
Network Working Group R. Watson
Request for Comments: 192 SRI-ARC
NIC: 7137 12 July 1971

 Some Factors which a Network Graphics Protocol must Consider

 After reading some of the RFC’s on a network graphics protocol it
 seems that many are not providing general enough mechanisms to handle
 attention handling, picture structure, and other higher level
 processes involved in interactive graphics.

 Therefore for what it is worth I am sending out these rough
 introductory notes which contain ideas that I think any network
 graphics protocol must come to grips with.

 The network graphics protocol should allow one to operate the most
 sophisticated system with more general data structures and concepts
 than those described in these notes and allow very simple systems to
 function also.

Introduction

 It is our contention that, if computer graphics is to be widely
 useful, the graphics terminals must be just another type of terminal
 on a timesharing system with minimal special privileges. In these
 brief notes we outline the basic features which we feel must be
 available in a graphics support package to allow easy interactive
 graphics application programming.

 If one examines the types of tasks in industry, government and
 universities which can avail themselves of timesharing support from
 graphics consoles, one can estimate that the large majority can
 effectively utilize quite simple terminals such as those employing
 storage tubes. I would estimate 75% of the required terminals to
 fall in this class. Another 15-20% of terminals may require higher
 response and some simple realtime picture movement, thus requiring
 simple refresh displays. The remainder of terminals are needed for
 high payout tasks requiring all the picture processing power one can
 make available. In this talk we are not considering support for this
 latter class of applications.

MAIN ASSUMPTIONS AND REQUIREMENTS FOR SYSTEM DESIGN

 The main assumptions and requirements underlying the interactive
 graphics are the following:

Watson [Page 1]

RFC 192 Some Factors which a Network Graphics 12 July 1971

 1) The user of the graphics terminal should be just another
 timesharing system user.

 2) The graphics software support should interface to existing
 timesharing programs.

 3) The software support should allow technicians, engineers,
 scientist, and business analysts as well as professional
 programmers to easily create applications using a graphic
 terminal.

 4) The software support should easily allow use of new terminals
 and types of terminals as they come on the market.

 5) The software support should be expandable as experience
 indicates new facilities are required.

 6) The software support should be portable from one timesharing
 service to another.

 7) Some form of hardcopy should be available.

MULTILEVEL MODULAR APPROACH TO SYSTEM DESIGN

 If one wants to create as system which is easy to use by
 inexperienced programmers and ultimately non-programmers, one needs
 to provide powerful problem-oriented aids to program writing. One
 has to start with the primitive machine language used to command the
 graphics system hardware and build upward. The philosophy of design
 chosen is the one becoming more common in the computer industry,
 which is to design increasingly more powerful levels of programming
 support, each of which interfaces to its surrounding levels and
 builds on the lower levels. It is important to try to design these
 levels more or less at the same time so that the experience with each
 will feed back on the designs of the others before they are frozen
 and difficult to change.

 One can recognize five basic levels:

 1) The basic system level:

 This level provides facilities for use of the terminal by the
 assembly language programmers.

Watson [Page 2]

RFC 192 Some Factors which a Network Graphics 12 July 1971

 2) The problem programming language level:

 This level of support provides powerful facilities for
 interactive graphics programming from the commonly used higher
 level programming languages.

 3) The picture editor or drawing system:

 This level of support allows pictures to be drawn and linkage
 to these pictures and application programs.

 Data management support for interactive programming:

 This level of support is to provide facilities to aid creation
 and manipulation of data structures relating data associated
 with the pictures and the application.

 5) The application program level:

A REVIEW OF TERMINAL HARDWARE CHARACTERISTICS OF CONCERN TO THE USERS

 There are two basic kinds of general purpose cathode ray tube display
 systems available on the present market. Within each class there are
 alternate forms and techniques of implementation which we do not
 discuss here. One type is called a "refresh display". The other
 type is called a "storage tube display". The refresh display must
 keep repainting the picture on the screen at rates of from 20-60
 times per second. Commands which instruct the system how to draw the
 picture are stored in a memory. The storage tube display on the
 other hand, through its internal method of construction can maintain
 on the face of the display a picture for practical purposes,
 indefinitely once drawn.

REFRESHED DISPLAYS

 There are limits to how much information can be drawn on the face of
 refreshed display before the time required to paint it forces the
 refresh rate below a critical value and the picture appears to
 flicker. This quantity of information is a function of the type of
 phosphor on the tube face, the speed of display system in drawing
 lines and characters, and the ambient light level in the room.
 Refresh display systems range in cost upwards from $10,000 to several
 hundred thousand dollars. Refresh displays, because the picture can
 be changed every few milliseconds by simply altering its command list
 (often called a display file or display buffer), allow the picture
 parts to be moved on the face of the screen either under operator
 control or computer control. Objects on the screen can be
 selectively erased without affecting other objects on the screen.

Watson [Page 3]

RFC 192 Some Factors which a Network Graphics 12 July 1971

 These characteristics make refreshed displays suitable for a wide
 range of applications.

STORAGE TUBE DISPLAYS

 Storage tube based displays can display a large amount of information
 without a flicker, and generally cost under $20,000. Present systems
 suffer from some limitations, however. They cannot be selectively
 erased. If an object is to be moved or deleted from the screen, the
 entire screen must be erased and then the new picture can be redrawn.
 Because this type of display generally operates over a communication
 line, the speed of the line may seriously restrict the amount of
 interaction if much erasing and redrawing is required. The graphics
 software concepts to be described can be used with both a storage
 tube and refreshed display, although some features are only
 appropriate to the refreshed type of display. The important point is
 that new storage tube technologies insure that this class of terminal
 will be with us a long time.

INPUT DEVICES

 It is necessary to allow a console user to communicate with the
 graphics system. This is done through a keyboard and through
 specialized graphic input devices, the Light Pen, the Tablet, the SRI
 "Mouse", and the "Joy Stick". These latter devices enable a console
 user to point to vectors and characters displayed on the CRT and to
 input position information to the graphics system.

 Comparison of the Graphics Input Devices -- Analog Comparitors

 The Joy Stick, Mouse, and Tablet are similar in that they both
 generate a two dimensional position address without the aid of the
 display processor, but cannot be directly used to identify
 displayed objects. The light pen-display processor hardware
 combination and its associated software, on the other hand, can
 easily sense and identify displayed vectors and characters but
 does not generate directly any position data. A "tracking cross"
 program is used to obtain the position data for the light pen. To
 obtain the pointing capability for the Joy Stick, Mouse, and
 Tablet, we can use a pair of analog comparitors which generate
 interrupts when the beam is drawn on the CRT lies within a
 rectangular "viewing window" in much the same way that the light

Watson [Page 4]

RFC 192 Some Factors which a Network Graphics 12 July 1971

 pen generates interrupts when a beam is drawn under its circular
 viewing area. These comparitors sense the x and y axis drive
 voltages of the display analog bus.

 A comparator will generate an output signal when the drive voltage
 is between two limits which may be set using special display
 processor commands. When both comparitors generate a signal
 simultaneously, the output voltages on the analog buss correspond
 to a beam position within the rectangular viewing window. The
 position of viewing window is set based on the position of the
 pen, Mouse, or Joy Stick.

 We can also use software to simulate the effect of hardware
 comparators. Hardware comparators cannot be use with storage tube
 displays and, therefore, a software simulation is required. This
 simulation is discussed later in these notes.

 The light pen can be used only with a refreshed display. The
 other types of devices can be used with present storage tube
 displays and refreshed displays. They are used with storage tube
 displays which have hardware which produces on the screen a dot,
 cross or other cursor, indicating the x, y position of the device.
 The reason one can move this cursor around it that the cursor is
 created using special techniques to avoid its storing on the
 screen.

USER SOFTWARE REQUIREMENTS

 The user requirements on a timesharing system based interactive
 graphics system are the following:

 1) The user should have available a language for creating a
 computer representation of the picture to be displayed. This
 language should allow more complex pictures to be built up from
 simpler structures.

 2) The computer representation of the picture must allow easy
 identification of picture parts when pointed at or "picked" or
 "hit" with graphical input devices such as light pen,
 electronic pen-tablet, Joy Stick, SRI mouse, or other supplying
 x, y information.

 3) The computer representation of the picture must allow linking
 of picture parts with data about these parts appropriate to the
 application using the terminal. There should be an appropriate
 data management system for use with interactive application
 programming.

Watson [Page 5]

RFC 192 Some Factors which a Network Graphics 12 July 1971

 4) There must be some way of communicating events taking place at
 the terminal in real-time, such as picking objects with the
 light pen, with the application program running in the
 timesharing system.

 5) The user should be able to save and restore pictures from one
 console session to the next.

 6) If possible, the user should be able to use the display as a
 stand-alone terminal or in conjunction with a teletype or other
 typewriter terminal.

 7) The user should be able to do some graphic programming by
 drawing directly at the console.

 The choice of an appropriate data structure for picture
 representation simplifies the handling of requirements one to five.
 It is this data structure that we consider now in more detail.

Picture-Related Structures

 If a picture displayed on the console had meaning only in the
 physical position of its lines and characters, the system would be
 little more effective than an easily erased piece of paper. To
 significantly enhance the capabilities of the system, we must be able
 to express relations between displayed entities. A line is much more
 than just a line when it represents a boundary or a part of some more
 complex unit. Such units in turn may be related in a similar way to
 higher level units. Furthermore, we may wish to create picture
 elements that may be used repeatedly so that a change in the one
 master copy will be reflected in every use of that copy.

 To illustrate the usefulness of this picture-subpicture relationship,
 we shall consider the three houses of Figure 1. While the two types
 of houses differ in appearance, it is obvious that they have picture
 elements that could be drawn by a designer of prefabricated houses
 and that the designer wished to incorporate a new standard window
 unit into all houses. The use of conventional pencil and paper
 techniques would require that he redraw or overlay each window on his
 diagram to reflect the changed component. If the window were,
 instead, drawn by the graphics system within a common subroutine,
 only that one master copy would have to be modified in order to
 change the appearance of every reference to that kind of window on
 the diagram.

Watson [Page 6]

RFC 192 Some Factors which a Network Graphics 12 July 1971

Nodes and Branches

 To facilitate the discussion we will introduce the terms "node" and
 "branch". A node is a form of picture subroutine that may cause the
 display of lines and characters and may also call other nodes. The
 subroutine call is called a "branch". Nodes may also be thought of
 as representing PICTURES or SUBPICTURES and the branches to these
 nodes as uses or instances of these subpictures.

Directed Graph Structure

 The nodes and branches form a directed graph. The branches contain
 positioning information indicating the beam location to be used by
 the called node. This location is relative to the position of the
 node in which the branch is made. This use of relative beam
 positions allows the user of the system to create subroutine
 structures that make multiple branches to common nodes. Branches may
 also set other display parameters such as intensity and character
 size. A subroutine calling structure appropriate to the requirements
 of our hypothetical designer is shown schematically in Figure 2.
 Nodes are shown as circles and branches are shown as connecting
 lines. The picture of the house is composed of wall unit and roof
 SUBPICTURES. The wall unit is in turn composed of subpictures.

Node and Branch Display Parameters

 Branches may contain the setting of parameters which will be in
 effect when the called node is executed. The parameters which may be
 set are the beam position to be used (relative to the current beam
 position, i.e., a displacement value), intensity, character size,
 line type, visibility, (the display of vectors and characters may be
 suppressed), "hitablility" (whether or not vectors and text may be
 "viewed" by devices such as the light pen), and blinking.

 Coding within nodes may modify only the parameters controlling
 position, intensity, character size, and line type to be used by
 subsequent display coding or branches. It is not necessary that a
 node or branch specify every parameter. For those parameters other
 than position, the system allows a "don’t care" option; the parameter
 setting in effect when the node or branch is executed will be
 retained and used in this case.

Watson [Page 7]

RFC 192 Some Factors which a Network Graphics 12 July 1971

Identification of Graphic Entities with Graphic Input Devices

 Structural Hits

 A console operator or application program may modify, add, or
 delete branches to any of the nodes as well as add new nodes.
 To allow a console operator to manipulate any branch in such a
 structure, we have implemented a "structural hit
 identification" scheme. To illustrate the following
 discussion, we refer the reader to Figures 1 and 2.

 A viewing device, such as a light pen, can respond only to the
 individual vectors or characters displayed on the screen. At
 the time a vector is drawn under the viewing area of the light
 pen, an interrupt is generated and, if enabled, will be sent to
 the central computer. Even though the same node is used to
 display the eight windows in the diagram of Figure 1, we can
 tell which window and house is being pointed to by examining
 the sequence of branches taken to arrive at the window
 displayed at the time of interrupt. If the console user points
 to the right hand window of the middle house of Figure 1
 (marked with an asterisk *) an examination of the subroutine
 return addresses in the push down stack would show that the
 current "window" node had been arrived at via the dotted line
 path shown on the network of Figure 2.

 There remains the question "Are we pointing at a window, at a
 wall, at the house, or at all three houses?" The location of
 this structural hit depends on how many branches are counted in
 examination of the return addresses before one stops to
 consider to which branch that return jump points. This is
 analogous to counting a fixed number of levels from the ends of
 the graph structure. This number of jumps is set using
 reserved keys on the keyboard, one incrementing and the other
 decrementing the limit. By manipulating these keys and
 pointing to various displayed objects with the light pen, it is
 possible to point to any branch in the network of subroutine
 calls.

 All information concerning the path in the node-branch network
 taken to arrive at any displayable coding is contained in a
 push down stack. Return jumps are stored in the stack by the
 subroutine calls to nodes. These jumps when executed will
 return the processor to the next instruction after the call.

 A greatly simplified version of the display coding used to
 generate the picture and tree of Figures 1 and 2 is shown in
 Figure 3. The labels a through d on the diagram represent the

Watson [Page 8]

RFC 192 Some Factors which a Network Graphics 12 July 1971

 address of the subroutine calls which cause the display of the
 subpicture hit by the viewing device -- in this case the right
 hand window of the second house. The returns from the called
 subroutines are stored in the push down stack as jumps to the
 location following the calls. The routine RETURN would merely
 execute POP instructions which ultimately will cause the
 execution of a jump instruction previously placed in the stack
 by the calling branch, thus returning control to the calling
 routine. The stack is shown in the condition at the time of
 the hit on the right hand window of the middle house. Note
 that by counting 3 jumps upward (downward in the diagram) in
 the memory containing the stack, we will arrive at the jump
 pointing to a structural hit at (b) in Figure 3, the call to
 model 120.

 Console Operator Feedback

 The console operator must be informed of where he is pointing
 in the network of nodes and branches. This is accomplished by
 flashing all displayable coding below the structurally hit
 branch when a vector or character is viewed. This flashing is
 a doubling of the intensity at 2 to 8 cycles per second. In
 addition, a list of the names of all nodes and branches taken
 to arrive at the vector or character viewed is displayed in a
 corner of the screen. The name of the branch selected is
 intensified somewhat brighter than the other names.

 Generating an Attention

 After the operator has confirmed the correctness of his choice,
 he need only terminate the view in order to generate an
 attention on the desired branch. This is done by releasing the
 button on the light pen or lifting the pen from the Tablet. A
 button on the mouse will perform the same function. If the
 structural hit is not correct then the operator could move the
 viewing device to a new area.

 A termination of the view on a blank area of the screen will
 result in the generation of a "null" attention. This attention
 returns only position data; no structural data is generated.
 The significance of this attention is determined by the
 application program.

 The above discussion assumed a refreshed display and use of a
 light pen, but it greatly simplifies interactive graphics
 programming if the above concepts can be implemented no matter
 what type of display or graphical input device is being used.
 This in fact can be accomplished as discussed later.

Watson [Page 9]

RFC 192 Some Factors which a Network Graphics 12 July 1971

THE GRAPHICS LANGUAGE

 For the purpose of discussion we assume that the graphics language
 statements are a set of subroutine calls, although a more
 sophisticated syntax could be imbedded in the host programming
 language. The statements required are:

 1) Subroutine calls for creation and manipulation of the picture-
 subpicture data structure.

 2) Subroutine calls to generate displayed pictures and picture
 parts such as lines and characters.

 3) Subroutine calls to input information about events or
 "attentions" occurring in real time at the console.

 4) Subroutine calls to manipulate picture parameters such as line
 type, (solid, dashed, dotted, etc.), brightness, character
 size, and so forth.

 5) Subroutine calls to perform utility functions such as saving
 and restoring pictures from disk files, initiating the display
 and so forth.

NAMING

 A number of different naming conventions are required to meet system
 and application programmer needs.

 The Display Pointer

 Nodes and branches in the system are named by assigning an
 integer or array location as an argument in the call used to
 create them. The system places in these variables a number
 which points to the physical location of the branch or node
 position in the picture-subpicture data structure. We call
 this name the DISPLAY POINTER. As long as the user does not
 change the contents of these variables he can refer to
 particular nodes or branches in various subroutines by use of
 these integer variables as arguments. In other words, to the
 user, the name of a picture or subpicture can be thought of as
 the variable used at the time of its creation. Such a naming
 scheme is clearly required if pictures or subpictures are to be
 manipulated by the programmer.

Watson [Page 10]

RFC 192 Some Factors which a Network Graphics 12 July 1971

 The Light Button Code

 Additional identification is useful to the application
 programmer in order to simplify his programming task. A user
 has no control over the number assigned by the system to a
 Display Pointer. There are situations in which the user would
 like to associate a particular known number with a branch. One
 common example is in the use of "light buttons". A light
 button is a displayed object that the user wants to be able to
 point at in order to command the controlling application
 program to do something. A light button is commonly a string
 of characters forming an English word or words, but could be
 any picture. When the user picks or hits the light button,
 information identifying the object must be transmitted to the
 timesharing application program. The program must then branch
 to an appropriate statement or subroutine to perform the
 operations required to execute the command. The Display
 Pointer uniquely identifies the object hit, but because its
 value is not under the programmers control, writing the code
 necessary to test it against the various Display Pointers
 considered legitimate to be hit at this point in the program is
 tedious. If, however, the application programmer knew that at
 this point only objects with identification numbers 20-28 were
 legitimate to be hit, then testing to see that one was in this
 range and branching by use of a computed GOTO simplifies the
 programming of flow of control. Often one does not need unique
 identification of an object, but wants to perform a certain
 action if any object in a class of objects is hit.

 The above need for identification is satisfied by allowing the
 application programmer the ability to assign a number, not
 necessarily unique, to a branch. This number is called the
 Light Button Code. This code can be used in any way the
 programmer desires, but is most commonly used, as its name
 implies, as a code identifying light buttons. This number is
 sent to the application program along with the Display pointer
 of the object hit on the screen with a graphical input device.

 The Back Pointer

 We indicated earlier that it is required in interactive graphic
 programming to be able to associate application oriented data
 with picture and subpicture objects on the screen. The data
 may be stored in many kinds of data structures depending on the
 nature of the application, examples being arrays, lists, trees,
 etc. We meet the need by associating with each branch one word
 which could contain a pointer to the appropriate spot in the
 application data structure containing the data associated with

Watson [Page 11]

RFC 192 Some Factors which a Network Graphics 12 July 1971

 the branch. We call this word the Back Pointer. The
 application programmer can in fact store any code he desires in
 this word and use it in any way desired, but its common use as
 a pointer back into a data base in the application program
 dictated its name.

 For example, consider an application which would allow a
 chemical engineer to draw a chemical flow sheet on the screen
 and then input this flow sheet into a process calculation
 system. There will be various symbol-pictures on the screen
 representing basic process units such as heat exchangers,
 mixers, columns, and so forth that can be copied and positioned
 on the screen. These units will have to be connected together
 by streams. The units and the streams will have names and data
 associated with them describing their contents and properties.
 Further, the node-branch structure. while visually indicating
 to the user what units are connected together and how, does not
 necessarily have the connecting information in a form easily
 handled by the application program.

 The continuity is best represented by a data structure using
 simple list processing in which each unit and stream has a
 block of cells associated with it containing data for it and
 pointers containing the connectivity information. When a
 branch is created to position and display a unit, it will
 contain in the Back Pointer a pointer to the block of data
 associated with it. The block of data will probably contain
 the Display Pointer for the associated branch so that one can
 go from the picture to the data block or from the data block to
 the picture. For example, one may point at a unit for the
 purpose of deleting it. Given the Back Pointer of the unit
 hit, one can find its associated block and return that block to
 free space. One can then follow the appropriate chain of
 pointers to the blocks for the streams connected to the unit.
 In these blocks one has the Display Pointers for the branches
 displaying the stream and can then delete it from the node-
 branch structure, thus making it disappear from the screen.

 An additional form of name is to allow the programmer to store
 an alphanumeric string with each branch or node. This form of
 name is not required for most applications, but can be useful
 with the picture editor.

 To review, each node and branch has associated with it a unique
 identifier named by the user and called the Display Pointer;
 its value is assigned by the system. Each branch has two
 additional pieces of information which can be assigned to it by
 the programmer, called the Light Button Code and Back Pointer.

Watson [Page 12]

RFC 192 Some Factors which a Network Graphics 12 July 1971

 Given a Display Pointer for a branch, the programmer can obtain
 the Light Button Code or the Back Pointer for the branch.
 Given a Light Button Code or the Back Pointer, the programmer
 can obtain a Display Pointer for a branch with such a code.
 This display pointer may not be unique if several branches have
 the same Light Button Code or Back Pointer. The above naming
 and identification inventions have proven to be easy to
 understand and yet completely general and easy to use.

COORDINATE SYSTEMS

 We now consider the question of a coordinate system within which to
 describe picture position. The actual display generation hardware in
 a terminal has a fixed coordinate system (commonly 1024 by 1024 units
 on a fixed size screen with the origin 0,0 in the left hand corner or
 center on the screen). Ultimately, the user wants to work on a
 virtual screen much larger than the hardware screen and wants to
 consider the hardware screen as a window that he can move around to
 view this virtual screen. Further, pictures are to be capable of
 being constructed out of subpictures as in the example of Figures 1
 and 2. To be able to accomplish the latter and allow future
 expansion to allow the former, the following coordinate system
 conventions are used.

 Each node has its own coordinate system. When a node A is created,
 the picture-drawing CRT beam is assumed by the programmer to be at
 the origin of the node’s coordinate system. When a node is used
 within a node B by use of a branch, the positioning of node A is
 relative to the beam position in the coordinate system of node B.
 All nodes are positioned relative to each other by x, y positioners
 in the corresponding branches. When a picture is actually to be
 displayed, one node is indicated to the system as the initial or
 Universe Node. This initial node is positioned absolutely on the
 screen and all other nodes appear relative to this one as specified
 in the branches pointing to them. This scheme is required to give
 the flexibility and generality required in the picture-subpicture
 tree.

 Logical Completeness of Operation Set

 Throughout the system design one should try to follow the
 philosophy of incorporating a logically complete and consistent
 set of operations. In particular, for each call that sets a value
 there should be another call to fetch the value. That is, for
 each operation there is an inverse operation whenever it is
 meaningful to have one. We see a need for a basic system with the
 calls as primarily primitives. One can incorporate calls that
 could be created by the programmer from other calls, when it is

Watson [Page 13]

RFC 192 Some Factors which a Network Graphics 12 July 1971

 felt that usage would warrant the expansion. We would expect a
 library of higher level routines in the language.

 It is beyond the scope of these notes to go into all the calls
 required except to indicate a few basic ones. For structure
 creation, one needs to be able to create a node or branch, delete
 a branch, add a new branch to a node at run time.

 One needs to be able to specify beam movements in nodes and place
 text in nodes with the normal write-format statements of the host
 programming language. This latter point is very important for
 easy programming.

 One needs to be able to set and test parameters and convert one
 form of name into others.

 We discuss Attention handling in more detail because of its
 importance in making interactive programming easy.

 Attention Handling

 The user sitting at the console is operating in real time while
 the application program is operating in timesharing time. At any
 point where the user may perform some operation at the console,
 the application program may not be running. A mechanism must be
 created to communicate between the user and the application
 program. The design of this mechanism is very important and must
 be carefully considered. There are many different operations that
 one might want to provide the user at the console. A basic
 mechanism is discussed which will allow others to be added in the
 future. When the application program gets to a point where it is
 expecting input from the terminal, it issues a call and passes an
 array as an argument. The Attention handling mechanism dismisses
 the program until an event is reported from the console. The
 information passed back to the application is the type of event
 which occurred and other relevant information for that event.

 On refreshed displays a common input device is the light pen. The
 light pen has a physical field of view of about a 1/8-1/4 inch
 circle. The most common use of the light pen is to point at an
 object to be hit or picked. The logical field of view seen by the
 user is a branch in the node-branch structure. The picture drawn
 by the structure below the branch is blinked to give feedback to
 the user about what object he is going to hit or operate upon.
 The level in the structure at which the logical view is given can
 be set under program control or adjusted by the user from the
 keyboard. When the user obtains feedback indicating the correct
 object is in view, he then presses a button on the light pen to

Watson [Page 14]

RFC 192 Some Factors which a Network Graphics 12 July 1971

 generate an Attention. He is said to obtain a "structural bit" at
 a branch at the level in the node-branch structure set by the
 application program or by himself. When the hit occurs,
 appropriate information is then entered into the Attention queue
 as described below.

 The other type of graphical input device commonly in use on both
 refreshed and non-refreshed displays, such as electronic pen-
 tablets, Joy Sticks, SRI Mouse, etc., produce x, y position
 information which is fedback to the screen as some sort of cursor,
 such as a dot or a cross. It is difficult, if not impossible,
 without special hardware to provide the kind of feedback possible
 with the light pen, but structural hits can be generated by the
 use of special hardware or software. These devices require the
 application programmer to set the appropriate level for an
 expected hit.

 The level of a structural hit is counted up from the bottom of the
 node-branch structure. A hit at level 1 is the lowest branch
 presently in view. A hit at level 0 is a hit on an individual
 vector or group of characters. Only special programs, such as a
 picture editor, are likely to obtain hits at level 0.

 The Attention type obtained when one gets a structural hit on a
 branch returns the following information: The information
 returned in the array is that required by the application program,
 the Display Pointer, the Light Button Code, and x, y, information.
 The x, y, information returned is not the absolute x,y pen
 position because this would not be of use on this type of hit.
 The x, y information returned is the physical beam position just
 before execution of the branch which was hit. If one wants the
 physical location of the node origin to which the hit branch is
 connected, one executes another call to obtain the branch
 positioner and adds these values to the corresponding values
 obtained from the hit. Given the Display Pointer, one can obtain
 the Back Pointer or other parameter values associated with the
 given branch call.

 The attention type obtained when a hit is generated, but no object
 is in view, is now discussed. This type of attention is called a
 null attention. It is used frequently to position objects on the
 screen. The only information returned in the array is the
 absolute screen coordinates of the position on the screen of the
 graphic input device or cursor. This information can be converted
 into relative information for placement in a branch positioner or
 for incrementing a branch position when an object is being moved.

Watson [Page 15]

RFC 192 Some Factors which a Network Graphics 12 July 1971

 Other calls are required to obtain information about other
 branches which are related to the one hit, and to perform other
 functions.

STRUCTURAL HITS FOR STORAGE TUBE DISPLAYS

 The final topic is to consider how to obtain structural hit
 information using a storage tube display or device which only gives
 absolute x, y screen information.

 The problem is to take an x, y coordinate pair and determine if the
 user is or is not pointing at an object on the screen, and if he is,
 which object. When a hit is generated with the light pen, the
 display processor halts and the controlling computer can gain access
 to the return addresses in the push down stack and to the instruction
 location which generated the line or character causing the hit. Use
 of the Joy Stick, Mouse, or tablet is completely asynchronous with
 the display for refresh displays and the hit occurs after the drawing
 has taken place for storage tube systems.

 The brute force approach to the problem would be to simulate
 execution of the Display Buffer and calculate some measure of
 distance between every line and the x, y coordinate of the hit. This
 approach would be too time consuming and is not feasible. A second
 approach and one commonly used is to have the programmer define a
 rectangle surrounding each object on the screen. Then one determines
 which rectangle the cursor was in and that determines the object hit.
 This approach requires extra effort by the programmer, and only works
 well if the node-branch structure is one level deep, there are no
 diagonal lines as nodes, and no objects have overlapping rectangles.
 These severe restrictions eliminates this approach from serious
 consideration.

 A third approach would be to break the screen into small squares or
 rectangles of a size such that it is unlikely a line from more than
 one picture object would pass through the square or rectangle. Then
 we would record for each square the Display Pointer of the lowest
 level object branch passing through it. This approach would require
 considerable system space and would take much time to determine what
 rectangles each line passed through.

 The fourth approach and the one we recommend is to split the screen
 into horizontal and vertical strips. When the call to DISPLAY is
 given, the system makes one pass through the node-branch structure
 and makes a list of the Display Pointers for the lowest branch having
 a node with a line or character passing through or in each horizontal
 or vertical strip.

Watson [Page 16]

RFC 192 Some Factors which a Network Graphics 12 July 1971

 This calculation can be made quickly because the system can easily
 obtain the start and end points of a line. One then can quickly
 determine which strips the end points fall in, as well as the
 intermediate strips crossed. When a hit is generated, the x, y
 information is converted to horizontal and vertical strip numbers.
 The Display Pointers for each of these strips are intersected to see
 if a common Display Pointer exists. If yes, this is the Display
 Pointer for the object hit. If not, then a null hit is generated.
 Choice of strip width decreases the probability of multiple hits
 resulting.

 The above process yields the Display Pointer of the lowest branch in
 the tree in view, but one may want to obtain information about other
 higher branches in view. This is accomplished by creating, not only
 the strip lists described, but by parsing the node-branch structure
 at the same time into a table containing an abbreviated
 representation of the tree and the screen x, y coordinates existing
 at each branch. The strip lists do not actually contain Display
 Pointers, but pointers back into the parsed representations which has
 the Display Pointer, x, y coordinates, and the structure level for
 each of the branches. The parsed representation is a linear list of
 the branches encountered as the program walks through the node-branch
 graph. Given the hit at the lowest level one can determine all
 branches passed through from the top node to the hit branch by an
 upward search of the graph representation.

 Every time a branch is deleted or a new branch is added, one needs to
 modify the screen, modify the representations and the strip lists.
 For refresh displays, the picture can be changed immediately and the
 strip lists and representations modified at the time of an attention
 call. For a storage display, erasing and redrawing the picture on
 each deletion can be slow, if many deletions are going on, and may be
 unnecessary.

 There are three approaches to performing these functions in storage
 tube systems:

 1) Erase the screen on each deletion and recompute the picture,
 strip lists and graph representations on each deletion and
 addition.

 2) Keep a list of each Display Buffer change and perform erase if
 necessary and redraw or make an addition when an attention call
 is encountered. This is a feasible approach because it is only
 at this point that the screen and structural hit information
 need to be up to date.

Watson [Page 17]

RFC 192 Some Factors which a Network Graphics 12 July 1971

 3) The third is to allow control of screen changes and other
 updating by special subroutine call. The recommended approach
 uses a combination of the above. Adding information to the
 screen should occur at the time of the new branch call.
 Deletions and modifications of the representation and the strip
 lists occur only at the time of an attention call. Routines
 should also be provided to give the programmer control over
 this redraw mechanism.

 Experience with the above mechanism has shown it to be quite
 fast and not to noticeably degrade response time. One minor
 difficulty has been encountered when a horizontal or vertical
 line of an object is on the borderline of a strip. Sometimes
 this results in a null hit being generated if the cursor is on
 the wrong side of the borderline. A check can be made for this
 condition and audio feedback can be given to the user with the
 bell in the terminal to indicate a correct or erroneous hit.

INTERFACE TO THE TIMESHARING SYSTEM OF A REMOTE MINICOMPUTER DRIVEN
DISPLAY

 Although the graphic system is locally controlled by a minicomputer,
 the user does not have to worry about the mini. Application programs
 are written for the timesharing computer only. The graphic system as
 a whole behaves as a terminal of the timesharing computer. This
 feature is important because no matter how powerful the graphic
 system is, it must be easy to program and use before useful
 applications can be implemented.

 Because no one wants to operate over a communication line, one needs
 to compress the information sent to the remote system. This is
 accomplished by compiling a central node-branch structure in the
 central computer and only sending minimal character strings to the
 remote computer representing those subroutines calls that need to be
 compiled into a Display Buffer in the remote computer for display
 refresh. In other words, a smaller remote version of the graphics
 system resides in the remote minicomputer. Simple schemes for
 coordinating the Display Pointer in the remote and central machine
 have to be devised.

CONCLUSION

 We feel that the above concepts are central to creating an
 interactive graphics support system for use with a timesharing
 system. The key concepts are those associated with the node-branch
 structure and the structured hit. The topics of a picture editor,
 data management system, and basic level support are also very
 important, but beyond the scope of this lecture.

Watson [Page 18]

RFC 192 Some Factors which a Network Graphics 12 July 1971

 Figures 1, 2. and 3, are available in both .PS and .PDF versions.

 [This RFC was put into machine readable form for entry]
 [into the online RFC archives by Lorrie Shiota, 10/01]

Watson [Page 19]

