Network Working Group Request for Comments: 2496 Obsoletes: 1407 Category: Standards Track D. Fowler, Editor Newbridge Networks January 1999

Definitions of Managed Objects for the DS3/E3 Interface Type

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes objects used for managing DS3 and E3 interfaces. This document is a companion document with Definitions of Managed Objects for the DS0 (RFC 2494 [25]), DS1/E1/DS2/E2 (RFC 2495 [17]), and the work in progress SONET/SDH Interface Types.

This memo specifies a MIB module in a manner that is both compliant to the SNMPv2 SMI, and semantically identical to the peer SNMPv1 definitions.

Table of Contents

Fowler, Ed.

Standards Track

[Page 1]

2.4.3 Performance Defects	13
2.4.4 Other Terms	15
3 Object Definitions	15
3.1 The DS3/E3 Near End Group	16
3.1.1 The DS3/E3 Configuration Table	16
3.1.2 The DS3/E3 Current Table	25
3.1.3 The DS3/E3 Interval Table	28
3.1.4 The DS3/E3 Total	31
3.2 The DS3 Far End Group	34
3.2.1 The DS3 Far End Configuration	35
3.2.2 The DS3 Far End Current	37
3.2.3 The DS3 Far End Interval Table	39
3.2.4 The DS3 Far End Total	41
3.3 The DS3/E3 Fractional Table	43
3.4 The DS3 Trap Group	46
3.5 Conformance Groups	
4 Appendix A - Use of dsx3IfIndex and dsx3LineIndex	51
5 Appendix B - The delay approach to Unavialable Seconds	54
6 Intellectual Property	56
7 Acknowledgments	56
8 References	
9 Security Considerations	
10 Author's Address	59
11 Full Copyright Statement	60

1. The SNMP Management Framework

The SNMP Management Framework presently consists of five major components:

- o An overall architecture, described in RFC 2271 [1].
- Mechanisms for describing and naming objects and events for the purpose of management. The first version of this Structure of Management Information (SMI) is called SMIv1 and described in STD 16, RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215 [4]. The second version, called SMIv2, is described in RFC 1902 [5], RFC 1903 [6] and RFC 1904 [7].
- Message protocols for transferring management information. The first version of the SNMP message protocol is called SNMPv1 and described in STD 15, RFC 1157 [8]. A second version of the SNMP message protocol, which is not an Internet standards track protocol, is called SNMPv2c and described in RFC 1901 [9] and RFC 1906 [10]. The third version of the message protocol is called SNMPv3 and described in RFC 1906 [10], RFC 2272 [11] and RFC 2274 [12].

Fowler, Ed.

Standards Track

[Page 2]

- Protocol operations for accessing management information. The first set of protocol operations and associated PDU formats is described in STD 15, RFC 1157 [8]. A second set of protocol operations and associated PDU formats is described in RFC 1905 [13].
- A set of fundamental applications described in RFC 2273 [14] and the view-based access control mechanism described in RFC 2275 [15]. Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the mechanisms defined in the SMI. This memo specifies a MIB module that is compliant to the SMIv2. A MIB conforming to the SMIv1 can be produced through the appropriate translations. The resulting translated MIB must be semantically equivalent, except where objects or events are omitted because no translation is possible (use of Counter64).

Some machine readable information in SMIv2 will be converted into textual descriptions in SMIv1 during the translation process. However, this loss of machine readable information is not considered to change the semantics of the MIB.

1.1. Changes from RFC1407

This MIB obsoletes RFC1407. The changes from RFC1407 are the following:

- (1) The Fractional Table has been deprecated
- (2) This document uses SMIv2
- (3) Values are given for ifTable and ifXTable
- (4) Example usage of ifStackTable is included
- (5) dsx3IfIndex has been deprecated
- (6) The definition of valid intervals has been clarified for the case where the agent proxied for other devices. In particular, the treatment of missing intervals has been clarified.
- (7) An inward loopback has been added.
- (8) Additional lineStatus bits have been added for Near End in Unavailable Signal State, Carrier Equipment Out of Service, DS@ Payload AIS, and DS@ Performance Threshold

Fowler, Ed. Standards Track [Page 3]

- (9) A read-write line Length object has been added.
- (10) Added a lineStatus last change, trap and enabler.
- (11) Textual Conventions for statistics objects have been used.
- (12) A new object, dsx3LoopbackStatus, has been introduced to reflect the loopbacks established on a DS3/E3 interface and the source to the requests. dsx3LoopbackConfig continues to be the desired loopback state while dsx3LoopbackStatus reflects the actual state.
- (13) A dual loopback has been added to allow the setting of an inward loopback and a line loopback at the same time.
- (14) An object has been added to indicated whether or not this is a channelized DS3/E3.
- (15) A new object has been added to indicate which DS1 is to set for remote loopback.

2. Overview

These objects are used when the particular media being used to realize an interface is a DS3/E3 interface. At present, this applies to these values of the ifType variable in the Internet-standard MIB:

ds3 (30)

The DS3 definitions contained herein are based on the DS3 specifications in ANSI T1.102-1987, ANSI T1.107-1988, ANSI T1.107a-1990, and ANSI T1.404-1989 [8,9,9a,10]. The E3 definitions contained herein are based on the E3 specifications in CCITT G.751 [12].

Fowler, Ed.

Standards Track

[Page 4]

DS3/E3 MIB

2.1. Use of ifTable for DS3 Layer

Only the ifGeneralGroup needs to be supported.

Use for DS3 Layer ifTable Object _____ ifIndex Interface index. ifDescr See interfaces MIB [5] ds3(30) ifType ifSpeed Speed of line rate DS3 - 44736000 E3 - 34368000 ifPhysAddress The value of the Circuit Identifier. If no Circuit Identifier has been assigned this object should have an octet string with zero length. ifAdminStatus See interfaces MIB [5] ifOperStatus See interfaces MIB [5] ifLastChange See interfaces MIB [5] ifName See interfaces MIB [5] ifLinkUpDownTrapEnable Set to enabled(1). ifHighSpeed Speed of line in Mega-bits per second (either 45 or 34) ifConnectorPresent Set to true(1) normally, except for cases such as DS3/E3 over AAL1/ATM where false(2) is appropriate 2.2. Usage Guidelines

2.2.1. Usage of ifStackTable

The assignment of the index values could for example be:

ifIndex	Descrip	ption
1	Etherne	et
2	Line#A	Router
3	Line#B	Router

Fowler, Ed.

Standards Track

[Page 5]

 5 Line#D Router 6 Line#A CSU Router 7 Line#B CSU Router
7 Line#B CSU Router
8 Line#C CSU Router
9 Line#D CSU Router
10 Line#A CSU Network
11 Line#B CSU Network
12 Line#C CSU Network
13 Line#D CSU Network

The ifStackTable is then used to show the relationships between the various DS3 interfaces.

ifStackTable Entries

H	igherLayer	LowerLayer
2		б
3		7
4		8
5		9
б		10
7		11
8		12
9		13

If the CSU shelf is managed by itself by a local SNMP Agent, the situation would be identical, except the Ethernet and the 4 router interfaces are deleted. Interfaces would also be numbered from 1 to 8.

ifIndex	Descrip	ption	n
1	Line#A	CSU	Router
2	Line#B	CSU	Router
3	Line#C	CSU	Router
4	Line#D	CSU	Router
5	Line#A	CSU	Network
б	Line#B	CSU	Network
7	Line#C	CSU	Network
8	Line#D	CSU	Network

ifStackTable Entries

LowerLayer
5
б
7
8

Fowler, Ed. Standards Track

[Page 6]

2.2.2. Usage of Channelization for DS3, DS1, DS0

An example is given here to explain the channelization objects in the DS3, DS1, and DS0 MIBs to help the implementor use the objects correctly. Treatment of E3 and E1 would be similar, with the number of DS0s being different depending on the framing of the E1.

Assume that a DS3 (with ifIndex 1) is Channelized into DS1s (without DS2s). The object dsx3Channelization is set to enabledDs1. When this object is set to enabledDS1, 28 ifEntries of type DS1 will be created by the agent. If dsx3Channelization is set to disabled, then the DS1s are destroyed.

Assume the entries in the ifTable for the DS1s are created in channel order and the ifIndex values are 2 through 29. In the DS1 MIB, there will be an entry in the dsxlChanMappingTable for each dsl. The entries will be as follows:

dsx1ChanMappingTable Entries

ifIndex	dsx1Ds1ChannelNumber	dsx1ChanMappedIfIndex
1 1	1 2	2 3
 1	28	29

In addition, the DS1s are channelized into DS0s. The object dsx1Channelization is set to enabledDS0 for each DS1. There will be 24 DS0s in the ifTable for each DS1. Assume the entries in the ifTable are created in channel order and the ifIndex values for the DSOs in the first DS1 are 30 through 53. In the DS0 MIB, there will be an entry in the dsx0ChanMappingTable for each DS0. The entries will be as follows:

dsx0ChanMappingTable Entries

dsx0Ds0ChannelNumber	dsx0ChanMappedIfIndex
1	30
2	31
24	53
	dsx0Ds0ChannelNumber 2

2.2.3. Usage of Channelization for DS3, DS2, DS1

An example is given here to explain the channelization objects in the DS3 and DS1 MIBs to help the implementor use the objects correctly.

Fowler, Ed. Standards Track

[Page 7]

Assume that a DS3 (with ifIndex 1) is Channelized into DS2s. The object dsx3Channelization is set to enabledDs2. There will be 7 DS2s (ifType of DS1) in the ifTable. Assume the entries in the ifTable for the DS2s are created in channel order and the ifIndex values are 2 through 8. In the DS1 MIB, there will be an entry in the dsx1ChanMappingTable for each DS2. The entries will be as follows:

dsx1ChanMappingTable Entries

ifIndex	dsx1Ds1ChannelNumber	dsx1ChanMappedIfIndex
1	1	2
1	2	3
1	7	8

In addition, the DS2s are channelized into DS1s. The object dsx1Channelization is set to enabledDS1 for each DS2. There will be 4 DS1s in the ifTable for each DS2. Assume the entries in the ifTable are created in channel order and the ifIndex values for the DS1s in the first DS2 are 9 through 12, then 13 through 16 for the second DS2, and so on. In the DS1 MIB, there will be an entry in the dsx1ChanMappingTable for each DS1. The entries will be as follows:

dsx1ChanMappingTable Entries

ifIndex	dsx1Ds1ChannelNumber	dsx1ChanMappedIfIndex
2	1	9
2	2	10
2	3	11
2	4	12
3	1	13
3	2	14
8	4	36

2.2.4. Usage of Loopbacks

This section discusses the behaviour of objects related to loopbacks.

The object dsx3LoopbackConfig represents the desired state of loopbacks on this interface. Using this object a Manager can request: LineLoopback

PayloadLoopback (if ESF framing) InwardLoopback DualLoopback (Line + Inward) NoLoopback

Fowler, Ed.

Standards Track

[Page 8]

RFC 2496

The remote end can also request lookbacks either through the FDL channel if ESF or inband if D4. The loopbacks that can be request this way are: LineLoopback PayloadLoopback (if ESF framing) NoLoopback

To model the current state of loopbacks on a DS3 interface, the object dsx3LoopbackStatus defines which loopback is currently applies to an interface. This objects, which is a bitmap, will have bits turned on which reflect the currently active loopbacks on the interface as well as the source of those loopbacks.

The following restrictions/rules apply to loopbacks:

The far end cannot undo loopbacks set by a manager.

A manager can undo loopbacks set by the far end.

Both a line loopback and an inward loopback can be set at the same time. Only these two loopbacks can co-exist and either one may be set by the manager or the far end. A LineLoopback request from the far end is incremental to an existing Inward loopback established by a manager. When a NoLoopback is received from the far end in this case, the InwardLoopback remains in place.

2.3. Objectives of this MIB Module

There are numerous things that could be included in a MIB for DS3/E3 signals: the management of multiplexors, CSUs, DSUs, and the like. The intent of this document is to facilitate the common management of all devices with DS3/E3 interfaces. As such, a design decision was made up front to very closely align the MIB with the set of objects that can generally be read from DS3/E3 devices that are currently deployed.

2.4. DS3/E3 Terminology

The terminology used in this document to describe error conditions on a DS3 interface as monitored by a DS3 device are based on the late but not final draft of what became the ANSI T1.231 standard [11]. If the definition in this document does not match the definition in the ANSI T1.231 document, the implementer should follow the definition described in this document.

Fowler, Ed.

Standards Track

[Page 9]

2.4.1. Error Events

Bipolar Violation (BPV) Error Event

A bipolar violation error event, for B3ZS(HDB3)-coded signals, is the occurrence of a pulse of the same polarity as the previous pulse without being part of the zero substitution code, B3ZS(HDB3). For B3ZS(HDB3)-coded signals, a bipolar violation error event may also include other error patterns such as: three(four) or more consecutive zeros and incorrect polarity. (See T1.231 section 7.1.1.1.1)

- Excessive Zeros (EXZ) Error Event An EXZ is the occurrence of any zero string length equal to or greater than 3 for B3ZS, or greater than 4 for HDB3. (See T1.231 section 7.1.1.1.2)
- Line Coding Violation (LCV) Error Event This parameter is a count of both BPVs and EXZs occurring over the accumulation period. An EXZ increments the LCV by one regardless of the length of the zero string. (Also known as CV-L. See T1.231 section 7.4.1.1)
- P-bit Coding Violation (PCV) Error Event For all DS3 applications, a coding violation error event is a P-bit Parity Error event. A P-bit Parity Error event is the occurrence of a received P-bit code on the DS3 M-frame that is not identical to the corresponding locally- calculated code. (See T1.231 section 7.1.1.2.1)
- C-bit Coding Violation (CCV) Error Event For C-bit Parity and SYNTRAN DS3 applications, this is the count of coding violations reported via the C-bits. For C-bit Parity, it is a count of CP-bit parity errors occurring in the accumulation interval. For SYNTRAN, it is a count of CRC-9 errors occurring in the accumulation interval. (See T1.231 section 7.1.1.2.2)
- 2.4.2. Performance Parameters

All performance parameters are accumulated in fifteen minute intervals and up to 96 intervals (24 hours worth) are kept by an agent. Fewer than 96 intervals of data will be available if the agent has been restarted within the last 24 hours. In addition, there is a rolling 24-hour total of each performance parameter.

Fowler, Ed. Standards Track

[Page 10]

DS3/E3 MIB

There is no requirement for an agent to ensure fixed relationship between the start of a fifteen minute interval and any wall clock; however some agents may align the fifteen minute intervals with quarter hours.

Performance parameters are of types PerfCurrentCount, PerfIntervalCount and PerfTotalCount. These textual conventions are all Gauge32, and they are used because it is possible for these objects to decrease. Objects may decrease when Unavailable Seconds occurs across a fifteen minutes interval boundary. See Unavailable Seconds discussion later in this section.

Line Errored Seconds (LES) A Line Errored Second is a second in which one or more CV occurred OR one or more LOS defects. (Also known as ES-L. See T1.231 section 7.4.1.2)

P-bit Errored Seconds (PES) An PES is a second with one or more PCVs OR one or more Out of Frame defects OR a detected incoming AIS. This gauge is not incremented when UASs are counted. (Also known as ESP-P. See T1.231 section 7.4.2.2)

P-bit Severely Errored Seconds (PSES) A PSES is a second with 44 or more PCVs OR one or more Out of Frame defects OR a detected incoming AIS. This gauge is not incremented when UASs are counted. (Also known as SESP-P. See T1.231 section 7.4.2.5)

C-bit Errored Seconds (CES) An CES is a second with one or more CCVs OR one or more Out of Frame defects OR a detected incoming AIS. This count is only for the SYNTRAN and C-bit Parity DS3 applications. This gauge is not incremented when UASs are counted. (Also known as ESCP-P. See T1.231 section 7.4.2.2)

C-bit Severely Errored Seconds (CSES) A CSES is a second with 44 or more CCVs OR one or more Out of Frame defects OR a detected incoming AIS. This count is only for the SYNTRAN and C-bit Parity DS3 applications. This gauge is not incremented when UASs are counted. (Also known as SESCP-P. See T1.231 section 7.4.2.5)

Severely Errored Framing Seconds (SEFS)
A SEFS is a second with one or more Out of Frame defects OR a
detected incoming AIS. This item is not incremented during
unavailable seconds. (Also known as SAS-P. See T1.231 section
7.4.2.6)

Fowler, Ed.Standards Track[Page 11]

Unavailable Seconds (UAS)

UAS are calculated by counting the number of seconds that the interface is unavailable. The DS3 interface is said to be unavailable from the onset of 10 contiguous PSESs, or the onset of the condition leading to a failure (see Failure States). If the condition leading to the failure was immediately preceded by one or more contiguous PSESs, then the DS3 interface unavailability starts from the onset of these PSESs. Once unavailable, and if no failure is present, the DS3 interface becomes available at the onset of 10 contiguous seconds with no PSESs. Once unavailable, and if a failure is present, the DS3 interface becomes available at the onset of 10 contiguous seconds with no PSESs, if the failure clearing time is less than or equal to 10 seconds. If the failure clearing time is more than 10 seconds, the DS3 interface becomes available at the onset of 10 contiguous seconds with no PSESs, or the onset period leading to the successful clearing condition, whichever occurs later. With respect to the DS3 error counts, all counters are incremented while the DS3 interface is deemed available. While the interface is deemed unavailable, the only count that is incremented is UASs.

Note that this definition implies that the agent cannot determine until after a ten second interval has passed whether a given one-second interval belongs to available or unavailable time. If the agent chooses to update the various performance statistics in real time then it must be prepared to retroactively reduce the PES, PSES, CES, and CSES counts by 10 and increase the UAS count by 10 when it determines that available time has been entered. It must also be prepared to adjust the PCV, CCV, and SEFS count as necessary since these parameters are not accumulated during unavailable time. It must be similarly prepared to retroactively decrease the UAS count by 10 and increase the PES, CES, PCV, and CCV counts as necessary upon entering available time. A special case exists when the 10 second period leading to available or unavailable time crosses a 900 second statistics window boundary, as the foregoing description implies that the PCV, CCV, PES, CES, PSES, CSEC, SEFS, and UAS counts for the PREVIOUS interval must be adjusted. In this case successive GETs of the affected dsx3IntervalPSESs and dsx3IntervalUASs objects will return differing values if the first GET occurs during the first few seconds of the window.

Fowler, Ed.

Standards Track

[Page 12]

The agent may instead choose to delay updates to the various statistics by 10 seconds in order to avoid retroactive adjustments to the counters. A way to do this is sketched in Appendix B.

In any case, a linkDown trap shall be sent only after the agent has determined for certain that the unavailable state has been entered, but the time on the trap will be that of the first UAS (i.e., 10 seconds earlier). A linkUp trap shall be handled similarly.

According to ANSI T1.231 unavailable time begins at the _onset_ of 10 contiguous severely errored seconds -- that is, unavailable time starts with the _first_ of the 10 contiguous SESs. Also, while an interface is deemed unavailable all counters for that interface are frozen except for the UAS count. It follows that an implementation which strictly complies with this standard must _not_ increment any counters other than the UAS count -- even temporarily -- as a result of anything that happens during those 10 seconds. Since changes in the signal state lag the data to which they apply by 10 seconds, an ANSI-compliant implementation must pass the the one-second statistics through a 10-second delay line prior to updating any counters. That can be done by performing the following steps at the end of each one second interval.

- i) Read near/far end CV counter and alarm status flags from the hardware.
- ii) Accumulate the CV counts for the preceding second and compare them to the ES and SES threshold for the layer in question. Update the signal state and shift the one-second CV counts and ES/SES flags into the 10-element delay line. Note that far-end one-second statistics are to be flagged as "absent" during any second in which there is an incoming defect at the layer in question or at any lower layer.
- iii) Update the current interval statistics using the signal state from the _previous_ update cycle and the one-second CV counts and ES/SES flags shifted out of the 10-element delay line.

This approach is further described in Appendix B.

2.4.3. Performance Defects

```
Failure States:
```

The Remote Alarm Indication (RAI) failure, in SYNTRAN applications, is declared after detecting the Yellow Alarm

Fowler, Ed. Standards Track [Page 13]

Signal on the alarm channel. See ANSI T1.107a-1990 [9a]. The Remote Alarm Indication failure, in C-bit Parity DS3 applications, is declared as soon as the presence of either one or two alarm signals are detected on the Far End Alarm Channel. See [9]. The Remote Alarm Indication failure may also be declared after detecting the far-end SEF/AIS defect (aka yellow). The Remote Alarm Indication failure is cleared as soon as the presence of the any of the above alarms are removed.

Also, the incoming failure state is declared when a defect persists for at least 2-10 seconds. The defects are the following: Loss of Signal (LOS), an Out of Frame (OOF) or an incoming Alarm Indication Signal (AIS). The Failure State is cleared when the defect is absent for less than or equal to 20 seconds.

Far End SEF/AIS defect (aka yellow)

A Far End SEF/AIS defect is the occurrence of the two X-bits in a M-frame set to zero. The Far End SEF/AIS defect is terminated when the two X-bits in a M-frame are set to one. (Also known as SASCP-PFE. See T1.231 section 7.4.4.2.6)

Out of Frame (OOF) defect

A DS3 OOF defect is detected when any three or more errors in sixteen or fewer consecutive F-bits occur within a DS3 Mframe. An OOF defect may also be called a Severely Errored Frame (SEF) defect. An OOF defect is cleared when reframe occurs. A DS3 Loss of Frame (LOF) failure is declared when the DS3 OOF defect is consistent for 2 to 10 seconds. The DS3 OOF defect ends when reframe occurs. The DS3 LOF failure is cleared when the DS3 OOF defect is absent for 10 to 20 seconds. (See T1.231 section 7.1.2.2.1)

An E3 OOF defect is detected when four consecutive frame alignment signals have been incorrectly received in there predicted positions in an E3 signal. E3 frame alignment occurs when the presence of three consecutive frame alignment signals have been detected.

Loss of Signal (LOS) defect

The DS3 LOS defect is declared upon observing 175 +/- 75 contiguous pulse positions with no pulses of either positive or negative polarity. The DS3 LOS defect is terminated upon observing an average pulse density of at least 33% over a period of 175 +/- 75 contiguous pulse positions starting with the receipt of a pulse. (See T1.231 section 7.1.2.1.1)

Fowler, Ed. Standards Track

[Page 14]

Alarm Indication Signal (AIS) defect

The DS3 AIS is framed with "stuck stuffing." This implies that it has a valid M-subframe alignments bits, M-frame alignment bits, and P bits. The information bits are set to a 1010... sequence, starting with a one (1) after each Msubframe alignment bit, M-frame alignment bit, X bit, P bit, and C bit. The C bits are all set to zero giving what is called "stuck stuffing." The X bits are set to one. The DS3 AIS defect is declared after DS3 AIS is present in contiguous M-frames for a time equal to or greater than T, where 0.2 ms <= T <= 100 ms. The DS3 AIS defect is terminated after AIS is absent in contiguous M-frames for a time equal to or greater than T. (See T1.231 section 7.1.2.2.3)

The E3 binary content of the AIS is nominally a continuous stream of ones. AIS detection and the application of consequent actions, should be completed within a time limit of 1 ms.

2.4.4. Other Terms

Circuit Identifier

This is a character string specified by the circuit vendor, and is useful when communicating with the vendor during the troubleshooting process.

Proxy

In this document, the word proxy is meant to indicate an application which receives SNMP messages and replies to them on behalf of the devices which implement the actual DS3/E3 interfaces. The proxy may have already collected the information about the DS3/E3 interfaces into its local database and may not necessarily forward the requests to the actual DS3/E3 interface. It is expected in such an application that there are periods of time where the proxy is not communicating with the DS3/E3 interfaces. In these instances the proxy will not necessarily have up-to-date configuration information and will most likely have missed the collection of some statistics data. Missed statistics data collection will result in invalid data in the interval table.

3. Object Definitions

DS3-MIB DEFINITIONS ::= BEGIN

IMPORTS

MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE, transmission FROM SNMPv2-SMI

Fowler, Ed. Standards Track

[Page 15]

DisplayString, TimeStamp, TruthValue FROM SNMPv2-TC MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP FROM SNMPv2-CONF InterfaceIndex FROM IF-MIB PerfCurrentCount, PerfIntervalCount, PerfTotalCount FROM PerfHist-TC-MIB; ds3 MODULE-IDENTITY LAST-UPDATED "9808012130Z" ORGANIZATION "IETF Trunk MIB Working Group" CONTACT-INFO ... David Fowler Postal: Newbridge Networks Corporation 600 March Road Kanata, Ontario, Canada K2K 2E6 Tel: +1 613 591 3600 Fax: +1 613 599 3667 E-mail: davef@newbridge.com" DESCRIPTION "The is the MIB module that describes DS3 and E3 interfaces objects." ::= { transmission 30 } -- The DS3/E3 Near End Group -- The DS3/E3 Near End Group consists of four tables: -- DS3/E3 Configuration _ _ DS3/E3 Current DS3/E3 Interval _ _ DS3/E3 Total _ _ -- the DS3/E3 Configuration Table dsx3ConfigTable OBJECT-TYPE SYNTAX SEQUENCE OF Dsx3ConfigEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The DS3/E3 Configuration table." $::= \{ ds3 5 \}$ dsx3ConfigEntry OBJECT-TYPE SYNTAX Dsx3ConfigEntry

Fowler, Ed.Standards Track[Page 16]

MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in the DS3/E3 Configuration table." INDEX { dsx3LineIndex } ::= { dsx3ConfigTable 1 } Dsx3ConfigEntry ::= SEQUENCE { dsx3LineIndex InterfaceIndex, dsx3ValidIntervals dsx3LineType dsx3LineC dsx3IfIndex InterfaceIndex, INTEGER, INTEGER, INTEGER, dsx3LineCoding INTEGER, dsx3SendCode INTEGER, dsx3CircuitIdentifier DisplayString, dsx3LoopbackConfig INTEGER, dsx3LineStatus INTEGER, usssbinestatusINTEGER,dsx3TransmitClockSourceINTEGER,dsx3InvalidIntervalsINTEGER,dsx3LineLengthINTEGER,dsx3LineStatusLastChangeTimeStamp,dsx3LineStatusChangeTrapEnableINTEGER,dsx3LoopbackStatusINTEGER,dsx3ChannelizationINTEGER, INTEGER, dsx3Channelization dsx3Channelization INTEGER dsx3Ds1ForRemoteLoop INTEGER } dsx3LineIndex OBJECT-TYPE SYNTAX InterfaceIndex MAX-ACCESS read-only STATUS current DESCRIPTION "This object should be made equal to ifIndex. The next paragraph describes its previous usage. Making the object equal to ifIndex allows propoer use of ifStackTable. Previously, this object was the identifier of a DS3/E3 Interface on a managed device. If there is an ifEntry that is directly associated with this and only this DS3/E3 interface, it should have the same value as ifIndex. Otherwise, number the dsx3LineIndices with an unique identifier following the rules of choosing a number that is greater than if Number and numbering the inside interfaces (e.g., equipment side) with even Standards Track Fowler, Ed. [Page 17]

DS3/E3 MIB

```
numbers and outside interfaces (e.g, network side)
           with odd numbers."
     ::= { dsx3ConfigEntry 1 }
dsx3IfIndex OBJECT-TYPE
    SYNTAX InterfaceIndex
    MAX-ACCESS read-only
    STATUS deprecated
    DESCRIPTION
            "This value for this object is equal to the value
           of ifIndex from the Interfaces table of MIB II
           (RFC 1213)."
     ::= { dsx3ConfigEntry 2 }
dsx3TimeElapsed OBJECT-TYPE
    SYNTAX INTEGER (0..899)
    MAX-ACCESS read-only
    STATUS current
    DESCRIPTION
           "The number of seconds that have elapsed since the
           beginning of the near end current error-
           measurement period. If, for some reason, such as
           an adjustment in the system's time-of-day clock,
           the current interval exceeds the maximum value,
           the agent will return the maximum value."
     ::= { dsx3ConfigEntry 3 }
dsx3ValidIntervals OBJECT-TYPE
    SYNTAX INTEGER (0..96)
    MAX-ACCESS read-only
    STATUS current
    DESCRIPTION
            "The number of previous near end intervals for
           which data was collected. The value will be
            96 unless the interface was brought online within
           the last 24 hours, in which case the value will be
            the number of complete 15 minute near end
            intervals since the interface has been online.
                                                            In
            the case where the agent is a proxy, it is
           possible that some intervals are unavailable. In
            this case, this interval is the maximum interval
           number for which data is available."
     ::= { dsx3ConfigEntry 4 }
dsx3LineType OBJECT-TYPE
    SYNTAX INTEGER {
               dsx3other(1),
```

Fowler, Ed.

Standards Track

[Page 18]

```
dsx3M23(2),
                    dsx3SYNTRAN(3),
                     dsx3CbitParity(4),
                     dsx3ClearChannel(5),
                     e3other(6),
                     e3Framed(7),
                    e3Plcp(8)
                }
      MAX-ACCESS read-write
      STATUS current
      DESCRIPTION
               "This variable indicates the variety of DS3 C-bit
               or E3 application implementing this interface. The
               type of interface affects the interpretation of
               the usage and error statistics. The rate of DS3
               is 44.736 Mbps and E3 is 34.368 Mbps. The
               dsx3ClearChannel value means that the C-bits are
               not used except for sending/receiving AIS.
               The values, in sequence, describe:

      TITLE:
      SPECIFICATION:

      dsx3M23
      ANSI T1.107-1988 [9]

      dsx3SYNTRAN
      ANSI T1.107-1988 [9]

      dsx3CbitParity
      ANSI T1.107a-1990 [9a]

      dsx3ClearChannel
      ANSI T1.102-1987 [8]

      e3Framed
      CCITT G.751 [12]

      e3Plcp
      ETSI T/NA(91)18 [13]."

      ::= { dsx3ConfigEntry 5 }
dsx3LineCoding OBJECT-TYPE
      SYNTAX INTEGER {
                    dsx30ther(1),
                     dsx3B3ZS(2),
                    e3HDB3(3)
               }
      MAX-ACCESS read-write
      STATUS current
      DESCRIPTION
               "This variable describes the variety of Zero Code
               Suppression used on this interface, which in turn
               affects a number of its characteristics.
               dsx3B3ZS and e3HDB3 refer to the use of specified
               patterns of normal bits and bipolar violations
               which are used to replace sequences of zero bits
               of a specified length."
      ::= { dsx3ConfigEntry 6 }
```

Fowler, Ed.

Standards Track

[Page 19]

dsx3SendCode OBJECT-TYPE SYNTAX INTEGER { dsx3SendNoCode(1), dsx3SendLineCode(2), dsx3SendPayloadCode(3), dsx3SendResetCode(4), dsx3SendDS1LoopCode(5), dsx3SendTestPattern(6) } MAX-ACCESS read-write STATUS current DESCRIPTION "This variable indicates what type of code is being sent across the DS3/E3 interface by the device. (These are optional for E3 interfaces.) Setting this variable causes the interface to begin sending the code requested. The values mean: dsx3SendNoCode sending looped or normal data dsx3SendLineCode sending a request for a line loopback dsx3SendPayloadCode sending a request for a payload loopback (i.e., all DS1/E1s in a DS3/E3 frame) dsx3SendResetCode sending a loopback deactivation request dsx3SendDS1LoopCode requesting to loopback a particular DS1/E1 within a DS3/E3 frame. The DS1/E1 is indicated in dsx3Ds1ForRemoteLoop. dsx3SendTestPattern sending a test pattern." ::= { dsx3ConfigEntry 7 } dsx3CircuitIdentifier OBJECT-TYPE SYNTAX DisplayString (SIZE (0..255)) MAX-ACCESS read-write STATUS current DESCRIPTION "This variable contains the transmission vendor's circuit identifier, for the purpose of

Fowler, Ed. Standards Track [Page 20]

facilitating troubleshooting." ::= { dsx3ConfigEntry 8 } dsx3LoopbackConfig OBJECT-TYPE SYNTAX INTEGER { dsx3NoLoop(1), dsx3PayloadLoop(2), dsx3LineLoop(3), dsx30therLoop(4), dsx3InwardLoop(5), dsx3DualLoop(6) MAX-ACCESS read-write STATUS current DESCRIPTION "This variable represents the desired loopback configuration of the DS3/E3 interface. The values mean: dsx3NoLoop Not in the loopback state. A device that is not capable of performing a loopback on the interface shall always return this as its value. dsx3PayloadLoop The received signal at this interface is looped through the device. Typically the received signal is looped back for retransmission after it has passed through the device's framing function. dsx3LineLoop The received signal at this interface does not go through the device (minimum penetration) but is looped back out. dsx30therLoop Loopbacks that are not defined here. dsx3InwardLoop The sent signal at this interface is looped back through the device. dsx3DualLoop Both dsx1LineLoop and dsx1InwardLoop will be active simultaneously." ::= { dsx3ConfigEntry 9 }

Fowler, Ed.Standards Track[Page 21]

dsx3LineStatus OBJECT-TYPE SYNTAX INTEGER (1..4095) MAX-ACCESS read-only STATUS current DESCRIPTION "This variable indicates the Line Status of the interface. It contains loopback state information and failure state information. The dsx3LineStatus is a bit map represented as a sum, therefore, it can represent multiple failures and a loopback (see dsx3LoopbackConfig object for the type of loopback) simultaneously. The dsx3NoAlarm must be set if and only if no other flag is set. If the dsx3loopbackState bit is set, the loopback in effect can be determined from the dsx3loopbackConfig object. The various bit positions are: 1 dsx3NoAlarm No alarm present 2 dsx3RcvRAIFailure Receiving Yellow/Remote Alarm Indication dsx3XmitRAIAlarm Transmitting Yellow/Remote 4 Alarm Indication Alarm Indication8dsx3RcvAIS16dsx3XmitAIS32dsx3LOF64dsx3LOS128dsx3LoopbackState256dsx3RcvTestCode512dsx3OtherFailureany line status not defined here 1024 dsx3UnavailSigState Near End in Unavailable Signal State 2048 dsx3NetEquipOOS Carrier Equipment Out of Service" ::= { dsx3ConfigEntry 10 } dsx3TransmitClockSource OBJECT-TYPE SYNTAX INTEGER { loopTiming(1), localTiming(2), throughTiming(3) } MAX-ACCESS read-write STATUS current DESCRIPTION "The source of Transmit Clock. loopTiming indicates that the recovered receive clock

Fowler, Ed.

Standards Track

[Page 22]

DS3/E3 MIB

is used as the transmit clock. localTiming indicates that a local clock source is used or that an external clock is attached to the box containing the interface. throughTiming indicates that transmit clock is derived from the recovered receive clock of another DS3 interface." ::= { dsx3ConfigEntry 11 } dsx3InvalidIntervals OBJECT-TYPE SYNTAX INTEGER (0..96) MAX-ACCESS read-only STATUS current DESCRIPTION "The number of intervals in the range from 0 to dsx3ValidIntervals for which no data is available. This object will typically be zero except in cases where the data for some intervals are not available (e.g., in proxy situations)." ::= { dsx3ConfigEntry 12 } dsx3LineLength OBJECT-TYPE SYNTAX INTEGER (0..64000) UNITS "meters" MAX-ACCESS read-write STATUS current DESCRIPTION "The length of the ds3 line in meters. This object provides information for line build out circuitry if it exists and can use this object to adjust the line build out." ::= { dsx3ConfigEntry 13 } dsx3LineStatusLastChange OBJECT-TYPE SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value of MIB II's sysUpTime object at the time this DS3/E3 entered its current line status state. If the current state was entered prior to the last re-initialization of the proxy-agent, then this object contains a zero value." ::= { dsx3ConfigEntry 14 } dsx3LineStatusChangeTrapEnable OBJECT-TYPE

Fowler, Ed.Standards Track[Page 23]

SYNTAX INTEGER { enabled(1), disabled(2) } MAX-ACCESS read-write STATUS current DESCRIPTION "Indicates whether dsx3LineStatusChange traps should be generated for this interface." DEFVAL { disabled } ::= { dsx3ConfigEntry 15 } dsx3LoopbackStatus OBJECT-TYPE SYNTAX INTEGER (1..127) MAX-ACCESS read-only STATUS current DESCRIPTION "This variable represents the current state of the loopback on the DS3 interface. It contains information about loopbacks established by a manager and remotely from the far end. The dsx3LoopbackStatus is a bit map represented as a sum, therefore is can represent multiple loopbacks simultaneously. The various bit positions are: 1 dsx3NoLoopback 2 dsx3NearEndPayloadLoopback 4 dsx3NearEndLineLoopback 8 dsx3NearEndOtherLoopback 16 dsx3NearEndInwardLoopback 32 dsx3FarEndPayloadLoopback 64 dsx3FarEndLineLoopback" ::= { dsx3ConfigEntry 16 } dsx3Channelization OBJECT-TYPE SYNTAX INTEGER { disabled(1), enabledDs1(2), enabledDs2(3) } MAX-ACCESS read-write STATUS current DESCRIPTION "Indicates whether this ds3/e3 is channelized or unchannelized. The value of enabledDs1 indicates

Fowler, Ed.

Standards Track

[Page 24]

DS3/E3 MIB

that this is a DS3 channelized into DS1s. The value of enabledDs3 indicated that this is a DS3 channelized into DS2s. Setting this object will cause the creation or deletion of DS2 or DS1 entries in the ifTable. " ::= { dsx3ConfigEntry 17 } dsx3Ds1ForRemoteLoop OBJECT-TYPE SYNTAX INTEGER (0..29) MAX-ACCESS read-write STATUS current DESCRIPTION "Indicates which ds1/e1 on this ds3/e3 will be indicated in the remote ds1 loopback request. A value of 0 means no DS1 will be looped. A value of 29 means all ds1s/e1s will be looped." ::= { dsx3ConfigEntry 18 } -- the DS3/E3 Current Table dsx3CurrentTable OBJECT-TYPE SYNTAX SEQUENCE OF Dsx3CurrentEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The DS3/E3 current table contains various statistics being collected for the current 15 minute interval." $::= \{ ds3 6 \}$ dsx3CurrentEntry OBJECT-TYPE SYNTAX Dsx3CurrentEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in the DS3/E3 Current table."
INDEX { dsx3CurrentIndex } ::= { dsx3CurrentTable 1 } Dsx3CurrentEntry ::= SEQUENCE { dsx3CurrentIndexInterfaceIndex,dsx3CurrentPESsPerfCurrentCount,dsx3CurrentPSESsPerfCurrentCount,dsx3CurrentSEFSsPerfCurrentCount,

Fowler, Ed.

Standards Track

[Page 25]

```
dsx3CurrentUASsPerfCurrentCount,dsx3CurrentLCVsPerfCurrentCount,dsx3CurrentPCVsPerfCurrentCount,dsx3CurrentLESsPerfCurrentCount,dsx3CurrentCCVsPerfCurrentCount,dsx3CurrentCESsPerfCurrentCount,dsx3CurrentCESsPerfCurrentCount,
    }
dsx3CurrentIndex OBJECT-TYPE
     SYNTAX InterfaceIndex
     MAX-ACCESS read-only
     STATUS current
     DESCRIPTION
              "The index value which uniquely identifies the
              DS3/E3 interface to which this entry is
              applicable. The interface identified by a
              particular value of this index is the same
              interface as identified by the same value an
              dsx3LineIndex object instance."
      ::= { dsx3CurrentEntry 1 }
dsx3CurrentPESs OBJECT-TYPE
     SYNTAX PerfCurrentCount
     MAX-ACCESS read-only
     STATUS current
     DESCRIPTION
             "The counter associated with the number of P-bit
              Errored Seconds."
      ::= { dsx3CurrentEntry 2 }
dsx3CurrentPSESs OBJECT-TYPE
     SYNTAX PerfCurrentCount
     MAX-ACCESS read-only
     STATUS current
     DESCRIPTION
             "The counter associated with the number of P-bit
              Severely Errored Seconds."
      ::= { dsx3CurrentEntry 3 }
dsx3CurrentSEFSs OBJECT-TYPE
     SYNTAX PerfCurrentCount
     MAX-ACCESS read-only
     STATUS current
     DESCRIPTION
              "The counter associated with the number of
              Severely Errored Framing Seconds."
      ::= { dsx3CurrentEntry 4 }
```

Fowler, Ed.

Standards Track

[Page 26]

```
dsx3CurrentUASs OBJECT-TYPE
    SYNTAX PerfCurrentCount
    MAX-ACCESS read-only
    STATUS current
    DESCRIPTION
           "The counter associated with the number of
           Unavailable Seconds."
     ::= { dsx3CurrentEntry 5 }
dsx3CurrentLCVs OBJECT-TYPE
    SYNTAX PerfCurrentCount
    MAX-ACCESS read-only
    STATUS current
    DESCRIPTION
           "The counter associated with the number of Line
           Coding Violations."
     ::= { dsx3CurrentEntry 6 }
dsx3CurrentPCVs OBJECT-TYPE
    SYNTAX PerfCurrentCount
    MAX-ACCESS read-only
    STATUS current
    DESCRIPTION
           "The counter associated with the number of P-bit
           Coding Violations."
     ::= { dsx3CurrentEntry 7 }
dsx3CurrentLESs OBJECT-TYPE
    SYNTAX PerfCurrentCount
    MAX-ACCESS read-only
    STATUS current
    DESCRIPTION
           "The number of Line Errored Seconds."
    ::= { dsx3CurrentEntry 8 }
dsx3CurrentCCVs OBJECT-TYPE
    SYNTAX PerfCurrentCount
    MAX-ACCESS read-only
    STATUS current
    DESCRIPTION
           "The number of C-bit Coding Violations."
     ::= { dsx3CurrentEntry 9 }
dsx3CurrentCESs OBJECT-TYPE
    SYNTAX PerfCurrentCount
    MAX-ACCESS read-only
    STATUS current
    DESCRIPTION
```

Fowler, Ed.

Standards Track

[Page 27]

"The number of C-bit Errored Seconds." ::= { dsx3CurrentEntry 10 } dsx3CurrentCSESs OBJECT-TYPE SYNTAX PerfCurrentCount MAX-ACCESS read-only STATUS current DESCRIPTION "The number of C-bit Severely Errored Seconds." ::= { dsx3CurrentEntry 11 } -- the DS3/E3 Interval Table dsx3IntervalTable OBJECT-TYPE SYNTAX SEQUENCE OF Dsx3IntervalEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The DS3/E3 Interval Table contains various statistics collected by each DS3/E3 Interface over the previous 24 hours of operation. The past 24 hours are broken into 96 completed 15 minute intervals. Each row in this table represents one such interval (identified by dsx3IntervalNumber) and for one specific interface (identifed by dsx3IntervalIndex)." $::= \{ ds3 7 \}$ dsx3IntervalEntry OBJECT-TYPE SYNTAX Dsx3IntervalEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in the DS3/E3 Interval table." INDEX { dsx3IntervalIndex, dsx3IntervalNumber } ::= { dsx3IntervalTable 1 } Dsx3IntervalEntry ::= SEQUENCE { DENCE {dsx3IntervalIndexInterfaceIndex,dsx3IntervalNumberINTEGER,dsx3IntervalPESsPerfIntervalCount,dsx3IntervalSEFSsPerfIntervalCount,dsx3IntervalUASsPerfIntervalCount,dsx3IntervalLCVsPerfIntervalCount,dsx3IntervalPCVsPerfIntervalCount,

Fowler, Ed.

Standards Track

[Page 28]

dsx3IntervalLESsPerfIntervalCount,dsx3IntervalCCVsPerfIntervalCount,dsx3IntervalCESsPerfIntervalCount,dsx3IntervalCSESsPerfIntervalCount,dsx3IntervalValidDataTruthValue } dsx3IntervalIndex OBJECT-TYPE SYNTAX InterfaceIndex MAX-ACCESS read-only STATUS current DESCRIPTION "The index value which uniquely identifies the DS3/E3 interface to which this entry is applicable. The interface identified by a particular value of this index is the same interface as identified by the same value an dsx3LineIndex object instance." ::= { dsx3IntervalEntry 1 } dsx3IntervalNumber OBJECT-TYPE SYNTAX INTEGER (1..96) MAX-ACCESS read-only STATUS current DESCRIPTION "A number between 1 and 96, where 1 is the most recently completed 15 minute interval and 96 is the 15 minutes interval completed 23 hours and 45 minutes prior to interval 1." ::= { dsx3IntervalEntry 2 } dsx3IntervalPESs OBJECT-TYPE SYNTAX PerfIntervalCount MAX-ACCESS read-only STATUS current DESCRIPTION "The counter associated with the number of P-bit Errored Seconds." ::= { dsx3IntervalEntry 3 } dsx3IntervalPSESs OBJECT-TYPE SYNTAX PerfIntervalCount MAX-ACCESS read-only STATUS current DESCRIPTION "The counter associated with the number of P-bit Severely Errored Seconds." ::= { dsx3IntervalEntry 4 }

Fowler, Ed. Standards Track [Page 29]

January 1999

dsx3IntervalSEFSs OBJECT-TYPE SYNTAX PerfIntervalCount MAX-ACCESS read-only STATUS current DESCRIPTION "The counter associated with the number of Severely Errored Framing Seconds." ::= { dsx3IntervalEntry 5 } dsx3IntervalUASs OBJECT-TYPE SYNTAX PerfIntervalCount MAX-ACCESS read-only STATUS current DESCRIPTION "The counter associated with the number of Unavailable Seconds. This object may decrease if the occurance of unavailable seconds occurs across an inteval boundary." ::= { dsx3IntervalEntry 6 } dsx3IntervalLCVs OBJECT-TYPE SYNTAX PerfIntervalCount MAX-ACCESS read-only STATUS current DESCRIPTION "The counter associated with the number of Line Coding Violations." ::= { dsx3IntervalEntry 7 } dsx3IntervalPCVs OBJECT-TYPE SYNTAX PerfIntervalCount MAX-ACCESS read-only STATUS current DESCRIPTION "The counter associated with the number of P-bit Coding Violations." ::= { dsx3IntervalEntry 8 } dsx3IntervalLESs OBJECT-TYPE SYNTAX PerfIntervalCount MAX-ACCESS read-only STATUS current DESCRIPTION "The number of Line Errored Seconds (BPVs or illegal zero sequences)." ::= { dsx3IntervalEntry 9 } dsx3IntervalCCVs OBJECT-TYPE

Fowler, Ed.

Standards Track

[Page 30]

SYNTAX PerfIntervalCount MAX-ACCESS read-only STATUS current DESCRIPTION "The number of C-bit Coding Violations." ::= { dsx3IntervalEntry 10 } dsx3IntervalCESs OBJECT-TYPE SYNTAX PerfIntervalCount MAX-ACCESS read-only STATUS current DESCRIPTION "The number of C-bit Errored Seconds." ::= { dsx3IntervalEntry 11 } dsx3IntervalCSESs OBJECT-TYPE SYNTAX PerfIntervalCount MAX-ACCESS read-only STATUS current DESCRIPTION "The number of C-bit Severely Errored Seconds." ::= { dsx3IntervalEntry 12 } dsx3IntervalValidData OBJECT-TYPE SYNTAX TruthValue MAX-ACCESS read-only STATUS current DESCRIPTION "This variable indicates if the data for this interval is valid." ::= { dsx3IntervalEntry 13 } -- the DS3/E3 Total dsx3TotalTable OBJECT-TYPE SYNTAX SEQUENCE OF Dsx3TotalEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The DS3/E3 Total Table contains the cumulative sum of the various statistics for the 24 hour period preceding the current interval." $::= \{ ds3 8 \}$ dsx3TotalEntry OBJECT-TYPE SYNTAX Dsx3TotalEntry MAX-ACCESS not-accessible STATUS current

Fowler, Ed.Standards Track[Page 31]

```
DESCRIPTION
               "An entry in the DS3/E3 Total table."
     INDEX { dsx3TotalIndex }
      ::= { dsx3TotalTable 1 }
Dsx3TotalEntry ::=
      SEQUENCE {
           UENCE {
dsx3TotalIndex InterfaceIndex,
dsx3TotalPESs PerfTotalCount,
dsx3TotalPSESs PerfTotalCount,
dsx3TotalSEFSs PerfTotalCount,
dsx3TotalUASs PerfTotalCount,
dsx3TotalLCVs PerfTotalCount,
dsx3TotalLESs PerfTotalCount,
dsx3TotalLESs PerfTotalCount,
dsx3TotalCVs PerfTotalCount,
dsx3TotalCESs PerfTotalCount,
dsx3TotalCESs PerfTotalCount,
       }
dsx3TotalIndex OBJECT-TYPE
      SYNTAX InterfaceIndex
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
               "The index value which uniquely identifies the
                DS3/E3 interface to which this entry is
                applicable. The interface identified by a
                particular value of this index is the same
                interface as identified by the same value an
                dsx3LineIndex object instance."
       ::= { dsx3TotalEntry 1 }
dsx3TotalPESs OBJECT-TYPE
      SYNTAX PerfTotalCount
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
                "The counter associated with the number of P-bit
                Errored Seconds, encountered by a DS3 interface in
                the previous 24 hour interval. Invalid 15 minute
               intervals count as 0."
       ::= { dsx3TotalEntry 2 }
dsx3TotalPSESs OBJECT-TYPE
      SYNTAX PerfTotalCount
      MAX-ACCESS read-only
      STATUS current
```

Standards Track Fowler, Ed.

[Page 32]

DESCRIPTION "The counter associated with the number of P-bit Severely Errored Seconds, encountered by a DS3 interface in the previous 24 hour interval. Invalid 15 minute intervals count as 0." ::= { dsx3TotalEntry 3 } dsx3TotalSEFSs OBJECT-TYPE SYNTAX PerfTotalCount MAX-ACCESS read-only STATUS current DESCRIPTION "The counter associated with the number of Severely Errored Framing Seconds, encountered by a DS3/E3 interface in the previous 24 hour interval. Invalid 15 minute intervals count as 0." ::= { dsx3TotalEntry 4 } dsx3TotalUASs OBJECT-TYPE SYNTAX PerfTotalCount MAX-ACCESS read-only STATUS current DESCRIPTION "The counter associated with the number of Unavailable Seconds, encountered by a DS3 interface in the previous 24 hour interval. Invalid 15 minute intervals count as 0." ::= { dsx3TotalEntry 5 } dsx3TotalLCVs OBJECT-TYPE SYNTAX PerfTotalCount MAX-ACCESS read-only STATUS current DESCRIPTION "The counter associated with the number of Line Coding Violations encountered by a DS3/E3 interface in the previous 24 hour interval. Invalid 15 minute intervals count as 0." ::= { dsx3TotalEntry 6 } dsx3TotalPCVs OBJECT-TYPE SYNTAX PerfTotalCount MAX-ACCESS read-only STATUS current DESCRIPTION "The counter associated with the number of P-bit Coding Violations, encountered by a DS3 interface

Fowler, Ed.Standards Track[Page 33]

DS3/E3 MIB

```
in the previous 24 hour interval. Invalid 15
           minute intervals count as 0."
     ::= { dsx3TotalEntry 7 }
dsx3TotalLESs OBJECT-TYPE
    SYNTAX PerfTotalCount
    MAX-ACCESS read-only
    STATUS current
    DESCRIPTION
            "The number of Line Errored Seconds (BPVs or
           illegal zero sequences) encountered by a DS3/E3
            interface in the previous 24 hour interval.
           Invalid 15 minute intervals count as 0."
     ::= { dsx3TotalEntry 8 }
dsx3TotalCCVs OBJECT-TYPE
    SYNTAX PerfTotalCount
    MAX-ACCESS read-only
    STATUS current
    DESCRIPTION
            "The number of C-bit Coding Violations encountered
           by a DS3 interface in the previous 24 hour
           interval. Invalid 15 minute intervals count as 0."
     ::= { dsx3TotalEntry 9 }
dsx3TotalCESs OBJECT-TYPE
    SYNTAX PerfTotalCount
    MAX-ACCESS read-only
    STATUS current
    DESCRIPTION
           "The number of C-bit Errored Seconds encountered
           by a DS3 interface in the previous 24 hour
           interval. Invalid 15 minute intervals count as 0."
     ::= { dsx3TotalEntry 10 }
dsx3TotalCSESs OBJECT-TYPE
    SYNTAX PerfTotalCount
    MAX-ACCESS read-only
    STATUS current
    DESCRIPTION
           "The number of C-bit Severely Errored Seconds
           encountered by a DS3 interface in the previous 24
           hour interval. Invalid 15 minute intervals count
           as 0."
     ::= { dsx3TotalEntry 11 }
-- The DS3 Far End Group
```

Fowler, Ed.Standards Track[Page 34]

-- The DS3 Far End Group consists of four tables : -- DS3 Far End Configuration --DS3 Far End Current DS3 Far End Interval _ _ -- DS3 Far End Total -- The DS3 Far End Configuration Table dsx3FarEndConfigTable OBJECT-TYPE SYNTAX SEQUENCE OF Dsx3FarEndConfigEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The DS3 Far End Configuration Table contains configuration information reported in the C-bits from the remote end." $::= \{ ds3 9 \}$ dsx3FarEndConfigEntry OBJECT-TYPE SYNTAX Dsx3FarEndConfigEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in the DS3 Far End Configuration table." INDEX { dsx3FarEndLineIndex } ::= { dsx3FarEndConfigTable 1 } Dsx3FarEndConfigEntry ::= SEQUENCE { DefinitionInterfaceIndex,dsx3FarEndLineIndexInterfaceIndex,dsx3FarEndEquipCodeDisplayString,dsx3FarEndLocationIDCodeDisplayString,dsx3FarEndFrameIDCodeDisplayString,dsx3FarEndUnitCodeDisplayString,dsx3FarEndFacilityIDCodeDisplayString, } dsx3FarEndLineIndex OBJECT-TYPE SYNTAX InterfaceIndex MAX-ACCESS read-only STATUS current DESCRIPTION "The index value which uniquely identifies the DS3 interface to which this entry is applicable. The interface identified by a particular value of this index is the same interface as identified by the same value an dsx3LineIndex object instance."

Fowler, Ed.Standards Track[Page 35]

::= { dsx3FarEndConfigEntry 1 } dsx3FarEndEquipCode OBJECT-TYPE SYNTAX DisplayString (SIZE (0..10)) MAX-ACCESS read-write STATUS current DESCRIPTION "This is the Far End Equipment Identification code that describes the specific piece of equipment. It is sent within the Path Identification Message." ::= { dsx3FarEndConfigEntry 2 } dsx3FarEndLocationIDCode OBJECT-TYPE SYNTAX DisplayString (SIZE (0..11)) MAX-ACCESS read-write STATUS current DESCRIPTION "This is the Far End Location Identification code that describes the specific location of the equipment. It is sent within the Path Identification Message." ::= { dsx3FarEndConfigEntry 3 } dsx3FarEndFrameIDCode OBJECT-TYPE SYNTAX DisplayString (SIZE (0..10)) MAX-ACCESS read-write STATUS current DESCRIPTION "This is the Far End Frame Identification code that identifies where the equipment is located within a building at a given location. It is sent within the Path Identification Message." ::= { dsx3FarEndConfigEntry 4 } dsx3FarEndUnitCode OBJECT-TYPE SYNTAX DisplayString (SIZE (0..6)) MAX-ACCESS read-write STATUS current DESCRIPTION "This is the Far End code that identifies the equipment location within a bay. It is sent within the Path Identification Message." ::= { dsx3FarEndConfigEntry 5 } dsx3FarEndFacilityIDCode OBJECT-TYPE SYNTAX DisplayString (SIZE (0..38)) MAX-ACCESS read-write

Fowler, Ed.Standards Track[Page 36]

STATUS current DESCRIPTION "This code identifies a specific Far End DS3 path. It is sent within the Path Identification Message." ::= { dsx3FarEndConfigEntry 6 } -- The DS3 Far End Current dsx3FarEndCurrentTable OBJECT-TYPE SYNTAX SEQUENCE OF Dsx3FarEndCurrentEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The DS3 Far End Current table contains various statistics being collected for the current 15 minute interval. The statistics are collected from the far end block error code within the Cbits." ::= { ds3 10 } dsx3FarEndCurrentEntry OBJECT-TYPE SYNTAX Dsx3FarEndCurrentEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in the DS3 Far End Current table." INDEX { dsx3FarEndCurrentIndex } ::= { dsx3FarEndCurrentTable 1 } Dsx3FarEndCurrentEntry ::= SEQUENCE { JENCE { dsx3FarEndCurrentIndex InterfaceIndex, dsx3FarEndTimeElapsed INTEGER, dsx3FarEndValidIntervals INTEGER, dsx3FarEndCurrentCESs PerfCurrentCount, dsx3FarEndCurrentCCVs PerfCurrentCount, dsx3FarEndCurrentUASs PerfCurrentCount, dsx3FarEndInvalidIntervals INTEGER } dsx3FarEndCurrentIndex OBJECT-TYPE SYNTAX InterfaceIndex MAX-ACCESS read-only STATUS current DESCRIPTION "The index value which uniquely identifies the DS3

Fowler, Ed. Standards Track [Page 37]

RFC 2496

interface to which this entry is applicable. The interface identified by a particular value of this index is identical to the interface identified by the same value of dsx3LineIndex." ::= { dsx3FarEndCurrentEntry 1 } dsx3FarEndTimeElapsed OBJECT-TYPE SYNTAX INTEGER (0..899) MAX-ACCESS read-only STATUS current DESCRIPTION "The number of seconds that have elapsed since the beginning of the far end current error-measurement period. If, for some reason, such as an adjustment in the system's time-of-day clock, the current interval exceeds the maximum value, the agent will return the maximum value." ::= { dsx3FarEndCurrentEntry 2 } dsx3FarEndValidIntervals OBJECT-TYPE SYNTAX INTEGER (0..96) MAX-ACCESS read-only STATUS current DESCRIPTION "The number of previous far end intervals for which data was collected. The value will be 96 unless the interface was brought online within the last 24 hours, in which case the value will be the number of complete 15 minute far end intervals since the interface has been online." ::= { dsx3FarEndCurrentEntry 3 } dsx3FarEndCurrentCESs OBJECT-TYPE SYNTAX PerfCurrentCount MAX-ACCESS read-only STATUS current DESCRIPTION "The counter associated with the number of Far Far End C-bit Errored Seconds." ::= { dsx3FarEndCurrentEntry 4 } dsx3FarEndCurrentCSESs OBJECT-TYPE SYNTAX PerfCurrentCount MAX-ACCESS read-only STATUS current DESCRIPTION "The counter associated with the number of Far End C-bit Severely Errored Seconds."

Fowler, Ed.

Standards Track

[Page 38]

::= { dsx3FarEndCurrentEntry 5 } dsx3FarEndCurrentCCVs OBJECT-TYPE SYNTAX PerfCurrentCount MAX-ACCESS read-only STATUS current DESCRIPTION "The counter associated with the number of Far End C-bit Coding Violations reported via the far end block error count." ::= { dsx3FarEndCurrentEntry 6 } dsx3FarEndCurrentUASs OBJECT-TYPE SYNTAX PerfCurrentCount MAX-ACCESS read-only STATUS current DESCRIPTION "The counter associated with the number of Far End unavailable seconds." ::= { dsx3FarEndCurrentEntry 7 } dsx3FarEndInvalidIntervals OBJECT-TYPE SYNTAX INTEGER (0..96) MAX-ACCESS read-only STATUS current DESCRIPTION "The number of intervals in the range from 0 to dsx3FarEndValidIntervals for which no data is available. This object will typically be zero except in cases where the data for some intervals are not available (e.g., in proxy situations)." ::= { dsx3FarEndCurrentEntry 8 } -- The DS3 Far End Interval Table dsx3FarEndIntervalTable OBJECT-TYPE SYNTAX SEQUENCE OF Dsx3FarEndIntervalEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The DS3 Far End Interval Table contains various statistics collected by each DS3 interface over the previous 24 hours of operation. The past 24 hours are broken into 96 completed 15 minute intervals." ::= { ds3 11 } dsx3FarEndIntervalEntry OBJECT-TYPE

Fowler, Ed.

Standards Track

[Page 39]

SYNTAX Dsx3FarEndIntervalEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in the DS3 Far End Interval table." INDEX { dsx3FarEndIntervalIndex, dsx3FarEndIntervalNumber } ::= { dsx3FarEndIntervalTable 1 } Dsx3FarEndIntervalEntry ::= SEQUENCE { dsx3FarEndIntervalIndex InterfaceIndex, dsx3FarEndIntervalNumber INTEGER, dsx3FarEndIntervalCESs PerfIntervalCount, dsx3FarEndIntervalCSESs PerfIntervalCount, dsx3FarEndIntervalCCVs PerfIntervalCount, dsx3FarEndIntervalUASs PerfIntervalCount, dsx3FarEndIntervalValidData TruthValue } dsx3FarEndIntervalIndex OBJECT-TYPE SYNTAX InterfaceIndex MAX-ACCESS read-only STATUS current DESCRIPTION "The index value which uniquely identifies the DS3 interface to which this entry is applicable. The interface identified by a particular value of this index is identical to the interface identified by the same value of dsx3LineIndex." ::= { dsx3FarEndIntervalEntry 1 } dsx3FarEndIntervalNumber OBJECT-TYPE SYNTAX INTEGER (1..96) MAX-ACCESS read-only STATUS current DESCRIPTION "A number between 1 and 96, where 1 is the most recently completed 15 minute interval and 96 is the 15 minutes interval completed 23 hours and 45 minutes prior to interval 1." ::= { dsx3FarEndIntervalEntry 2 } dsx3FarEndIntervalCESs OBJECT-TYPE SYNTAX PerfIntervalCount MAX-ACCESS read-only STATUS current DESCRIPTION

Fowler, Ed.

Standards Track

[Page 40]

DS3/E3 MIB

"The counter associated with the number of Far End C-bit Errored Seconds encountered by a DS3 interface in one of the previous 96, individual 15 minute, intervals. In the case where the agent is a proxy and data is not available, return noSuchInstance." ::= { dsx3FarEndIntervalEntry 3 } dsx3FarEndIntervalCSESs OBJECT-TYPE SYNTAX PerfIntervalCount MAX-ACCESS read-only STATUS current DESCRIPTION "The counter associated with the number of Far End C-bit Severely Errored Seconds." ::= { dsx3FarEndIntervalEntry 4 } dsx3FarEndIntervalCCVs OBJECT-TYPE SYNTAX PerfIntervalCount MAX-ACCESS read-only STATUS current DESCRIPTION "The counter associated with the number of Far End C-bit Coding Violations reported via the far end block error count." ::= { dsx3FarEndIntervalEntry 5 } dsx3FarEndIntervalUASs OBJECT-TYPE SYNTAX PerfIntervalCount MAX-ACCESS read-only STATUS current DESCRIPTION "The counter associated with the number of Far End unavailable seconds." ::= { dsx3FarEndIntervalEntry 6 } dsx3FarEndIntervalValidData OBJECT-TYPE SYNTAX TruthValue MAX-ACCESS read-only STATUS current DESCRIPTION "This variable indicates if the data for this interval is valid." ::= { dsx3FarEndIntervalEntry 7 } -- The DS3 Far End Total

Fowler, Ed.

Standards Track

[Page 41]

dsx3FarEndTotalTable OBJECT-TYPE SYNTAX SEQUENCE OF Dsx3FarEndTotalEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The DS3 Far End Total Table contains the cumulative sum of the various statistics for the 24 hour period preceding the current interval." $::= \{ ds3 12 \}$ dsx3FarEndTotalEntry OBJECT-TYPE SYNTAX Dsx3FarEndTotalEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in the DS3 Far End Total table." INDEX { dsx3FarEndTotalIndex } ::= { dsx3FarEndTotalTable 1 } Dsx3FarEndTotalEntry ::= SEQUENCE { dsx3FarEndTotalIndexInterfaceIndex,dsx3FarEndTotalCESsPerfTotalCount,dsx3FarEndTotalCSESsPerfTotalCount,dsx3FarEndTotalCCVsPerfTotalCount,dsx3FarEndTotalUASsPerfTotalCount } dsx3FarEndTotalIndex OBJECT-TYPE SYNTAX InterfaceIndex MAX-ACCESS read-only STATUS current DESCRIPTION "The index value which uniquely identifies the DS3 interface to which this entry is applicable. The interface identified by a particular value of this index is identical to the interface identified by the same value of dsx3LineIndex." ::= { dsx3FarEndTotalEntry 1 } dsx3FarEndTotalCESs OBJECT-TYPE SYNTAX PerfTotalCount MAX-ACCESS read-only STATUS current DESCRIPTION "The counter associated with the number of Far End C-bit Errored Seconds encountered by a DS3 interface in the previous 24 hour interval.

Fowler, Ed.Standards Track[Page 42]

DS3/E3 MIB

Invalid 15 minute intervals count as 0." ::= { dsx3FarEndTotalEntry 2 } dsx3FarEndTotalCSESs OBJECT-TYPE SYNTAX PerfTotalCount MAX-ACCESS read-only STATUS current DESCRIPTION "The counter associated with the number of Far End C-bit Severely Errored Seconds encountered by a DS3 interface in the previous 24 hour interval. Invalid 15 minute intervals count as 0." ::= { dsx3FarEndTotalEntry 3 } dsx3FarEndTotalCCVs OBJECT-TYPE SYNTAX PerfTotalCount MAX-ACCESS read-only STATUS current DESCRIPTION "The counter associated with the number of Far End C-bit Coding Violations reported via the far end block error count encountered by a DS3 interface in the previous 24 hour interval. Invalid 15 minute intervals count as 0." ::= { dsx3FarEndTotalEntry 4 } dsx3FarEndTotalUASs OBJECT-TYPE SYNTAX PerfTotalCount MAX-ACCESS read-only STATUS current DESCRIPTION "The counter associated with the number of Far End unavailable seconds encountered by a DS3 interface in the previous 24 hour interval. Invalid 15 minute intervals count as 0." ::= { dsx3FarEndTotalEntry 5 } -- the DS3/E3 Fractional Table -- This table is deprecated. dsx3FracTable OBJECT-TYPE SYNTAX SEQUENCE OF Dsx3FracEntry MAX-ACCESS not-accessible STATUS deprecated DESCRIPTION "This table is deprecated in favour of using

Fowler, Ed. Standards Track [Page 43]

ifStackTable.

Implementation of this table was optional. It was designed for those systems dividing a DS3/E3 into channels containing different data streams that are of local interest.

The DS3/E3 fractional table identifies which DS3/E3 channels associated with a CSU are being used to support a logical interface, i.e., an entry in the interfaces table from the Internet-standard MIB.

For example, consider a DS3 device with 4 high speed links carrying router traffic, a feed for voice, a feed for video, and a synchronous channel for a non-routed protocol. We might describe the allocation of channels, in the dsx3FracTable, as follows: dsx3FracIfIndex.2. 1 = 3 dsx3FracIfIndex.2.15 = 4 dsx3FracIfIndex.2. 2 = 3 dsx3FracIfIndex.2.16 = 6 dsx3FracIfIndex.2. 3 = 3 dsx3FracIfIndex.2.17 = 6 dsx3FracIfIndex.2. 4 = 3 dsx3FracIfIndex.2.18 = 6 dsx3FracIfIndex.2. 5 = 3 dsx3FracIfIndex.2.19 = 6 dsx3FracIfIndex.2. 6 = 3 dsx3FracIfIndex.2.20 = 6 dsx3FracIfIndex.2. 7 = 4 dsx3FracIfIndex.2.21 = 6 dsx3FracIfIndex.2. 9 = 4 dsx3FracIfIndex.2.22 = 6 dsx3FracIfIndex.2. 9 = 4 dsx3FracIfIndex.2.23 = 6 dsx3FracIfIndex.2.10 = 4 dsx3FracIfIndex.2.24 = 6 dsx3FracIfIndex.2.11 = 4 dsx3FracIfIndex.2.25 = 6 dsx3FracIfIndex.2.12 = 5 dsx3FracIfIndex.2.26 = 6 dsx3FracIfIndex.2.13 = 5 dsx3FracIfIndex.2.27 = 6 dsx3FracIfIndex.2.14 = 5 dsx3FracIfIndex.2.28 = 6 For dsx3M23, dsx3 SYNTRAN, dsx3CbitParity, and dsx3ClearChannel there are 28 legal channels, numbered 1 throug h 28.

For e3Framed there are 16 legal channels, numbered
1 through 16. The channels (1..16) correspond
directly to the equivalently numbered time-slots."
::= { ds3 13 }

dsx3FracEntry OBJECT-TYPE SYNTAX Dsx3FracEntry MAX-ACCESS not-accessible STATUS deprecated DESCRIPTION "An entry in the DS3 Fractional table."

Fowler, Ed.

Standards Track

[Page 44]

INDEX { dsx3FracIndex, dsx3FracNumber } ::= { dsx3FracTable 1 } Dsx3FracEntry ::= SEQUENCE { dsx3FracIndex INTEGER, dsx3FracNumber INTEGER, dsx3FracIfIndex INTEGER } dsx3FracIndex OBJECT-TYPE SYNTAX INTEGER (1..'7fffffff'h) MAX-ACCESS read-only STATUS deprecated DESCRIPTION "The index value which uniquely identifies the DS3 interface to which this entry is applicable The interface identified by a particular value of this index is the same interface as identified by the same value an dsx3LineIndex object instance." ::= { dsx3FracEntry 1 } dsx3FracNumber OBJECT-TYPE SYNTAX INTEGER (1..31) MAX-ACCESS read-only STATUS deprecated DESCRIPTION "The channel number for this entry." ::= { dsx3FracEntry 2 } dsx3FracIfIndex OBJECT-TYPE SYNTAX INTEGER (1...'7fffffff'h) MAX-ACCESS read-write STATUS deprecated DESCRIPTION "An index value that uniquely identifies an interface. The interface identified by a particular value of this index is the same interface as identified by the same value an ifIndex object instance. If no interface is currently using a channel, the value should be zero. If a single interface occupies more than one time slot, that if Index value will be found in multiple time slots." ::= { dsx3FracEntry 3 }

Fowler, Ed.

Standards Track

[Page 45]

-- Ds3 TRAPS ds3Traps OBJECT IDENTIFIER ::= { ds3 15 } dsx3LineStatusChange NOTIFICATION-TYPE OBJECTS { dsx3LineStatus, dsx3LineStatusLastChange } STATUS current DESCRIPTION "A dsx3LineStatusChange trap is sent when the value of an instance of dsx3LineStatus changes. It can be utilized by an NMS to trigger polls. When the line status change results in a lower level line status change (i.e. ds1), then no traps for the lower level are sent." ::= { ds3Traps 0 1 } -- conformance information ds3Conformance OBJECT IDENTIFIER ::= { ds3 14 } ds3Groups OBJECT IDENTIFIER ::= { ds3Conformance 1 } ds3Compliances OBJECT IDENTIFIER ::= { ds3Conformance 2 } -- compliance statements ds3Compliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for DS3/E3 interfaces." MODULE -- this module MANDATORY-GROUPS { ds3NearEndConfigGroup, ds3NearEndStatisticsGroup } GROUP ds3FarEndGroup DESCRIPTION "Implementation of this group is optional for all systems that attach to a DS3 Interface. However, only C-bit Parity and SYNTRAN DS3 applications have the capability (option) of providing this information." Fowler, Ed. Standards Track [Page 46]

DS3/E3 MIB

GROUP ds3NearEndOptionalConfigGroup DESCRIPTION "Implementation of this group is optional for all systems that attach to a DS3 interface." OBJECT dsx3LineType MIN-ACCESS read-only DESCRIPTION "Write access for the line type is not required." OBJECT dsx3LineCoding MIN-ACCESS read-only DESCRIPTION "Write access for the line coding is not required." dsx3SendCode OBJECT MIN-ACCESS read-only DESCRIPTION "Write access for the send code is not required." dsx3LoopbackConfig OBJECT MIN-ACCESS read-only DESCRIPTION "Write access for loopbacks is not required." OBJECT dsx3TransmitClockSource MIN-ACCESS read-only DESCRIPTION "Write access for the transmit clock source is not required." OBJECT dsx3LineLength MIN-ACCESS read-only DESCRIPTION "Write access for the line length is not required." OBJECT dsx3Channelization MIN-ACCESS read-only DESCRIPTION "Write access for the channelization is not required." ::= { ds3Compliances 1 } -- units of conformance

Fowler, Ed.

Standards Track

[Page 47]

ds3NearEndConfigGroup OBJECT-GROUP OBJECTS { dsx3LineIndex, dsx3TimeElapsed, dsx3ValidIntervals, dsx3LineType, dsx3LineCoding, dsx3SendCode, dsx3CircuitIdentifier, dsx3LoopbackConfig, dsx3LineStatus, dsx3TransmitClockSource, dsx3InvalidIntervals, dsx3LineLength, dsx3LoopbackStatus, dsx3Channelization, dsx3Ds1ForRemoteLoop } STATUS current DESCRIPTION "A collection of objects providing configuration information applicable to all DS3/E3 interfaces." ::= { ds3Groups 1 } ds3NearEndStatisticsGroup OBJECT-GROUP OBJECTS { dsx3CurrentIndex, dsx3CurrentPESs, dsx3CurrentPSESs, dsx3CurrentSEFSs, dsx3CurrentUASs, dsx3CurrentLCVs, dsx3CurrentPCVs, dsx3CurrentLESs, dsx3CurrentCCVs, dsx3CurrentCESs, dsx3CurrentCSESs, dsx3IntervalIndex, dsx3IntervalNumber, dsx3IntervalPESs, dsx3IntervalPSESs, dsx3IntervalSEFSs, dsx3IntervalUASs, dsx3IntervalLCVs, dsx3IntervalPCVs, dsx3IntervalLESs, dsx3IntervalCCVs, dsx3IntervalCESs, dsx3IntervalCSESs, dsx3IntervalValidData, dsx3TotalIndex,

Fowler, Ed.

Standards Track

[Page 48]

```
dsx3TotalPESs,
              dsx3TotalPSESs,
              dsx3TotalSEFSs,
              dsx3TotalUASs,
              dsx3TotalLCVs,
              dsx3TotalPCVs,
              dsx3TotalLESs,
              dsx3TotalCCVs,
              dsx3TotalCESs,
              dsx3TotalCSESs }
   STATUS current
   DESCRIPTION
            "A collection of objects providing statistics
            information applicable to all DS3/E3 interfaces."
    ::= { ds3Groups 2 }
ds3FarEndGroup OBJECT-GROUP
   OBJECTS { dsx3FarEndLineIndex,
              dsx3FarEndEquipCode,
              dsx3FarEndLocationIDCode,
              dsx3FarEndFrameIDCode,
              dsx3FarEndUnitCode,
              dsx3FarEndFacilityIDCode,
              dsx3FarEndCurrentIndex,
              dsx3FarEndTimeElapsed,
              dsx3FarEndValidIntervals,
              dsx3FarEndCurrentCESs,
              dsx3FarEndCurrentCSESs,
              dsx3FarEndCurrentCCVs,
              dsx3FarEndCurrentUASs,
              dsx3FarEndInvalidIntervals,
              dsx3FarEndIntervalIndex,
              dsx3FarEndIntervalNumber,
              dsx3FarEndIntervalCESs,
              dsx3FarEndIntervalCSESs,
              dsx3FarEndIntervalCCVs,
              dsx3FarEndIntervalUASs,
              dsx3FarEndIntervalValidData,
              dsx3FarEndTotalIndex,
              dsx3FarEndTotalCESs,
              dsx3FarEndTotalCSESs,
              dsx3FarEndTotalCCVs,
              dsx3FarEndTotalUASs }
    STATUS current
   DESCRIPTION
            "A collection of objects providing remote
            configuration and statistics information
            applicable to C-bit Parity and SYNTRAN DS3
```

Fowler, Ed.

Standards Track

[Page 49]

```
interfaces."
    ::= { ds3Groups 3 }
ds3DeprecatedGroup OBJECT-GROUP
   OBJECTS { dsx3IfIndex,
             dsx3FracIndex,
             dsx3FracNumber,
             dsx3FracIfIndex }
   STATUS deprecated
   DESCRIPTION
            "A collection of obsolete objects that may be
            implemented for backwards compatibility."
    ::= { ds3Groups 4 }
ds3NearEndOptionalConfigGroup OBJECT-GROUP
   OBJECTS { dsx3LineStatusLastChange,
             dsx3LineStatusChangeTrapEnable }
   STATUS
             current
   DESCRIPTION
            "A collection of objects that may be implemented
            on DS3/E3 interfaces."
    ::= { ds3Groups 5 }
ds3NearEndOptionalTrapGroup NOTIFICATION-GROUP
   NOTIFICATIONS { dsx3LineStatusChange }
   STATUS
           current
   DESCRIPTION
            "A collection of notifications that may be
            implemented on DS3/E3 interfaces."
    ::= { ds3Groups 6 }
```

```
END
```

Fowler, Ed.

Standards Track

[Page 50]

4. Appendix A - Use of dsx3IfIndex and dsx3LineIndex

This Appendix exists to document the previous use if dsx3IfIndex and dsx3LineIndex and to clarify the relationship of dsx3LineIndex as defined in rfc1407 with the dsx3LineIndex as defined in this document.

The following shows the old and new definitions and the relationship:

[New Definition]: "This object should be made equal to ifIndex. The next paragraph describes its previous usage. Making the object equal to ifIndex allows proper use of ifStackTable.

[Old Definition]: "this object is the identifier of a DS3/E3 Interface on a managed device. If there is an ifEntry that is directly associated with this and only this DS3/E3 interface, it should have the same value as ifIndex. Otherwise, number the dsx3LineIndices with an unique identifier following the rules of choosing a number that is greater than ifNumber and numbering the inside interfaces (e.g., equipment side) with even numbers and outside interfaces (e.g, network side) with odd numbers."

When the "Old Definition" was created, my understanding was that it was described this way to allow a manager to treat the value _as if_ it were and ifIndex, i.e. the value would either be: 1) an ifIndex value or 2) a value that was guaranteed to be different from all valid ifIndex values.

The new definition is a subset of that definition, i.e. the value is always an ifIndex value.

The following is Section 3.1 from rfc1407:

Different physical configurations for the support of SNMP with DS3/E3 equipment exist. To accommodate these scenarios, two different indices for DS3/E3 interfaces are introduced in this MIB. These indices are dsx3IfIndex and dsx3LineIndex.

External interface scenario: the SNMP Agent represents all managed DS3/E3 lines as external interfaces (for example, an Agent residing on the device supporting DS3/E3 interfaces directly):

For this scenario, all interfaces are assigned an integer value equal to ifIndex, and the following applies:

ifIndex=dsx3IfIndex=dsx3LineIndex for all interfaces.

Fowler, Ed.

Standards Track

[Page 51]

The dsx3IfIndex column of the DS3/E3 Configuration table relates each DS3/E3 interface to its corresponding interface (ifIndex) in the Internet-standard MIB (MIB-II STD 17, RFC1213).

External&Internal interface scenario: the SNMP Agents resides on an host external from the device supporting DS3/E3 interfaces (e.g., a router). The Agent represents both the host and the DS3/E3 device. The index dsx3LineIndex is used to not only represent the DS3/E3 interfaces external from the host/DS3/E3-device combination, but also the DS3/E3 interfaces connecting the host and the DS3/E3 device. The index dsx3IfIndex is always equal to ifIndex.

Example:

A shelf full of CSUs connected to a Router. An SNMP Agent residing on the router proxies for itself and the CSU. The router has also an Ethernet interface:

	+	+			
ļ					
 E t	 R	44.736 MBPS	+ ds3 M13 +	Line#A	+ ds3 C-bit Parity +>
h e r	0	44.736 MBPS	 ds3 M13 +	Line#B 	 ds3 C-bit Parity +>
n e t	U T	44.736 MBPS	 ds3 M13 +	Line#C	 ds3 C-bit Parity +>
	 E 	44.736 MBPS	 ds3 M13 +	Line#D 	 ds3 C-bit Parity +>
	R				
	' +	1 +			

Fowler, Ed. Standards Track

[Page 52]

RFC 2496

The assignment of the index values could for example be:

ifIndex (= dsx3IfIndex)

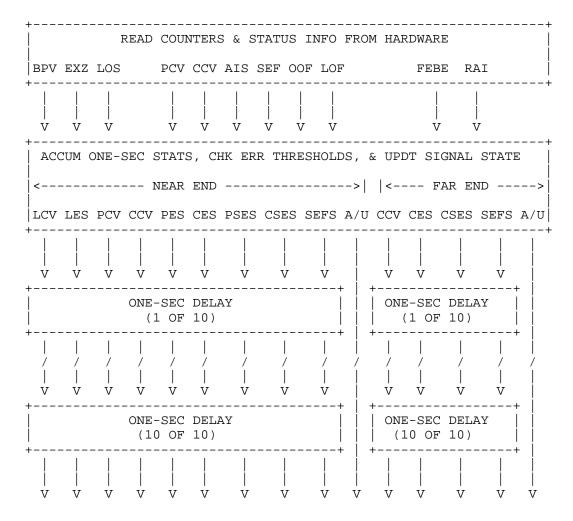
dsx3LineIndex

1		NA	NA (E	Ethernet)
2	Line#A	Router Side	6	
2	Line#A	Network Side	7	
3	Line#B	Router Side	8	
3	Line#B	Network Side	9	
4	Line#C	Router Side	10	
4	Line#C	Network Side	11	
5	Line#D	Router Side	12	
5	Line#D	Network Side	13	

For this example, if Number is equal to 5. Note the following description of dsx3LineIndex: the dsx3LineIndex identifies a DS3/E3 Interface on a managed device. If there is an ifEntry that is directly associated with this and only this DS3/E3 interface, it should have the same value as ifIndex. Otherwise, number the dsx3LineIndices with an unique identifier following the rules of choosing a number greater than if Number and numbering inside interfaces (e.g., equipment side) with even numbers and outside interfaces (e.g, network side) with odd numbers.

If the CSU shelf is managed by itself by a local SNMP Agent, the situation would be:

ifIndex (= dsx3IfIndex)


dsx3LineIndex

Fowler, Ed. Standards Track

[Page 53]

5. Appendix B - The delay approach to Unavialable Seconds.

This procedure is illustrated below for a DS3 C-Bit parity application. Similar rules would apply for other interfaces covered by this MIB. The procedure guarantees that the statistical counters are correctly updated at all times, although they lag real time by 10 seconds. At the end of each 15 minutes interval the current interval counts are transferred to the most recent interval entry and each interval is shifted up by one position, with the oldest being discarded if necessary in order to make room. The current interval counts then start over from zero. Note, however, that the signal state calculation does not start afresh at each interval boundary; rather, signal state information is retained across interval boundaries.

Fowler, Ed. Standards Track

[Page 54]

UPDATE STATISTICS COUNTERS

Note that if such a procedure is adopted there is no current interval data for the first ten seconds after a system comes up. noSuchInstance must be returned if a management station attempts to access the current interval counters during this time.

It is an implementation-specific matter whether an agent assumes that the initial state of the interface is available or unavailable.

Fowler, Ed.

Standards Track

[Page 55]

6. Intellectual Property

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF's procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director.

7. Acknowledgments

This document was produced by the Trunk MIB Working Group

- 8. References
 - Harrington, D., Presuhn, R. and B. Wijnen, "An Architecture for Describing SNMP Management Frameworks", RFC 2271, January 1998.
 - [2] Rose, M. and K. McCloghrie, "Structure and Identification of Management Information for TCP/IP-based Internets", STD 16, RFC 1155, May 1990.
 - [3] Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD 16, RFC 1212, March 1991.
 - [4] Rose, M., "A Convention for Defining Traps for use with the SNMP", RFC 1215, March 1991.
 - [5] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Structure of Management Information for Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1902, January 1996.
 - [6] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Textual Conventions for Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1903, January 1996.

Fowler, Ed. Standards Track	[Page 56]
-----------------------------	-----------

- [7] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Conformance Statements for Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1904, January 1996.
- [8] Case, J., Fedor, M., Schoffstall, M. and J. Davin, "Simple Network Management Protocol", STD 15, RFC 1157, May 1990.
- [9] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Introduction to Community-based SNMPv2", RFC 1901, January 1996.
- [10] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Transport Mappings for Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1906, January 1996.
- [11] Case, J., Harrington D., Presuhn R. and B. Wijnen, "Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)", RFC 2272, January 1998.
- [12] Blumenthal, U. and B. Wijnen, "User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)", RFC 2274, January 1998.
- [13] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Protocol Operations for Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1905, January 1996.
- [14] Levi, D., Meyer, P. and B. Stewart, "SNMPv3 Applications", RFC 2273, January 1998.
- [15] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP)", RFC 2275, January 1998.
- [16] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB using SMIv2", RFC 2233, November 1997.
- [17] Fowler D., "Definitions of Managed Objects for the DS1 and E1 Interface Types", RFC 2495, January 1999.
- [18] Brown, T., and Tesink, K., "Definitions of Managed Objects for the SONET/SDH Interface Type", Work in Progress.
- [19] American National Standard for telecommunications digital hierarchy - electrical interfaces, ANSI T1.102- 1987.
- [20] American National Standard for telecommunications digital hierarchy - formats specification, ANSI T1.107- 1988.

Fowler, Ed. Standards Track [Page 57]

[20a]ANSI T1.107a-1990.

- [21] American National Standard for telecommunications Carrier-to-Customer Installation - DS3 Metallic Interface, ANSI T1.404-1989.
- [22] American National Standard for Telecommunications -- Layer 1 In-Service Digital Transmission Performance Monitoring T1.231, Sept 1993.
- [23] CCITT Digital Multiplex Equipment Operating at the Third Order Bit Rate of 34 368 Kbit/s and the Forth Order Bit Rate of 139 264 Kbit/s and Using Positive Justification, G.751
- [24] European Telecommunications Standards Institute -- ETS "34M" --Metropolitan Area Network Physical Convergence Layer Procedure for 34.368 Megabits per Second, T/NA(91)18, May 1991.
- [25] Fowler, D., "Definitions of Managed Objects for the Ds0 and DSOBundle Interface Types", RFC 2494, January 1999.
- [26] Tesink, K., "Textual Conventions for MIB Modules Using Performance History Based on 15 Minute Intervals", RFC 2493, January 1999.
- 9. Security Considerations

SNMPv1 by itself is such an insecure environment. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET (read) the objects in this MIB.

It is recommended that the implementors consider the security features as provided by the SNMPv3 framework. Specifically, the use of the User-based Security Model RFC 2274 [12] and the View-based Access Control Model RFC 2275 [15] is recommended.

It is then a customer/user responsibility to ensure that the SNMP entity giving access to an instance of this MIB, is properly configured to give access to those objects only to those principals (users) that have legitimate rights to access them.

Setting any of the following objects to an inappropriate value can cause loss of traffic. The definition of inappropriate varies for each object. In the case of dsx3LineType, for example, both ends of a ds3/e3 must have the same value in order for traffic to flow. In the case of dsx3SendCode and dsx3LoopbackConfig, for another example, traffic may stop transmitting when particular loopbacks are applied.

Fowler, Ed. Standards Track

[Page 58]

dsx3LineType dsx3LineCoding dsx3SendCode dsx3LoopbackConfig dsx3TransmitClockSource dsx3LineLength dsx3Channelization Setting the following object is mischevious, but not harmful to traffic dsx3CircuitIdentifier Setting the following object can cause an increase in the number of traps received by the network management station. dsx3LineStatusChangeTrabEnable 10. Author's Address David Fowler Newbridge Networks 600 March Road

Phone: (613) 599-3600, ext 6559 EMail: davef@newbridge.com

Kanata, Ontario, Canada K2K 2E6

Fowler, Ed.

Standards Track

[Page 59]

11. Full Copyright Statement

Copyright (C) The Internet Society (1999). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Fowler, Ed. Standards Track

[Page 60]