BLOCKED = 3,
 NLM4_DENIED_GRACE_PERIOD = 4,
 NLM4_DEADLCK = 5,
 NLM4_ROFS = 6,
 NLM4_STALE_FH = 7,
 NLM4_FBIG = 8,
 NLM4_FAILED = 9
 };

 Nlm4_stats indicates the success or failure of a call. This
 version contains several new error codes, so that clients can
 provide more precise failure information to applications.

 NLM4_GRANTED
 The call completed successfully.

 NLM4_DENIED
 The call failed. For attempts to set a lock, this status
 implies that if the client retries the call later, it may

Callaghan, el al Informational [Page 115]

RFC 1813 NFS Version 3 Protocol June 1995

 succeed.

 NLM4_DENIED_NOLOCKS
 The call failed because the server could not allocate the
 necessary resources.

 NLM4_BLOCKED
 Indicates that a blocking request cannot be granted
 immediately. The server will issue an NLMPROC4_GRANTED
 callback to the client when the lock is granted.

 NLM4_DENIED_GRACE_PERIOD
 The call failed because the server is reestablishing old
 locks after a reboot and is not yet ready to resume normal
 service.

 NLM4_DEADLCK
 The request could not be granted and blocking would cause
 a deadlock.

 NLM4_ROFS
 The call failed because the remote file system is
 read-only. For example, some server implementations might
 not support exclusive locks on read-only file systems.

 NLM4_STALE_FH
 The call failed because it uses an invalid file handle.
 This can happen if the file has been removed or if access
 to the file has been revoked on the server.

 NLM4_FBIG
 The call failed because it specified a length or offset
 that exceeds the range supported by the server.

 NLM4_FAILED
 The call failed for some reason not already listed. The
 client should take this status as a strong hint not to
 retry the request.

 nlm4_holder

 struct nlm4_holder {
 bool exclusive;
 int32 svid;
 netobj oh;
 uint64 l_offset;
 uint64 l_len;
 };

Callaghan, el al Informational [Page 116]

RFC 1813 NFS Version 3 Protocol June 1995

 This structure indicates the holder of a lock. The exclusive
 field tells whether the holder has an exclusive lock or a
 shared lock. The svid field identifies the process that is
 holding the lock. The oh field is an opaque object that
 identifies the host or process that is holding the lock. The
 l_len and l_offset fields identify the region that is locked.
 The only difference between the NLM version 3 protocol and
 the NLM version 4 protocol is that in the NLM version 3
 protocol, the l_len and l_offset fields are 32 bits wide,
 while they are 64 bits wide in the NLM version 4 protocol.

 nlm4_lock

 struct nlm4_lock {
 string caller_name<LM_MAXSTRLEN>;
 netobj fh;
 netobj oh;
 int32 svid;
 uint64 l_offset;
 uint64 l_len;
 };

 This structure describes a lock request. The caller_name
 field identifies the host that is making the request. The fh
 field identifies the file to lock. The oh field is an opaque
 object that identifies the host or process that is making the
 request, and the svid field identifies the process that is
 making the request. The l_offset and l_len fields identify
 the region of the file that the lock controls. A l_len of 0
 means "to end of file".

 There are two differences between the NLM version 3 protocol
 and the NLM version 4 protocol versions of this structure.
 First, in the NLM version 3 protocol, the length and offset
 are 32 bits wide, while they are 64 bits wide in the NLM
 version 4 protocol. Second, in the NLM version 3 protocol,
 the file handle is a fixed-length NFS version 2 protocol file
 handle, which is encoded as a byte count followed by a byte
 array. In the NFS version 3 protocol, the file handle is
 already variable-length, so it is copied directly into the fh
 field. That is, the first four bytes of the fh field are the
 same as the byte count in an NFS version 3 protocol nfs_fh3.
 The rest of the fh field contains the byte array from the NFS
 version 3 protocol nfs_fh3.

Callaghan, el al Informational [Page 117]

RFC 1813 NFS Version 3 Protocol June 1995

 nlm4_share

 struct nlm4_share {
 string caller_name<LM_MAXSTRLEN>;
 netobj fh;
 netobj oh;
 fsh4_mode mode;
 fsh4_access access;
 };

 This structure is used to support DOS file sharing. The
 caller_name field identifies the host making the request.
 The fh field identifies the file to be operated on. The oh
 field is an opaque object that identifies the host or process
 that is making the request. The mode and access fields
 specify the file-sharing and access modes. The encoding of fh
 is a byte count, followed by the file handle byte array. See
 the description of nlm4_lock for more details.

6.2 NLM Procedures

 The procedures in the NLM version 4 protocol are semantically
 the same as those in the NLM version 3 protocol. The only
 semantic difference is the addition of a NULL procedure that
 can be used to test for server responsiveness. The procedure
 names with _MSG and _RES suffixes denote asynchronous
 messages; for these the void response implies no reply. A
 syntactic change is that the procedures were renamed to avoid
 name conflicts with the values of nlm4_stats. Thus the
 procedure definition is as follows.

 version NLM4_VERS {
 void
 NLMPROC4_NULL(void) = 0;

 nlm4_testres
 NLMPROC4_TEST(nlm4_testargs) = 1;

 nlm4_res
 NLMPROC4_LOCK(nlm4_lockargs) = 2;

 nlm4_res
 NLMPROC4_CANCEL(nlm4_cancargs) = 3;

 nlm4_res
 NLMPROC4_UNLOCK(nlm4_unlockargs) = 4;

Callaghan, el al Informational [Page 118]

RFC 1813 NFS Version 3 Protocol June 1995

 nlm4_res
 NLMPROC4_GRANTED(nlm4_testargs) = 5;

 void
 NLMPROC4_TEST_MSG(nlm4_testargs) = 6;

 void
 NLMPROC4_LOCK_MSG(nlm4_lockargs) = 7;

 void
 NLMPROC4_CANCEL_MSG(nlm4_cancargs) = 8;

 void
 NLMPROC4_UNLOCK_MSG(nlm4_unlockargs) = 9;

 void
 NLMPROC4_GRANTED_MSG(nlm4_testargs) = 10;

 void
 NLMPROC4_TEST_RES(nlm4_testres) = 11;

 void
 NLMPROC4_LOCK_RES(nlm4_res) = 12;

 void
 NLMPROC4_CANCEL_RES(nlm4_res) = 13;

 void
 NLMPROC4_UNLOCK_RES(nlm4_res) = 14;

 void
 NLMPROC4_GRANTED_RES(nlm4_res) = 15;

 nlm4_shareres
 NLMPROC4_SHARE(nlm4_shareargs) = 20;

 nlm4_shareres
 NLMPROC4_UNSHARE(nlm4_shareargs) = 21;

 nlm4_res
 NLMPROC4_NM_LOCK(nlm4_lockargs) = 22;

 void
 NLMPROC4_FREE_ALL(nlm4_notify) = 23;

 } = 4;

Callaghan, el al Informational [Page 119]

RFC 1813 NFS Version 3 Protocol June 1995

6.2.0 Procedure 0: NULL - Do nothing

 SYNOPSIS

 void NLMPROC4_NULL(void) = 0;

 DESCRIPTION

 The NULL procedure does no work. It is made available in
 all RPC services to allow server response testing and
 timing.

 IMPLEMENTATION

 It is important that this procedure do no work at all so
 that it can be used to measure the overhead of processing
 a service request. By convention, the NULL procedure
 should never require any authentication.

 ERRORS

 It is possible that some server implementations may return
 RPC errors based on security and authentication
 requirements.

6.3 Implementation issues

6.3.1 64-bit offsets and lengths

 Some NFS version 3 protocol servers can only support
 requests where the file offset or length fits in 32 or
 fewer bits. For these servers, the lock manager will have
 the same restriction. If such a lock manager receives a
 request that it cannot handle (because the offset or
 length uses more than 32 bits), it should return the
 error, NLM4_FBIG.

6.3.2 File handles

 The change in the file handle format from the NFS version
 2 protocol to the NFS version 3 protocol complicates the
 lock manager. First, the lock manager needs some way to
 tell when an NFS version 2 protocol file handle refers to
 the same file as an NFS version 3 protocol file handle.
 (This is assuming that the lock manager supports both NLM
 version 3 protocol clients and NLM version 4 protocol
 clients.) Second, if the lock manager runs the file handle
 through a hashing function, the hashing function may need

Callaghan, el al Informational [Page 120]

RFC 1813 NFS Version 3 Protocol June 1995

 to be retuned to work with NFS version 3 protocol file
 handles as well as NFS version 2 protocol file handles.

Callaghan, el al Informational [Page 121]

RFC 1813 NFS Version 3 Protocol June 1995

7.0 Appendix III: Bibliography

[Corbin] Corbin, John, "The Art of Distributed
 Programming-Programming Techniques for Remote
 Procedure Calls." Springer-Verlag, New York, New
 York. 1991. Basic description of RPC and XDR
 and how to program distributed applications
 using them.

[Glover] Glover, Fred, "TNFS Protocol Specification,"
 Trusted System Interest Group, Work in
 Progress.

[Israel] Israel, Robert K., Sandra Jett, James Pownell,
 George M. Ericson, "Eliminating Data Copies in
 UNIX-based NFS Servers," Uniforum Conference
 Proceedings, San Francisco, CA,
 February 27 - March 2, 1989. Describes two
 methods for reducing data copies in NFS server
 code.

[Jacobson] Jacobson, V., "Congestion Control and
 Avoidance," Proc. ACM SIGCOMM ‘88, Stanford, CA,
 August 1988. The paper describing improvements
 to TCP to allow use over Wide Area Networks and
 through gateways connecting networks of varying
 capacity. This work was a starting point for the
 NFS Dynamic Retransmission work.

[Juszczak] Juszczak, Chet, "Improving the Performance and
 Correctness of an NFS Server," USENIX Conference
 Proceedings, USENIX Association, Berkeley, CA,
 June 1990, pages 53-63. Describes reply cache
 implementation that avoids work in the server by
 handling duplicate requests. More important,
 though listed as a side-effect, the reply cache
 aids in the avoidance of destructive
 non-idempotent operation re-application --
 improving correctness.

[Kazar] Kazar, Michael Leon, "Synchronization and Caching
 Issues in the Andrew File System," USENIX Conference
 Proceedings, USENIX Association, Berkeley, CA,
 Dallas Winter 1988, pages 27-36. A description
 of the cache consistency scheme in AFS.
 Contrasted with other distributed file systems.

Callaghan, el al Informational [Page 122]

RFC 1813 NFS Version 3 Protocol June 1995

[Macklem] Macklem, Rick, "Lessons Learned Tuning the
 4.3BSD Reno Implementation of the NFS Protocol,"
 Winter USENIX Conference Proceedings, USENIX
 Association, Berkeley, CA, January 1991.
 Describes performance work in tuning the 4.3BSD
 Reno NFS implementation. Describes performance
 improvement (reduced CPU loading) through
 elimination of data copies.

[Mogul] Mogul, Jeffrey C., "A Recovery Protocol for Spritely
 NFS," USENIX File System Workshop Proceedings,
 Ann Arbor, MI, USENIX Association, Berkeley, CA,
 May 1992. Second paper on Spritely NFS proposes
 a lease-based scheme for recovering state of
 consistency protocol.

[Nowicki] Nowicki, Bill, "Transport Issues in the Network
 File System," ACM SIGCOMM newsletter Computer
 Communication Review, April 1989. A brief
 description of the basis for the dynamic
 retransmission work.

[Pawlowski] Pawlowski, Brian, Ron Hixon, Mark Stein, Joseph
 Tumminaro, "Network Computing in the UNIX and
 IBM Mainframe Environment," Uniforum ‘89 Conf.
 Proc., (1989) Description of an NFS server
 implementation for IBM’s MVS operating system.

[RFC1014] Sun Microsystems, Inc., "XDR: External Data
 Representation Standard", RFC 1014,
 Sun Microsystems, Inc., June 1987.
 Specification for canonical format for data
 exchange, used with RPC.

[RFC1057] Sun Microsystems, Inc., "RPC: Remote Procedure
 Call Protocol Specification", RFC 1057,
 Sun Microsystems, Inc., June 1988.
 Remote procedure protocol specification.

[RFC1094] Sun Microsystems, Inc., "Network Filesystem
 Specification", RFC 1094, Sun Microsystems, Inc.,
 March 1989. NFS version 2 protocol
 specification.

Callaghan, el al Informational [Page 123]

RFC 1813 NFS Version 3 Protocol June 1995

[Sandberg] Sandberg, R., D. Goldberg, S. Kleiman, D. Walsh,
 B. Lyon, "Design and Implementation of the Sun
 Network Filesystem," USENIX Conference
 Proceedings, USENIX Association, Berkeley, CA,
 Summer 1985. The basic paper describing the
 SunOS implementation of the NFS version 2
 protocol, and discusses the goals, protocol
 specification and trade-offs.

[Srinivasan] Srinivasan, V., Jeffrey C. Mogul, "Spritely
 NFS: Implementation and Performance of Cache
 Consistency Protocols", WRL Research Report
 89/5, Digital Equipment Corporation Western
 Research Laboratory, 100 Hamilton Ave., Palo
 Alto, CA, 94301, May 1989. This paper analyzes
 the effect of applying a Sprite-like consistency
 protocol applied to standard NFS. The issues of
 recovery in a stateful environment are covered
 in [Mogul].

[X/OpenNFS] X/Open Company, Ltd., X/Open CAE Specification:
 Protocols for X/Open Internetworking: XNFS,
 X/Open Company, Ltd., Apex Plaza, Forbury Road,
 Reading Berkshire, RG1 1AX, United Kingdom,
 1991. This is an indispensable reference for
 NFS version 2 protocol and accompanying
 protocols, including the Lock Manager and the
 Portmapper.

[X/OpenPCNFS] X/Open Company, Ltd., X/Open CAE Specification:
 Protocols for X/Open Internetworking: (PC)NFS,
 Developer’s Specification, X/Open Company, Ltd.,
 Apex Plaza, Forbury Road, Reading Berkshire, RG1
 1AX, United Kingdom, 1991. This is an
 indispensable reference for NFS version 2
 protocol and accompanying protocols, including
 the Lock Manager and the Portmapper.

Callaghan, el al Informational [Page 124]

RFC 1813 NFS Version 3 Protocol June 1995

8. Security Considerations

 Since sensitive file data may be transmitted or received
 from a server by the NFS protocol, authentication, privacy,
 and data integrity issues should be addressed by implementations
 of this protocol.

 As with the previous protocol revision (version 2), NFS
 version 3 defers to the authentication provisions of the
 supporting RPC protocol [RFC1057], and assumes that data
 privacy and integrity are provided by underlying transport
 layers as available in each implementation of the protocol.
 See section 4.4 for a discussion relating to file access
 permissions.

9. Acknowledgements

 This description of the protocol is derived from an original
 document written by Brian Pawlowski and revised by Peter
 Staubach. This protocol is the result of a co-operative
 effort that comprises the contributions of Geoff Arnold,
 Brent Callaghan, John Corbin, Fred Glover, Chet Juszczak,
 Mike Eisler, John Gillono, Dave Hitz, Mike Kupfer, Rick
 Macklem, Ron Minnich, Brian Pawlowski, David Robinson, Rusty
 Sandberg, Craig Schamp, Spencer Shepler, Carl Smith, Mark
 Stein, Peter Staubach, Tom Talpey, Rob Thurlow, and Mark
 Wittle.

Callaghan, el al Informational [Page 125]

RFC 1813 NFS Version 3 Protocol June 1995

10. Authors’ Addresses

 Address comments related to this protocol to:

 nfs3@eng.sun.com

 Brent Callaghan
 Sun Microsystems, Inc.
 2550 Garcia Avenue
 Mailstop UMTV05-44
 Mountain View, CA 94043-1100

 Phone: 1-415-336-1051
 Fax: 1-415-336-6015
 EMail: brent.callaghan@eng.sun.com

 Brian Pawlowski
 Network Appliance Corp.
 319 North Bernardo Ave.
 Mountain View, CA 94043

 Phone: 1-415-428-5136
 Fax: 1-415-428-5151
 EMail: beepy@netapp.com

 Peter Staubach
 Sun Microsystems, Inc.
 2550 Garcia Avenue
 Mailstop UMTV05-44
 Mountain View, CA 94043-1100

 Phone: 1-415-336-5615
 Fax: 1-415-336-6015
 EMail: peter.staubach@eng.sun.com

Callaghan, el al Informational [Page 126]

