
Network Working Group S. Legg
Request for Comments: 3687 Adacel Technologies
Category: Standards Track February 2004

 Lightweight Directory Access Protocol (LDAP)
 and X.500 Component Matching Rules

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

 The syntaxes of attributes in a Lightweight Directory Access Protocol
 (LDAP) or X.500 directory range from simple data types, such as text
 string, integer, or boolean, to complex structured data types, such
 as the syntaxes of the directory schema operational attributes.
 Matching rules defined for the complex syntaxes usually only provide
 the most immediately useful matching capability. This document
 defines generic matching rules that can match any user selected
 component parts in an attribute value of any arbitrarily complex
 attribute syntax.

Legg Standards Track [Page 1]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

Table of Contents

 1. Introduction . 3
 2. Conventions. 4
 3. ComponentAssertion . 5
 3.1. Component Reference. 6
 3.1.1. Component Type Substitutions 7
 3.1.2. Referencing SET, SEQUENCE and CHOICE Components. 8
 3.1.3. Referencing SET OF and SEQUENCE OF Components. . 9
 3.1.4. Referencing Components of Parameterized Types. . 10
 3.1.5. Component Referencing Example. 10
 3.1.6. Referencing Components of Open Types 12
 3.1.6.1. Open Type Referencing Example 12
 3.1.7. Referencing Contained Types. 14
 3.1.7.1. Contained Type Referencing Example. . . 14
 3.2. Matching of Components 15
 3.2.1. Applicability of Existing Matching Rules 17
 3.2.1.1. String Matching 17
 3.2.1.2. Telephone Number Matching 17
 3.2.1.3. Distinguished Name Matching 18
 3.2.2. Additional Useful Matching Rules 18
 3.2.2.1. The rdnMatch Matching Rule. 18
 3.2.2.2. The presentMatch Matching Rule. 19
 3.2.3. Summary of Useful Matching Rules 20
 4. ComponentFilter. 21
 5. The componentFilterMatch Matching Rule 22
 6. Equality Matching of Complex Components. 24
 6.1. The OpenAssertionType Syntax 24
 6.2. The allComponentsMatch Matching Rule 25
 6.3. Deriving Component Equality Matching Rules 27
 6.4. The directoryComponentsMatch Matching Rule 28
 7. Component Matching Examples. 30
 8. Security Considerations. 37
 9. Acknowledgements . 37
 10. IANA Considerations. 37
 11. References . 38
 11.1. Normative References. 38
 11.2. Informative References. 40
 12. Intellectual Property Statement. 40
 13. Author’s Address . 41
 14. Full Copyright Statement 42

Legg Standards Track [Page 2]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

1. Introduction

 The structure or data type of data held in an attribute of a
 Lightweight Directory Access Protocol (LDAP) [7] or X.500 [19]
 directory is described by the attribute’s syntax. Attribute syntaxes
 range from simple data types, such as text string, integer, or
 boolean, to complex data types, for example, the syntaxes of the
 directory schema operational attributes.

 In X.500, the attribute syntaxes are explicitly described by Abstract
 Syntax Notation One (ASN.1) [13] type definitions. ASN.1 type
 notation has a number of simple data types (e.g., PrintableString,
 INTEGER, BOOLEAN), and combining types (i.e., SET, SEQUENCE, SET OF,
 SEQUENCE OF, and CHOICE) for constructing arbitrarily complex data
 types from simpler component types. In LDAP, the attribute syntaxes
 are usually described in Augmented Backus-Naur Form (ABNF) [2],
 though there is an implied association between the LDAP attribute
 syntaxes and the X.500 ASN.1 types. To a large extent, the data
 types of attribute values in either an LDAP or X.500 directory are
 described by ASN.1 types. This formal description can be exploited
 to identify component parts of an attribute value for a variety of
 purposes. This document addresses attribute value matching.

 With any complex attribute syntax there is normally a requirement to
 partially match an attribute value of that syntax by matching only
 selected components of the value. Typically, matching rules specific
 to the attribute syntax are defined to fill this need. These highly
 specific matching rules usually only provide the most immediately
 useful matching capability. Some complex attribute syntaxes don’t
 even have an equality matching rule let alone any additional matching
 rules for partial matching. This document defines a generic way of
 matching user selected components in an attribute value of any
 arbitrarily complex attribute syntax, where that syntax is described
 using ASN.1 type notation. All of the type notations defined in
 X.680 [13] are supported.

 Section 3 describes the ComponentAssertion, a testable assertion
 about the value of a component of an attribute value of any complex
 syntax.

 Section 4 introduces the ComponentFilter assertion, which is an
 expression of ComponentAssertions. The ComponentFilter enables more
 powerful filter matching of components in an attribute value.

 Section 5 defines the componentFilterMatch matching rule, which
 enables a ComponentFilter to be evaluated against attribute values.

Legg Standards Track [Page 3]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 Section 6 defines matching rules for component-wise equality matching
 of attribute values of any syntax described by an ASN.1 type
 definition.

 Examples showing the usage of componentFilterMatch are in Section 7.

 For a new attribute syntax, the Generic String Encoding Rules [9] and
 the specifications in sections 3 to 6 of this document make it
 possible to fully and precisely define the LDAP-specific encoding,
 the LDAP and X.500 binary encoding (and possibly other ASN.1
 encodings in the future), a suitable equality matching rule, and a
 comprehensive collection of component matching capabilities, by
 simply writing down an ASN.1 type definition for the syntax. These
 implicit definitions are also automatically extended if the ASN.1
 type is later extended. The algorithmic relationship between the
 ASN.1 type definition, the various encodings and the component
 matching behaviour makes directory server implementation support for
 the component matching rules amenable to automatic code generation
 from ASN.1 type definitions.

 Schema designers have the choice of storing related items of data as
 a single attribute value of a complex syntax in some entry, or as a
 subordinate entry where the related data items are stored as separate
 attribute values of simpler syntaxes. The inability to search
 component parts of a complex syntax has been used as an argument for
 favouring the subordinate entries approach. The component matching
 rules provide the analogous matching capability on an attribute value
 of a complex syntax that a search filter has on a subordinate entry.

 Most LDAP syntaxes have corresponding ASN.1 type definitions, though
 they are usually not reproduced or referenced alongside the formal
 definition of the LDAP syntax. Syntaxes defined with only a
 character string encoding, i.e., without an explicit or implied
 corresponding ASN.1 type definition, cannot use the component
 matching capabilities described in this document unless and until a
 semantically equivalent ASN.1 type definition is defined for them.

2. Conventions

 Throughout this document "type" shall be taken to mean an ASN.1 type
 unless explicitly qualified as an attribute type, and "value" shall
 be taken to mean an ASN.1 value unless explicitly qualified as an
 attribute value.

Legg Standards Track [Page 4]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 Note that "ASN.1 value" does not mean a Basic Encoding Rules (BER)
 [17] encoded value. The ASN.1 value is an abstract concept that is
 independent of any particular encoding. BER is just one possible
 encoding of an ASN.1 value. The component matching rules operate at
 the abstract level without regard for the possible encodings of a
 value.

 Attribute type and matching rule definitions in this document are
 provided in both the X.500 [10] and LDAP [4] description formats.
 Note that the LDAP descriptions have been rendered with additional
 white-space and line breaks for the sake of readability.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED" and "MAY" in this document are
 to be interpreted as described in BCP 14, RFC 2119 [1]. The key word
 "OPTIONAL" is exclusively used with its ASN.1 meaning.

3. ComponentAssertion

 A ComponentAssertion is an assertion about the presence, or values
 of, components within an ASN.1 value, i.e., an instance of an ASN.1
 type. The ASN.1 value is typically an attribute value, where the
 ASN.1 type is the syntax of the attribute. However, a
 ComponentAssertion may also be applied to a component part of an
 attribute value. The assertion evaluates to either TRUE, FALSE or
 Undefined for each tested ASN.1 value.

 A ComponentAssertion is described by the following ASN.1 type
 (assumed to be defined with "EXPLICIT TAGS" in force):

 ComponentAssertion ::= SEQUENCE {
 component ComponentReference (SIZE(1..MAX)) OPTIONAL,
 useDefaultValues BOOLEAN DEFAULT TRUE,
 rule MATCHING-RULE.&id,
 value MATCHING-RULE.&AssertionType }

 ComponentReference ::= UTF8String

 MATCHING-RULE.&id equates to the OBJECT IDENTIFIER of a matching
 rule. MATCHING-RULE.&AssertionType is an open type (formerly known
 as the ANY type).

 The "component" field of a ComponentAssertion identifies which
 component part of a value of some ASN.1 type is to be tested, the
 "useDefaultValues" field indicates whether DEFAULT values are to be
 substituted for absent component values, the "rule" field indicates

Legg Standards Track [Page 5]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 how the component is to be tested, and the "value" field is an
 asserted ASN.1 value against which the component is tested. The
 ASN.1 type of the asserted value is determined by the chosen rule.

 The fields of a ComponentAssertion are described in detail in the
 following sections.

3.1. Component Reference

 The component field in a ComponentAssertion is a UTF-8 character
 string [6] whose textual content is a component reference,
 identifying a component part of some ASN.1 type or value. A
 component reference conforms to the following ABNF [2], which extends
 the notation defined in Clause 14 of X.680 [13]:

 component-reference = ComponentId *("." ComponentId)
 ComponentId = identifier /
 from-beginning /
 count /
 from-end / ; extends Clause 14
 content / ; extends Clause 14
 select / ; extends Clause 14
 all

 identifier = lowercase *alphanumeric
 *(hyphen 1*alphanumeric)
 alphanumeric = uppercase / lowercase / decimal-digit
 uppercase = %x41-5A ; "A" to "Z"
 lowercase = %x61-7A ; "a" to "z"
 hyphen = "-"

 from-beginning = positive-number
 count = "0"
 from-end = "-" positive-number
 content = %x63.6F.6E.74.65.6E.74 ; "content"
 select = "(" Value *("," Value) ")"
 all = "*"

 positive-number = non-zero-digit *decimal-digit

 decimal-digit = %x30-39 ; "0" to "9"
 non-zero-digit = %x31-39 ; "1" to "9"

Legg Standards Track [Page 6]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 An <identifier> conforms to the definition of an identifier in ASN.1
 notation (Clause 11.3 of X.680 [13]). It begins with a lowercase
 letter and is followed by zero or more letters, digits, and hyphens.
 A hyphen is not permitted to be the last character and a hyphen is
 not permitted to be followed by another hyphen.

 The <Value> rule is described by the Generic String Encoding Rules
 (GSER) [9].

 A component reference is a sequence of one or more ComponentIds where
 each successive ComponentId identifies either an inner component at
 the next level of nesting of an ASN.1 combining type, i.e., SET,
 SEQUENCE, SET OF, SEQUENCE OF, or CHOICE, or a specific type within
 an ASN.1 open type.

 A component reference is always considered in the context of a
 particular complex ASN.1 type. When applied to the ASN.1 type the
 component reference identifies a specific component type. When
 applied to a value of the ASN.1 type a component reference identifies
 zero, one or more component values of that component type. The
 component values are potentially in a DEFAULT value if
 useDefaultValues is TRUE. The specific component type identified by
 the component reference determines what matching rules are capable of
 being used to match the component values.

 The component field in a ComponentAssertion may also be absent, in
 which case the identified component type is the ASN.1 type to which
 the ComponentAssertion is applied, and the identified component value
 is the whole ASN.1 value.

 A valid component reference for a particular complex ASN.1 type is
 constructed by starting with the outermost combining type and
 repeatedly selecting one of the permissible forms of ComponentId to
 identify successively deeper nested components. A component
 reference MAY identify a component with a complex ASN.1 type, i.e.,
 it is not required that the component type identified by a component
 reference be a simple ASN.1 type.

3.1.1. Component Type Substitutions

 ASN.1 type notation has a number of constructs for referencing other
 defined types, and constructs that are irrelevant for matching
 purposes. These constructs are not represented in a component
 reference in any way and substitutions of the component type are
 performed to eliminate them from further consideration. These
 substitutions automatically occur prior to each ComponentId, whether
 constructing or interpreting a component reference, but do not occur
 after the last ComponentId, except as allowed by Section 3.2.

Legg Standards Track [Page 7]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 If the ASN.1 type is an ASN.1 type reference then the component type
 is taken to be the actual definition on the right hand side of the
 type assignment for the referenced type.

 If the ASN.1 type is a tagged type then the component type is taken
 to be the type without the tag.

 If the ASN.1 type is a constrained type (see X.680 [13] and X.682
 [15] for the details of ASN.1 constraint notation) then the component
 type is taken to be the type without the constraint.

 If the ASN.1 type is an ObjectClassFieldType (Clause 14 of X.681
 [14]) that denotes a specific ASN.1 type (e.g., MATCHING-RULE.&id
 denotes the OBJECT IDENTIFIER type) then the component type is taken
 to be the denoted type. Section 3.1.6 describes the case where the
 ObjectClassFieldType denotes an open type.

 If the ASN.1 type is a selection type other than one used in the list
 of components for a SET or SEQUENCE type then the component type is
 taken to be the selected alternative type from the named CHOICE.

 If the ASN.1 type is a TypeFromObject (Clause 15 of X.681 [14]) then
 the component type is taken to be the denoted type.

 If the ASN.1 type is a ValueSetFromObjects (Clause 15 of X.681 [14])
 then the component type is taken to be the governing type of the
 denoted values.

3.1.2. Referencing SET, SEQUENCE and CHOICE Components

 If the ASN.1 type is a SET or SEQUENCE type then the <identifier>
 form of ComponentId may be used to identify the component type within
 that SET or SEQUENCE having that identifier. If <identifier>
 references an OPTIONAL component type and that component is not
 present in a particular value then there are no corresponding
 component values. If <identifier> references a DEFAULT component
 type and useDefaultValues is TRUE (the default setting for
 useDefaultValues) and that component is not present in a particular
 value then the component value is taken to be the default value. If
 <identifier> references a DEFAULT component type and useDefaultValues
 is FALSE and that component is not present in a particular value then
 there are no corresponding component values.

 If the ASN.1 type is a CHOICE type then the <identifier> form of
 ComponentId may be used to identify the alternative type within that
 CHOICE having that identifier. If <identifier> references an
 alternative other than the one used in a particular value then there
 are no corresponding component values.

Legg Standards Track [Page 8]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 The COMPONENTS OF notation in Clause 24 of X.680 [13] augments the
 defined list of components in a SET or SEQUENCE type by including all
 the components of another defined SET or SEQUENCE type respectively.
 These included components are referenced directly by identifier as
 though they were defined in-line in the SET or SEQUENCE type
 containing the COMPONENTS OF notation.

 The SelectionType (Clause 29 of X.680 [13]), when used in the list of
 components for a SET or SEQUENCE type, includes a single component
 from a defined CHOICE type. This included component is referenced
 directly by identifier as though it was defined in-line in the SET or
 SEQUENCE type.

 The REAL type is treated as though it is the SEQUENCE type defined in
 Clause 20.5 of X.680 [13].

 The EMBEDDED PDV type is treated as though it is the SEQUENCE type
 defined in Clause 33.5 of X.680 [13].

 The EXTERNAL type is treated as though it is the SEQUENCE type
 defined in Clause 8.18.1 of X.690 [17].

 The unrestricted CHARACTER STRING type is treated as though it is the
 SEQUENCE type defined in Clause 40.5 of X.680 [13].

 The INSTANCE OF type is treated as though it is the SEQUENCE type
 defined in Annex C of X.681 [14].

 The <identifier> form MUST NOT be used on any other ASN.1 type.

3.1.3. Referencing SET OF and SEQUENCE OF Components

 If the ASN.1 type is a SET OF or SEQUENCE OF type then the
 <from-beginning>, <from-end>, <count> and <all> forms of ComponentId
 may be used.

 The <from-beginning> form of ComponentId may be used to identify one
 instance (i.e., value) of the component type of the SET OF or
 SEQUENCE OF type (e.g., if Foo ::= SET OF Bar, then Bar is the
 component type), where the instances are numbered from one upwards.
 If <from-beginning> references a higher numbered instance than the
 last instance in a particular value of the SET OF or SEQUENCE OF type
 then there is no corresponding component value.

 The <from-end> form of ComponentId may be used to identify one
 instance of the component type of the SET OF or SEQUENCE OF type,
 where "-1" is the last instance, "-2" is the second last instance,

Legg Standards Track [Page 9]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 and so on. If <from-end> references a lower numbered instance than
 the first instance in a particular value of the SET OF or SEQUENCE OF
 type then there is no corresponding component value.

 The <count> form of ComponentId identifies a notional count of the
 number of instances of the component type in a value of the SET OF or
 SEQUENCE OF type. This count is not explicitly represented but for
 matching purposes it has an assumed ASN.1 type of INTEGER (0..MAX).
 A ComponentId of the <count> form, if used, MUST be the last
 ComponentId in a component reference.

 The <all> form of ComponentId may be used to simultaneously identify
 all instances of the component type of the SET OF or SEQUENCE OF
 type. It is through the <all> form that a component reference can
 identify more than one component value. However, if a particular
 value of the SET OF or SEQUENCE OF type is an empty list, then there
 are no corresponding component values.

 Where multiple component values are identified, the remaining
 ComponentIds in the component reference, if any, can identify zero,
 one or more subcomponent values for each of the higher level
 component values.

 The corresponding ASN.1 type for the <from-beginning>, <from-end>,
 and <all> forms of ComponentId is the component type of the SET OF or
 SEQUENCE OF type.

 The <from-beginning>, <count>, <from-end> and <all> forms MUST NOT be
 used on ASN.1 types other than SET OF or SEQUENCE OF.

3.1.4. Referencing Components of Parameterized Types

 A component reference cannot be formed for a parameterized type
 unless the type has been used with actual parameters, in which case
 the type is treated as though the DummyReferences [16] have been
 substituted with the actual parameters.

3.1.5. Component Referencing Example

 Consider the following ASN.1 type definitions.

 ExampleType ::= SEQUENCE {
 part1 [0] INTEGER,
 part2 [1] ExampleSet,
 part3 [2] SET OF OBJECT IDENTIFIER,
 part4 [3] ExampleChoice }

Legg Standards Track [Page 10]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 ExampleSet ::= SET {
 option PrintableString,
 setting BOOLEAN }

 ExampleChoice ::= CHOICE {
 eeny-meeny BIT STRING,
 miney-mo OCTET STRING }

 Following are component references constructed with respect to the
 type ExampleType.

 The component reference "part1" identifies a component of a value of
 ExampleType having the ASN.1 tagged type [0] INTEGER.

 The component reference "part2" identifies a component of a value of
 ExampleType having the ASN.1 type of [1] ExampleSet

 The component reference "part2.option" identifies a component of a
 value of ExampleType having the ASN.1 type of PrintableString. A
 ComponentAssertion could also be applied to a value of ASN.1 type
 ExampleSet, in which case the component reference "option" would
 identify the same kind of information.

 The component reference "part3" identifies a component of a value of
 ExampleType having the ASN.1 type of [2] SET OF OBJECT IDENTIFIER.

 The component reference "part3.2" identifies the second instance of
 the part3 SET OF. The instance has the ASN.1 type of OBJECT
 IDENTIFIER.

 The component reference "part3.0" identifies the count of the number
 of instances in the part3 SET OF. The count has the corresponding
 ASN.1 type of INTEGER (0..MAX).

 The component reference "part3.*" identifies all the instances in the
 part3 SET OF. Each instance has the ASN.1 type of OBJECT IDENTIFIER.

 The component reference "part4" identifies a component of a value of
 ExampleType having the ASN.1 type of [3] ExampleChoice.

 The component reference "part4.miney-mo" identifies a component of a
 value of ExampleType having the ASN.1 type of OCTET STRING.

Legg Standards Track [Page 11]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

3.1.6. Referencing Components of Open Types

 If a sequence of ComponentIds identifies an ObjectClassFieldType
 denoting an open type (e.g., ATTRIBUTE.&Type denotes an open type)
 then the ASN.1 type of the component varies. An open type is
 typically constrained by some other component(s) in an outer
 enclosing type, either formally through the use of a component
 relation constraint [15], or informally in the accompanying text, so
 the actual ASN.1 type of a value of the open type will generally be
 known. The constraint will also limit the range of permissible
 types. The <select> form of ComponentId may be used to identify one
 of these permissible types in an open type. Subcomponents of that
 type can then be identified with further ComponentIds.

 The other components constraining the open type are termed the
 referenced components [15]. The <select> form contains a list of one
 or more values which take the place of the value(s) of the referenced
 component(s) to uniquely identify one of the permissible types of the
 open type.

 Where the open type is constrained by a component relation
 constraint, there is a <Value> in the <select> form for each of the
 referenced components in the component relation constraint, appearing
 in the same order. The ASN.1 type of each of these values is the
 same as the ASN.1 type of the corresponding referenced component.
 The type of a referenced component is potentially any ASN.1 type
 however it is typically an OBJECT IDENTIFIER or INTEGER, which means
 that the <Value> in the <select> form of ComponentId will nearly
 always be an <ObjectIdentifierValue> or <IntegerValue> [9].
 Furthermore, component relation constraints typically have only one
 referenced component.

 Where the open type is not constrained by a component relation
 constraint, the specification introducing the syntax containing the
 open type should explicitly nominate the referenced components and
 their order, so that the <select> form can be used.

 If an instance of <select> contains a value other than the value of
 the referenced component used in a particular value of the outer
 enclosing type then there are no corresponding component values for
 the open type.

3.1.6.1. Open Type Referencing Example

 The ASN.1 type AttributeTypeAndValue [10] describes a single
 attribute value of a nominated attribute type.

Legg Standards Track [Page 12]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 AttributeTypeAndValue ::= SEQUENCE {
 type ATTRIBUTE.&id ({SupportedAttributes}),
 value ATTRIBUTE.&Type ({SupportedAttributes}{@type}) }

 ATTRIBUTE.&id denotes an OBJECT IDENTIFIER and
 ({SupportedAttributes}) constrains the OBJECT IDENTIFIER to be a
 supported attribute type.

 ATTRIBUTE.&Type denotes an open type, in this case an attribute
 value, and ({SupportedAttributes}{@type}) is a component relation
 constraint that constrains the open type to be of the attribute
 syntax for the attribute type. The component relation constraint
 references only the "type" component, which has the ASN.1 type of
 OBJECT IDENTIFIER, thus if the <select> form of ComponentId is used
 to identify attribute values of specific attribute types it will
 contain a single OBJECT IDENTIFIER value.

 The component reference "value" on AttributeTypeAndValue refers to
 the open type.

 One of the X.500 standard attributes is facsimileTelephoneNumber
 [12], which is identified with the OBJECT IDENTIFIER 2.5.4.23, and is
 defined to have the following syntax.

 FacsimileTelephoneNumber ::= SEQUENCE {
 telephoneNumber PrintableString(SIZE(1..ub-telephone-number)),
 parameters G3FacsimileNonBasicParameters OPTIONAL }

 The component reference "value.(2.5.4.23)" on AttributeTypeAndValue
 specifies an attribute value with the FacsimileTelephoneNumber
 syntax.

 The component reference "value.(2.5.4.23).telephoneNumber" on
 AttributeTypeAndValue identifies the telephoneNumber component of a
 facsimileTelephoneNumber attribute value. The component reference
 "value.(facsimileTelephoneNumber)" is equivalent to
 "value.(2.5.4.23)".

 If the AttributeTypeAndValue ASN.1 value contains an attribute type
 other than facsimileTelephoneNumber then there are no corresponding
 component values for the component references "value.(2.5.4.23)" and
 "value.(2.5.4.23).telephoneNumber".

Legg Standards Track [Page 13]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

3.1.7. Referencing Contained Types

 Sometimes the contents of a BIT STRING or OCTET STRING value are
 required to be the encodings of other ASN.1 values of specific ASN.1
 types. For example, the extnValue component of the Extension type
 component in the Certificate type [11] is an OCTET STRING that is
 required to contain a Distinguished Encoding Rules (DER) [17]
 encoding of a certificate extension value. It is useful to be able
 to refer to the embedded encoded value and its components. An
 embedded encoded value is here referred to as a contained value and
 its associated type as the contained type.

 If the ASN.1 type is a BIT STRING or OCTET STRING type containing
 encodings of other ASN.1 values then the <content> form of
 ComponentId may be used to identify the contained type.
 Subcomponents of that type can then be identified with further
 ComponentIds.

 The contained type may be (effectively) an open type, constrained by
 some other component in an outer enclosing type (e.g., in a
 certificate Extension, extnValue is constrained by the chosen
 extnId). In these cases the next ComponentId, if any, MUST be of the
 <select> form.

 For the purpose of building component references, the content of the
 extnValue OCTET STRING in the Extension type is assumed to be an open
 type having a notional component relation constraint with the extnId
 component as the single referenced component, i.e.,

 EXTENSION.&ExtnType ({ExtensionSet}{@extnId})

 The data-value component of the associated types for the EMBEDDED PDV
 and CHARACTER STRING types is an OCTET STRING containing the encoding
 of a data value described by the identification component. For the
 purpose of building component references, the content of the
 data-value OCTET STRING in these types is assumed to be an open type
 having a notional component relation constraint with the
 identification component as the single referenced component.

3.1.7.1. Contained Type Referencing Example

 The Extension ASN.1 type [11] describes a single certificate
 extension value of a nominated extension type.

Legg Standards Track [Page 14]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 Extension ::= SEQUENCE {
 extnId EXTENSION.&id ({ExtensionSet}),
 critical BOOLEAN DEFAULT FALSE,
 extnValue OCTET STRING
 -- contains a DER encoding of a value of type &ExtnType
 -- for the extension object identified by extnId -- }

 EXTENSION.&id denotes an OBJECT IDENTIFIER and ({ExtensionSet})
 constrains the OBJECT IDENTIFIER to be the identifier of a supported
 certificate extension.

 The component reference "extnValue" on Extension refers to a
 component type of OCTET STRING. The corresponding component values
 will be OCTET STRING values. The component reference
 "extnValue.content" on Extension refers to the type of the contained
 type, which in this case is an open type.

 One of the X.509 [11] standard extensions is basicConstraints, which
 is identified with the OBJECT IDENTIFIER 2.5.29.19 and is defined to
 have the following syntax.

 BasicConstraintsSyntax ::= SEQUENCE {
 cA BOOLEAN DEFAULT FALSE,
 pathLenConstraint INTEGER (0..MAX) OPTIONAL }

 The component reference "extnValue.content.(2.5.29.19)" on Extension
 specifies a BasicConstraintsSyntax extension value and the component
 reference "extnValue.content.(2.5.29.19).cA" identifies the cA
 component of a BasicConstraintsSyntax extension value.

3.2. Matching of Components

 The rule in a ComponentAssertion specifies how the zero, one or more
 component values identified by the component reference are tested by
 the assertion. Attribute matching rules are used to specify the
 semantics of the test.

 Each matching rule has a notional set of attribute syntaxes
 (typically one), defined as ASN.1 types, to which it may be applied.
 When used in a ComponentAssertion these matching rules apply to the
 same ASN.1 types, only in this context the corresponding ASN.1 values
 are not necessarily complete attribute values.

 Note that the referenced component type may be a tagged and/or
 constrained version of the expected attribute syntax (e.g.,
 [0] INTEGER, whereas integerMatch would expect simply INTEGER), or an
 open type. Additional type substitutions of the kind described in

Legg Standards Track [Page 15]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 Section 3.1.1 are performed as required to reduce the component type
 to the same type as the attribute syntax expected by the matching
 rule.

 If a matching rule applies to more than one attribute syntax (e.g.,
 objectIdentifierFirstComponentMatch [12]) then the minimum number of
 substitutions required to conform to any one of those syntaxes is
 performed. If a matching rule can apply to any attribute syntax
 (e.g., the allComponentsMatch rule defined in Section 6.2) then the
 referenced component type is used as is, with no additional
 substitutions.

 The value in a ComponentAssertion will be of the assertion syntax
 (i.e., ASN.1 type) required by the chosen matching rule. Note that
 the assertion syntax of a matching rule is not necessarily the same
 as the attribute syntax(es) to which the rule may be applied.

 Some matching rules do not have a fixed assertion syntax (e.g.,
 allComponentsMatch). The required assertion syntax is determined in
 each instance of use by the syntax of the attribute type to which the
 matching rule is applied. For these rules the ASN.1 type of the
 referenced component is used in place of an attribute syntax to
 decide the required assertion syntax.

 The ComponentAssertion is Undefined if:

 a) the matching rule in the ComponentAssertion is not known to the
 evaluating procedure,

 b) the matching rule is not applicable to the referenced component
 type, even with the additional type substitutions,

 c) the value in the ComponentAssertion does not conform to the
 assertion syntax defined for the matching rule,

 d) some part of the component reference identifies an open type in
 the tested value that cannot be decoded, or

 e) the implementation does not support the particular combination of
 component reference and matching rule.

 If the ComponentAssertion is not Undefined then the
 ComponentAssertion evaluates to TRUE if there is at least one
 component value for which the matching rule applied to that component
 value returns TRUE, and evaluates to FALSE otherwise (which includes
 the case where there are no component values).

Legg Standards Track [Page 16]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

3.2.1. Applicability of Existing Matching Rules

3.2.1.1. String Matching

 ASN.1 has a number of built in restricted character string types with
 different character sets and/or different character encodings. A
 directory user generally has little interest in the particular
 character set or encoding used to represent a character string
 component value, and some directory server implementations make no
 distinction between the different string types in their internal
 representation of values. So rather than define string matching
 rules for each of the restricted character string types, the existing
 case ignore and case exact string matching rules are extended to
 apply to component values of any of the restricted character string
 types and any ChoiceOfStrings type [9], in addition to component
 values of the DirectoryString type. This extension is only for the
 purposes of component matching described in this document.

 The relevant string matching rules are: caseIgnoreMatch,
 caseIgnoreOrderingMatch, caseIgnoreSubstringsMatch, caseExactMatch,
 caseExactOrderingMatch and caseExactSubstringsMatch. The relevant
 restricted character string types are: NumericString,
 PrintableString, VisibleString, IA5String, UTF8String, BMPString,
 UniversalString, TeletexString, VideotexString, GraphicString and
 GeneralString. A ChoiceOfStrings type is a purely syntactic CHOICE
 of these ASN.1 string types. Note that GSER [9] declares each and
 every use of the DirectoryString{} parameterized type to be a
 ChoiceOfStrings type.

 The assertion syntax of the string matching rules is still
 DirectoryString regardless of the string syntax of the component
 being matched. Thus an implementation will be called upon to compare
 a DirectoryString value to a value of one of the restricted character
 string types, or a ChoiceOfStrings type. As is the case when
 comparing two DirectoryStrings where the chosen alternatives are of
 different string types, the comparison proceeds so long as the
 corresponding characters are representable in both character sets.
 Otherwise matching returns FALSE.

3.2.1.2. Telephone Number Matching

 Early editions of X.520 [12] gave the syntax of the telephoneNumber
 attribute as a constrained PrintableString. The fourth edition of
 X.520 equates the ASN.1 type name TelephoneNumber to the constrained
 PrintableString and uses TelephoneNumber as the attribute and
 assertion syntax. For the purposes of component matching,

Legg Standards Track [Page 17]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 telephoneNumberMatch and telephoneNumberSubstringsMatch are permitted
 to be applied to any PrintableString value, as well as to
 TelephoneNumber values.

3.2.1.3. Distinguished Name Matching

 The DistinguishedName type is defined by assignment to be the same as
 the RDNSequence type, however RDNSequence is sometimes directly used
 in other type definitions. For the purposes of component matching,
 distinguishedNameMatch is also permitted to be applied to values of
 the RDNSequence type.

3.2.2. Additional Useful Matching Rules

 This section defines additional matching rules that may prove useful
 in ComponentAssertions. These rules may also be used in
 extensibleMatch search filters [3].

3.2.2.1. The rdnMatch Matching Rule

 The distinguishedNameMatch matching rule can match whole
 distinguished names but it is sometimes useful to be able to match
 specific Relative Distinguished Names (RDNs) in a Distinguished Name
 (DN) without regard for the other RDNs in the DN. The rdnMatch
 matching rule allows component RDNs of a DN to be tested.

 The LDAP-style definitions for rdnMatch and its assertion syntax are:

 (1.2.36.79672281.1.13.3 NAME ’rdnMatch’
 SYNTAX 1.2.36.79672281.1.5.0)

 (1.2.36.79672281.1.5.0 DESC ’RDN’)

 The LDAP-specific encoding for a value of the RDN syntax is given by
 the <RelativeDistinguishedNameValue> rule [9].

 The X.500-style definition for rdnMatch is:

 rdnMatch MATCHING-RULE ::= {
 SYNTAX RelativeDistinguishedName
 ID { 1 2 36 79672281 1 13 3 } }

 The rdnMatch rule evaluates to true if the component value and
 assertion value are the same RDN, using the same RDN comparison
 method as distinguishedNameMatch.

Legg Standards Track [Page 18]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 When using rdnMatch to match components of DNs it is important to
 note that the LDAP-specific encoding of a DN [5] reverses the order
 of the RDNs. So for the DN represented in LDAP as
 "cn=Steven Legg,o=Adacel,c=AU", the RDN "cn=Steven Legg" corresponds
 to the component reference "3", or alternatively, "-1".

3.2.2.2. The presentMatch Matching Rule

 At times it would be useful to test not if a specific value of a
 particular component is present, but whether any value of a
 particular component is present. The presentMatch matching rule
 allows the presence of a particular component value to be tested.

 The LDAP-style definitions for presentMatch and its assertion syntax
 are:

 (1.2.36.79672281.1.13.5 NAME ’presentMatch’
 SYNTAX 1.2.36.79672281.1.5.1)

 (1.2.36.79672281.1.5.1 DESC ’NULL’)

 The LDAP-specific encoding for a value of the NULL syntax is given by
 the <NullValue> rule [9].

 The X.500-style definition for presentMatch is:

 presentMatch MATCHING-RULE ::= {
 SYNTAX NULL
 ID { 1 2 36 79672281 1 13 5 } }

 When used in a extensible match filter item, presentMatch behaves
 like the "present" case of a regular search filter. In a
 ComponentAssertion, presentMatch evaluates to TRUE if and only if the
 component reference identifies one or more component values,
 regardless of the actual component value contents. Note that if
 useDefaultValues is TRUE then the identified component values may be
 (part of) a DEFAULT value.

 The notional count referenced by the <count> form of ComponentId is
 taken to be present if the SET OF value is present, and absent
 otherwise. Note that in ASN.1 notation an absent SET OF value is
 distinctly different from a SET OF value that is present but empty.
 It is up to the specification using the ASN.1 notation to decide
 whether the distinction matters. Often an empty SET OF component and
 an absent SET OF component are treated as semantically equivalent.
 If a SET OF value is present, but empty, a presentMatch on the SET OF
 component SHALL return TRUE and the notional count SHALL be regarded
 as present and equal to zero.

Legg Standards Track [Page 19]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

3.2.3. Summary of Useful Matching Rules

 The following is a non-exhaustive list of useful matching rules and
 the ASN.1 types to which they can be applied, taking account of all
 the extensions described in Section 3.2.1, and the new matching rules
 defined in Section 3.2.2.

 +================================+==============================+
 | Matching Rule | ASN.1 Type |
 +================================+==============================+
 | bitStringMatch | BIT STRING |
 +--------------------------------+------------------------------+
 | booleanMatch | BOOLEAN |
 +--------------------------------+------------------------------+
 | caseIgnoreMatch | NumericString |
 | caseIgnoreOrderingMatch | PrintableString |
 | caseIgnoreSubstringsMatch | VisibleString (ISO646String) |
 | caseExactMatch | IA5String |
 | caseExactOrderingMatch | UTF8String |
 | caseExactSubstringsMatch | BMPString (UCS-2, UNICODE) |
 | | UniversalString (UCS-4) |
 | | TeletexString (T61String) |
 | | VideotexString |
 | | GraphicString |
 | | GeneralString |
 | | any ChoiceOfStrings type |
 +--------------------------------+------------------------------+
 | caseIgnoreIA5Match | IA5String |
 | caseExactIA5Match | |
 +--------------------------------+------------------------------+
 | distinguishedNameMatch | DistinguishedName |
 | | RDNSequence |
 +--------------------------------+------------------------------+
 | generalizedTimeMatch | GeneralizedTime |
 | generalizedTimeOrderingMatch | |
 +--------------------------------+------------------------------+
 | integerMatch | INTEGER |
 | integerOrderingMatch | |
 +--------------------------------+------------------------------+
 | numericStringMatch | NumericString |
 | numericStringOrderingMatch | |
 | numericStringSubstringsMatch | |
 +--------------------------------+------------------------------+
 | objectIdentifierMatch | OBJECT IDENTIFIER |
 +--------------------------------+------------------------------+
 | octetStringMatch | OCTET STRING |
 | octetStringOrderingMatch | |
 | octetStringSubstringsMatch | |

Legg Standards Track [Page 20]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 +--------------------------------+------------------------------+
 | presentMatch | any ASN.1 type |
 +--------------------------------+------------------------------+
 | rdnMatch | RelativeDistinguishedName |
 +--------------------------------+------------------------------+
 | telephoneNumberMatch | PrintableString |
 | telephoneNumberSubstringsMatch | TelephoneNumber |
 +--------------------------------+------------------------------+
 | uTCTimeMatch | UTCTime |
 | uTCTimeOrderingMatch | |
 +--------------------------------+------------------------------+

 Note that the allComponentsMatch matching rule defined in Section 6.2
 can be used for equality matching of values of the ENUMERATED, NULL,
 REAL and RELATIVE-OID ASN.1 types, among other things.

4. ComponentFilter

 The ComponentAssertion allows the value(s) of any one component type
 in a complex ASN.1 type to be matched, but there is often a desire to
 match the values of more than one component type. A ComponentFilter
 is an assertion about the presence, or values of, multiple components
 within an ASN.1 value.

 The ComponentFilter assertion, an expression of ComponentAssertions,
 evaluates to either TRUE, FALSE or Undefined for each tested ASN.1
 value.

 A ComponentFilter is described by the following ASN.1 type (assumed
 to be defined with "EXPLICIT TAGS" in force):

 ComponentFilter ::= CHOICE {
 item [0] ComponentAssertion,
 and [1] SEQUENCE OF ComponentFilter,
 or [2] SEQUENCE OF ComponentFilter,
 not [3] ComponentFilter }

 Note: despite the use of SEQUENCE OF instead of SET OF for the "and"
 and "or" alternatives in ComponentFilter, the order of the component
 filters is not significant.

 A ComponentFilter that is a ComponentAssertion evaluates to TRUE if
 the ComponentAssertion is TRUE, evaluates to FALSE if the
 ComponentAssertion is FALSE, and evaluates to Undefined otherwise.

Legg Standards Track [Page 21]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 The "and" of a sequence of component filters evaluates to TRUE if the
 sequence is empty or if each component filter evaluates to TRUE,
 evaluates to FALSE if at least one component filter is FALSE, and
 evaluates to Undefined otherwise.

 The "or" of a sequence of component filters evaluates to FALSE if the
 sequence is empty or if each component filter evaluates to FALSE,
 evaluates to TRUE if at least one component filter is TRUE, and
 evaluates to Undefined otherwise.

 The "not" of a component filter evaluates to TRUE if the component
 filter is FALSE, evaluates to FALSE if the component filter is TRUE,
 and evaluates to Undefined otherwise.

5. The componentFilterMatch Matching Rule

 The componentFilterMatch matching rule allows a ComponentFilter to be
 applied to an attribute value. The result of the matching rule is
 the result of applying the ComponentFilter to the attribute value.

 The LDAP-style definitions for componentFilterMatch and its assertion
 syntax are:

 (1.2.36.79672281.1.13.2 NAME ’componentFilterMatch’
 SYNTAX 1.2.36.79672281.1.5.2)

 (1.2.36.79672281.1.5.2 DESC ’ComponentFilter’)

 The LDAP-specific encoding for the ComponentFilter assertion syntax
 is specified by GSER [9].

 As a convenience to implementors, an equivalent ABNF description of
 the GSER encoding for ComponentFilter is provided here. In the event
 that there is a discrepancy between this ABNF and the encoding
 determined by GSER, GSER is to be taken as definitive. The GSER
 encoding of a ComponentFilter is described by the following
 equivalent ABNF:

 ComponentFilter = filter-item /
 and-filter /
 or-filter /
 not-filter

 filter-item = item-chosen ComponentAssertion
 and-filter = and-chosen SequenceOfComponentFilter
 or-filter = or-chosen SequenceOfComponentFilter
 not-filter = not-chosen ComponentFilter

Legg Standards Track [Page 22]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 item-chosen = %x69.74.65.6D.3A ; "item:"
 and-chosen = %x61.6E.64.3A ; "and:"
 or-chosen = %x6F.72.3A ; "or:"
 not-chosen = %x6E.6F.74.3A ; "not:"

 SequenceOfComponentFilter = "{" [sp ComponentFilter
 *("," sp ComponentFilter)] sp "}"

 ComponentAssertion = "{" [sp component ","]
 [sp useDefaultValues ","]
 sp rule ","
 sp assertion-value sp "}"
 component = component-label msp StringValue
 useDefaultValues = use-defaults-label msp BooleanValue
 rule = rule-label msp ObjectIdentifierValue
 assertion-value = value-label msp Value

 component-label = %x63.6F.6D.70.6F.6E.65.6E.74 ; "component"
 use-defaults-label = %x75.73.65.44.65.66.61.75.6C.74.56.61.6C.75
 %x65.73 ; "useDefaultValues"
 rule-label = %x72.75.6C.65 ; "rule"
 value-label = %x76.61.6C.75.65 ; "value"

 sp = *%x20 ; zero, one or more space characters
 msp = 1*%x20 ; one or more space characters

 The ABNF for <Value>, <StringValue>, <ObjectIdentifierValue> and
 <BooleanValue> is defined by GSER [9].

 The ABNF descriptions of LDAP-specific encodings for attribute
 syntaxes typically do not clearly or consistently delineate the
 component parts of an attribute value. A regular and uniform
 character string encoding for arbitrary component data types is
 needed to encode the assertion value in a ComponentAssertion. The
 <Value> rule from GSER provides a human readable text encoding for a
 component value of any arbitrary ASN.1 type.

 The X.500-style definition [10] for componentFilterMatch is:

 componentFilterMatch MATCHING-RULE ::= {
 SYNTAX ComponentFilter
 ID { 1 2 36 79672281 1 13 2 } }

 A ComponentAssertion can potentially use any matching rule, including
 componentFilterMatch, so componentFilterMatch may be nested. The
 component references in a nested componentFilterMatch are relative to

Legg Standards Track [Page 23]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 the component corresponding to the containing ComponentAssertion. In
 Section 7, an example search on the seeAlso attribute shows this
 usage.

6. Equality Matching of Complex Components

 It is possible to test if an attribute value of a complex ASN.1
 syntax is the same as some purported (i.e., assertion) value by using
 a complicated ComponentFilter that tests if corresponding components
 are the same. However, it would be more convenient to be able to
 present a whole assertion value to a matching rule that could do the
 component-wise comparison of an attribute value with the assertion
 value for any arbitrary attribute syntax. Similarly, the ability to
 do a straightforward equality comparison of a component value that is
 itself of a complex ASN.1 type would also be convenient.

 It would be difficult to define a single matching rule that
 simultaneously satisfies all notions of what the equality matching
 semantics should be. For example, in some instances a case sensitive
 comparison of string components may be preferable to a case
 insensitive comparison. Therefore a basic equality matching rule,
 allComponentsMatch, is defined in Section 6.2, and the means to
 derive new matching rules from it with slightly different equality
 matching semantics are described in Section 6.3.

 The directoryComponentsMatch defined in Section 6.4 is a derivation
 of allComponentsMatch that suits typical uses of the directory.
 Other specifications are free to derive new rules from
 allComponentsMatch or directoryComponentsMatch, that suit their usage
 of the directory.

 The allComponentsMatch rule, the directoryComponentsMatch rule and
 any matching rules derived from them are collectively called
 component equality matching rules.

6.1. The OpenAssertionType Syntax

 The component equality matching rules have a variable assertion
 syntax. In X.500 this is indicated by omitting the optional SYNTAX
 field in the MATCHING-RULE information object. The assertion syntax
 then defaults to the target attribute’s syntax in actual usage,
 unless the description of the matching rule says otherwise. The
 SYNTAX field in the LDAP-specific encoding of a
 MatchingRuleDescription is mandatory, so the OpenAssertionType syntax
 is defined to fill the same role. That is, the OpenAssertionType
 syntax is semantically equivalent to an omitted SYNTAX field in an
 X.500 MATCHING-RULE information object. OpenAssertionType MUST NOT
 be used as the attribute syntax in an attribute type definition.

Legg Standards Track [Page 24]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 Unless explicitly varied by the description of a particular matching
 rule, if an OpenAssertionType assertion value appears in a
 ComponentAssertion its LDAP-specific encoding is described by the
 <Value> rule in GSER [9], otherwise its LDAP-specific encoding is the
 encoding defined for the syntax of the attribute type to which the
 matching rule with the OpenAssertionType assertion syntax is applied.

 The LDAP definition for the OpenAssertionType syntax is:

 (1.2.36.79672281.1.5.3 DESC ’OpenAssertionType’)

6.2. The allComponentsMatch Matching Rule

 The LDAP-style definition for allComponentsMatch is:

 (1.2.36.79672281.1.13.6 NAME ’allComponentsMatch’
 SYNTAX 1.2.36.79672281.1.5.3)

 The X.500-style definition for allComponentsMatch is:

 allComponentsMatch MATCHING-RULE ::= {
 ID { 1 2 36 79672281 1 13 6 } }

 When allComponentsMatch is used in a ComponentAssertion the assertion
 syntax is the same as the ASN.1 type of the identified component.
 Otherwise, the assertion syntax of allComponentsMatch is the same as
 the attribute syntax of the attribute to which the matching rule is
 applied.

 Broadly speaking, this matching rule evaluates to true if and only if
 corresponding components of the assertion value and the attribute or
 component value are the same.

 In detail, equality is determined by the following cases applied
 recursively.

 a) Two values of a SET or SEQUENCE type are the same if and only if,
 for each component type, the corresponding component values are
 either,

 1) both absent,

 2) both present and the same, or

 3) absent or the same as the DEFAULT value for the component, if a
 DEFAULT value is defined.

Legg Standards Track [Page 25]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 Values of an EMBEDDED PDV, EXTERNAL, unrestricted CHARACTER
 STRING, or INSTANCE OF type are compared according to their
 respective associated SEQUENCE type (see Section 3.1.2).

 b) Two values of a SEQUENCE OF type are the same if and only if, the
 values have the same number of (possibly duplicated) instances and
 corresponding instances are the same.

 c) Two values of a SET OF type are the same if and only if, the
 values have the same number of instances and each distinct
 instance occurs in both values the same number of times, i.e.,
 both values have the same instances, including duplicates, but in
 any order.

 d) Two values of a CHOICE type are the same if and only if, both
 values are of the same chosen alternative and the component values
 are the same.

 e) Two BIT STRING values are the same if and only if the values have
 the same number of bits and corresponding bits are the same. If
 the BIT STRING type is defined with a named bit list then trailing
 zero bits in the values are treated as absent for the purposes of
 this comparison.

 f) Two BOOLEAN values are the same if and only if both are TRUE or
 both are FALSE.

 g) Two values of a string type are the same if and only if the values
 have the same number of characters and corresponding characters
 are the same. Letter case is significant. For the purposes of
 allComponentsMatch, the string types are NumericString,
 PrintableString, TeletexString (T61String), VideotexString,
 IA5String, GraphicString, VisibleString (ISO646String),
 GeneralString, UniversalString, BMPString, UTF8String,
 GeneralizedTime, UTCTime and ObjectDescriptor.

 h) Two INTEGER values are the same if and only if the integers are
 equal.

 i) Two ENUMERATED values are the same if and only if the enumeration
 item identifiers are the same (equivalently, if the integer values
 associated with the identifiers are equal).

 j) Two NULL values are always the same, unconditionally.

 k) Two OBJECT IDENTIFIER values are the same if and only if the
 values have the same number of arcs and corresponding arcs are the
 same.

Legg Standards Track [Page 26]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 l) Two OCTET STRING values are the same if and only if the values
 have the same number of octets and corresponding octets are the
 same.

 m) Two REAL values are the same if and only if they are both the same
 special value, or neither is a special value and they have the
 same base and represent the same real number. The special values
 for REAL are zero, PLUS-INFINITY and MINUS-INFINITY.

 n) Two RELATIVE-OID values are the same if and only if the values
 have the same number of arcs and corresponding arcs are the same.
 The respective starting nodes for the RELATIVE-OID values are
 disregarded in the comparison, i.e., they are assumed to be the
 same.

 o) Two values of an open type are the same if and only if both are of
 the same ASN.1 type and are the same according to that type. If
 the actual ASN.1 type of the values is unknown then the
 allComponentsMatch rule evaluates to Undefined.

 Tags and constraints, being part of the type definition and not part
 of the abstract values, are ignored for matching purposes.

 The allComponentsMatch rule may be used as the defined equality
 matching rule for an attribute.

6.3. Deriving Component Equality Matching Rules

 A new component equality matching rule with more refined matching
 semantics may be derived from allComponentsMatch, or any other
 component equality matching rule, using the convention described in
 this section.

 The matching behaviour of a derived component equality matching rule
 is specified by nominating, for each of one or more identified
 components, a commutative equality matching rule that will be used to
 match values of that component. This overrides the matching that
 would otherwise occur for values of that component using the base
 rule for the derivation. These overrides can be conveniently
 represented as rows in a table of the following form.

 Component | Matching Rule
 ============+===============
 |
 |

Legg Standards Track [Page 27]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 Usually, all component values of a particular ASN.1 type are to be
 matched the same way. An ASN.1 type reference (e.g.,
 DistinguishedName) or an ASN.1 built-in type name (e.g., INTEGER) in
 the Component column of the table specifies that the nominated
 equality matching rule is to be applied to all values of the named
 type, regardless of context.

 An ASN.1 type reference with a component reference appended
 (separated by a ".") specifies that the nominated matching rule
 applies only to the identified components of values of the named
 type. Other component values that happen to be of the same ASN.1
 type are not selected.

 Additional type substitutions as described in Section 3.2 are assumed
 to be performed to align the component type with the matching rule
 assertion syntax.

 Conceptually, the rows in a table for the base rule are appended to
 the rows in the table for a derived rule for the purpose of deciding
 the matching semantics of the derived rule. Notionally,
 allComponentsMatch has an empty table.

 A row specifying values of an outer containing type (e.g.,
 DistinguishedName) takes precedence over a row specifying values of
 an inner component type (e.g., RelativeDistinguishedName), regardless
 of their order in the table. Specifying a row for component values
 of an inner type is only useful if a value of the type can also
 appear on its own, or as a component of values of a different outer
 type. For example, if there is a row for DistinguishedName then a
 row for RelativeDistinguishedName can only ever apply to
 RelativeDistinguishedName component values that are not part of a
 DistinguishedName. A row for values of an outer type in the table
 for the base rule takes precedence over a row for values of an inner
 type in the table for the derived rule.

 Where more than one row applies to a particular component value the
 earlier row takes precedence over the later row. Thus rows in the
 table for the derived rule take precedence over any rows for the same
 component in the table for the base rule.

6.4. The directoryComponentsMatch Matching Rule

 The directoryComponentsMatch matching rule is derived from the
 allComponentsMatch matching rule.

Legg Standards Track [Page 28]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 The LDAP-style definition for directoryComponentsMatch is:

 (1.2.36.79672281.1.13.7 NAME ’directoryComponentsMatch’
 SYNTAX 1.2.36.79672281.1.5.3)

 The X.500-style definition for directoryComponentsMatch is:

 directoryComponentsMatch MATCHING-RULE ::= {
 ID { 1 2 36 79672281 1 13 7 } }

 The matching semantics of directoryComponentsMatch are described by
 the following table, using the convention described in Section 6.3.

 ASN.1 Type | Matching Rule
 ===+========================
 RDNSequence | distinguishedNameMatch
 RelativeDistinguishedName | rdnMatch
 TelephoneNumber | telephoneNumberMatch
 FacsimileTelephoneNumber.telephoneNumber | telephoneNumberMatch
 NumericString | numericStringMatch
 GeneralizedTime | generalizedTimeMatch
 UTCTime | uTCTimeMatch
 DirectoryString{} | caseIgnoreMatch
 BMPString | caseIgnoreMatch
 GeneralString | caseIgnoreMatch
 GraphicString | caseIgnoreMatch
 IA5String | caseIgnoreMatch
 PrintableString | caseIgnoreMatch
 TeletexString | caseIgnoreMatch
 UniversalString | caseIgnoreMatch
 UTF8String | caseIgnoreMatch
 VideotexString | caseIgnoreMatch
 VisibleString | caseIgnoreMatch

 Notes:

 1) The DistinguishedName type is defined by assignment to be the same
 as the RDNSequence type. Some types (e.g., Name and LocalName)
 directly reference RDNSequence rather than DistinguishedName.
 Specifying RDNSequence captures all these DN-like types.

 2) A RelativeDistinguishedName value is only matched by rdnMatch if
 it is not part of an RDNSequence value.

 3) The telephone number component of the FacsimileTelephoneNumber
 ASN.1 type [12] is defined as a constrained PrintableString.
 PrintableString component values that are part of a
 FacsimileTelephoneNumber value can be identified separately from

Legg Standards Track [Page 29]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 other components of PrintableString type by the specifier
 FacsimileTelephoneNumber.telephoneNumber, so that
 telephoneNumberMatch can be selectively applied. The fourth
 edition of X.520 defines the telephoneNumber component of
 FacsimileTelephoneNumber to be of the type TelephoneNumber, making
 the row for FacsimileTelephoneNumber.telephoneNumber components
 redundant.

 The directoryComponentsMatch rule may be used as the defined equality
 matching rule for an attribute.

7. Component Matching Examples

 This section contains examples of search filters using the
 componentFilterMatch matching rule. The filters are described using
 the string representation of LDAP search filters [18]. Note that
 this representation requires asterisks to be escaped in assertion
 values (in these examples the assertion values are all
 <ComponentAssertion> encodings). The asterisks have not been escaped
 in these examples for the sake of clarity, and to avoid confusing the
 protocol representation of LDAP search filter assertion values, where
 such escaping does not apply. Line breaks and indenting have been
 added only as an aid to readability.

 The example search filters using componentFilterMatch are all single
 extensible match filter items, though there is no reason why
 componentFilterMatch can’t be used in more complicated search
 filters.

 The first examples describe searches over the objectClasses schema
 operational attribute, which has an attribute syntax described by the
 ASN.1 type ObjectClassDescription [10], and holds the definitions of
 the object classes known to a directory server. The definition of
 ObjectClassDescription is as follows:

 ObjectClassDescription ::= SEQUENCE {
 identifier OBJECT-CLASS.&id,
 name SET OF DirectoryString {ub-schema} OPTIONAL,
 description DirectoryString {ub-schema} OPTIONAL,
 obsolete BOOLEAN DEFAULT FALSE,
 information [0] ObjectClassInformation }

 ObjectClassInformation ::= SEQUENCE {
 subclassOf SET OF OBJECT-CLASS.&id OPTIONAL,
 kind ObjectClassKind DEFAULT structural,
 mandatories [3] SET OF ATTRIBUTE.&id OPTIONAL,
 optionals [4] SET OF ATTRIBUTE.&id OPTIONAL }

Legg Standards Track [Page 30]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 ObjectClassKind ::= ENUMERATED {
 abstract (0),
 structural (1),
 auxiliary (2) }

 OBJECT-CLASS.&id and ATTRIBUTE.&id are equivalent to the OBJECT
 IDENTIFIER ASN.1 type. A value of OBJECT-CLASS.&id is an OBJECT
 IDENTIFIER for an object class. A value of ATTRIBUTE.&id is an
 OBJECT IDENTIFIER for an attribute type.

 The following search filter finds the object class definition for the
 object class identified by the OBJECT IDENTIFIER 2.5.6.18:

 (objectClasses:componentFilterMatch:=
 item:{ component "identifier",
 rule objectIdentifierMatch, value 2.5.6.18 })

 A match on the "identifier" component of objectClasses values is
 equivalent to the objectIdentifierFirstComponentMatch matching rule
 applied to attribute values of the objectClasses attribute type. The
 componentFilterMatch matching rule subsumes the functionality of the
 objectIdentifierFirstComponentMatch, integerFirstComponentMatch and
 directoryStringFirstComponentMatch matching rules.

 The following search filter finds the object class definition for the
 object class called foobar:

 (objectClasses:componentFilterMatch:=
 item:{ component "name.*",
 rule caseIgnoreMatch, value "foobar" })

 An object class definition can have multiple names and the above
 filter will match an objectClasses value if any one of the names is
 "foobar".

 The component reference "name.0" identifies the notional count of the
 number of names in an object class definition. The following search
 filter finds object class definitions with exactly one name:

 (objectClasses:componentFilterMatch:=
 item:{ component "name.0", rule integerMatch, value 1 })

 The "description" component of an ObjectClassDescription is defined
 to be an OPTIONAL DirectoryString. The following search filter finds
 object class definitions that have descriptions, regardless of the
 contents of the description string:

Legg Standards Track [Page 31]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 (objectClasses:componentFilterMatch:=
 item:{ component "description",
 rule presentMatch, value NULL })

 The presentMatch returns TRUE if the description component is present
 and FALSE otherwise.

 The following search filter finds object class definitions that don’t
 have descriptions:

 (objectClasses:componentFilterMatch:=
 not:item:{ component "description",
 rule presentMatch, value NULL })

 The following search filter finds object class definitions with the
 word "bogus" in the description:

 (objectClasses:componentFilterMatch:=
 item:{ component "description",
 rule caseIgnoreSubstringsMatch,
 value { any:"bogus" } })

 The assertion value is of the SubstringAssertion syntax, i.e.,

 SubstringAssertion ::= SEQUENCE OF CHOICE {
 initial [0] DirectoryString {ub-match},
 any [1] DirectoryString {ub-match},
 final [2] DirectoryString {ub-match} }

 The "obsolete" component of an ObjectClassDescription is defined to
 be DEFAULT FALSE. An object class is obsolete if the "obsolete"
 component is present and set to TRUE. The following search filter
 finds all obsolete object classes:

 (objectClasses:componentFilterMatch:=
 item:{ component "obsolete", rule booleanMatch, value TRUE })

 An object class is not obsolete if the "obsolete" component is not
 present, in which case it defaults to FALSE, or is present but is
 explicitly set to FALSE. The following search filter finds all non-
 obsolete object classes:

 (objectClasses:componentFilterMatch:=
 item:{ component "obsolete", rule booleanMatch, value FALSE })

 The useDefaultValues flag in the ComponentAssertion defaults to TRUE
 so the componentFilterMatch rule treats an absent "obsolete"
 component as being present and set to FALSE. The following search

Legg Standards Track [Page 32]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 filter finds only object class definitions where the "obsolete"
 component has been explicitly set to FALSE, rather than implicitly
 defaulting to FALSE:

 (objectClasses:componentFilterMatch:=
 item:{ component "obsolete", useDefaultValues FALSE,
 rule booleanMatch, value FALSE })

 With the useDefaultValues flag set to FALSE, if the "obsolete"
 component is absent the component reference identifies no component
 value and the matching rule will return FALSE. The matching rule can
 only return TRUE if the component is present and set to FALSE.

 The "information.kind" component of the ObjectClassDescription is an
 ENUMERATED type. The allComponentsMatch matching rule can be used to
 match values of an ENUMERATED type. The following search filter
 finds object class definitions for auxiliary object classes:

 (objectClasses:componentFilterMatch:=
 item:{ component "information.kind",
 rule allComponentsMatch, value auxiliary })

 The following search filter finds auxiliary object classes with
 commonName (cn or 2.5.4.3) as a mandatory attribute:

 (objectClasses:componentFilterMatch:=and:{
 item:{ component "information.kind",
 rule allComponentsMatch, value auxiliary },
 item:{ component "information.mandatories.*",
 rule objectIdentifierMatch, value cn } })

 The following search filter finds auxiliary object classes with
 commonName as a mandatory or optional attribute:

 (objectClasses:componentFilterMatch:=and:{
 item:{ component "information.kind",
 rule allComponentsMatch, value auxiliary },
 or:{
 item:{ component "information.mandatories.*",
 rule objectIdentifierMatch, value cn },
 item:{ component "information.optionals.*",
 rule objectIdentifierMatch, value cn } } })

 Extra care is required when matching optional SEQUENCE OF or SET OF
 components because of the distinction between an absent list of
 instances and a present, but empty, list of instances. The following
 search filter finds object class definitions with less than three

Legg Standards Track [Page 33]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 names, including object class definitions with a present but empty
 list of names, but does not find object class definitions with an
 absent list of names:

 (objectClasses:componentFilterMatch:=
 item:{ component "name.0",
 rule integerOrderingMatch, value 3 })

 If the "name" component is absent the "name.0" component is also
 considered to be absent and the ComponentAssertion evaluates to
 FALSE. If the "name" component is present, but empty, the "name.0"
 component is also present and equal to zero, so the
 ComponentAssertion evaluates to TRUE. To also find the object class
 definitions with an absent list of names the following search filter
 would be used:

 (objectClasses:componentFilterMatch:=or:{
 not:item:{ component "name", rule presentMatch, value NULL },
 item:{ component "name.0",
 rule integerOrderingMatch, value 3 } })

 Distinguished names embedded in other syntaxes can be matched with a
 componentFilterMatch. The uniqueMember attribute type has an
 attribute syntax described by the ASN.1 type NameAndOptionalUID.

 NameAndOptionalUID ::= SEQUENCE {
 dn DistinguishedName,
 uid UniqueIdentifier OPTIONAL }

 The following search filter finds values of the uniqueMember
 attribute containing the author’s DN:

 (uniqueMember:componentFilterMatch:=
 item:{ component "dn",
 rule distinguishedNameMatch,
 value "cn=Steven Legg,o=Adacel,c=AU" })

 The DistinguishedName and RelativeDistinguishedName ASN.1 types are
 also complex ASN.1 types so the component matching rules can be
 applied to their inner components.

 DistinguishedName ::= RDNSequence

 RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

 RelativeDistinguishedName ::= SET SIZE (1..MAX) OF
 AttributeTypeAndValue

Legg Standards Track [Page 34]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 AttributeTypeAndValue ::= SEQUENCE {
 type AttributeType ({SupportedAttributes}),
 value AttributeValue ({SupportedAttributes}{@type}) }

 AttributeType ::= ATTRIBUTE.&id

 AttributeValue ::= ATTRIBUTE.&Type

 ATTRIBUTE.&Type is an open type. A value of ATTRIBUTE.&Type is
 constrained by the type component of AttributeTypeAndValue to be of
 the attribute syntax of the nominated attribute type. Note: the
 fourth edition of X.500 extends and renames the AttributeTypeAndValue
 SEQUENCE type.

 The seeAlso attribute has the DistinguishedName syntax. The
 following search filter finds seeAlso attribute values containing the
 RDN, "o=Adacel", anywhere in the DN:

 (seeAlso:componentFilterMatch:=
 item:{ component "*", rule rdnMatch, value "o=Adacel" })

 The following search filter finds all seeAlso attribute values with
 "cn=Steven Legg" as the RDN of the named entry (i.e., the "first" RDN
 in an LDAPDN or the "last" RDN in an X.500 DN):

 (seeAlso:componentFilterMatch:=
 item:{ component "-1",
 rule rdnMatch, value "cn=Steven Legg" })

 The following search filter finds all seeAlso attribute values naming
 entries in the DIT subtree of "o=Adacel,c=AU":

 (seeAlso:componentFilterMatch:=and:{
 item:{ component "1", rule rdnMatch, value "c=AU" },
 item:{ component "2", rule rdnMatch, value "o=Adacel" } })

 The following search filter finds all seeAlso attribute values
 containing the naming attribute types commonName (cn) and
 telephoneNumber in the same RDN:

 (seeAlso:componentFilterMatch:=
 item:{ component "*", rule componentFilterMatch,
 value and:{
 item:{ component "*.type",
 rule objectIdentifierMatch, value cn },
 item:{ component "*.type",
 rule objectIdentifierMatch,
 value telephoneNumber } } })

Legg Standards Track [Page 35]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 The following search filter would find all seeAlso attribute values
 containing the attribute types commonName and telephoneNumber, but
 not necessarily in the same RDN:

 (seeAlso:componentFilterMatch:=and:{
 item:{ component "*.*.type",
 rule objectIdentifierMatch, value cn },
 item:{ component "*.*.type",
 rule objectIdentifierMatch, value telephoneNumber } })

 The following search filter finds all seeAlso attribute values
 containing the word "Adacel" in any organizationalUnitName (ou)
 attribute value in any AttributeTypeAndValue of any RDN:

 (seeAlso:componentFilterMatch:=
 item:{ component "*.*.value.(2.5.4.11)",
 rule caseIgnoreSubstringsMatch,
 value { any:"Adacel" } })

 The component reference "*.*.value" identifies an open type, in this
 case an attribute value. In a particular AttributeTypeAndValue, if
 the attribute type is not organizationalUnitName then the
 ComponentAssertion evaluates to FALSE. Otherwise the substring
 assertion is evaluated against the attribute value.

 Absent component references in ComponentAssertions can be exploited
 to avoid false positive matches on multi-valued attributes. For
 example, suppose there is a multi-valued attribute named
 productCodes, defined to have the Integer syntax
 (1.3.6.1.4.1.1466.115.121.1.27). Consider the following search
 filter:

 (&(!(productCodes:integerOrderingMatch:=3))
 (productCodes:integerOrderingMatch:=8))

 An entry whose productCodes attribute contains only the values 1 and
 10 will match the above filter. The first subfilter is satisfied by
 the value 10 (10 is not less than 3), and the second subfilter is
 satisfied by the value 1 (1 is less than 8). The following search
 filter can be used instead to only match entries that have a
 productCodes value in the range 3 to 7, because the ComponentFilter
 is evaluated against each productCodes value in isolation:

 (productCodes:componentFilterMatch:= and:{
 not:item:{ rule integerOrderingMatch, value 3 },
 item:{ rule integerOrderingMatch, value 8 } })

Legg Standards Track [Page 36]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 An entry whose productCodes attribute contains only the values 1 and
 10 will not match the above filter.

8. Security Considerations

 The component matching rules described in this document allow for a
 compact specification of matching capabilities that could otherwise
 have been defined by a plethora of specific matching rules, i.e.,
 despite their expressiveness and flexibility the component matching
 rules do not behave in a way uncharacteristic of other matching
 rules, so the security issues for component matching rules are no
 different than for any other matching rule. However, because the
 component matching rules are applicable to any attribute syntax,
 support for them in a directory server may allow searching of
 attributes that were previously unsearchable by virtue of there not
 being a suitable matching rule. Such attribute types ought to be
 properly protected with appropriate access controls. A generic,
 interoperable access control mechanism has not yet been developed,
 however, and implementors should be aware of the interaction of that
 lack with the increased risk of exposure described above.

9. Acknowledgements

 The author would like to thank Tom Gindin for private email
 discussions that clarified and refined the ideas presented in this
 document.

10. IANA Considerations

 The Internet Assigned Numbers Authority (IANA) has updated the LDAP
 descriptors registry [8] as indicated by the following templates:

 Subject: Request for LDAP Descriptor Registration
 Descriptor (short name): componentFilterMatch
 Object Identifier: 1.2.36.79672281.1.13.2
 Person & email address to contact for further information:
 Steven Legg <steven.legg@adacel.com.au>
 Usage: other (matching rule)
 Specification: RFC 3687
 Author/Change Controller: IESG

Legg Standards Track [Page 37]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 Subject: Request for LDAP Descriptor Registration
 Descriptor (short name): rdnMatch
 Object Identifier: 1.2.36.79672281.1.13.3
 Person & email address to contact for further information:
 Steven Legg <steven.legg@adacel.com.au>
 Usage: other (matching rule)
 Specification: RFC 3687
 Author/Change Controller: IESG

 Subject: Request for LDAP Descriptor Registration
 Descriptor (short name): presentMatch
 Object Identifier: 1.2.36.79672281.1.13.5
 Person & email address to contact for further information:
 Steven Legg <steven.legg@adacel.com.au>
 Usage: other (matching rule)
 Specification: RFC 3687
 Author/Change Controller: IESG

 Subject: Request for LDAP Descriptor Registration
 Descriptor (short name): allComponentsMatch
 Object Identifier: 1.2.36.79672281.1.13.6
 Person & email address to contact for further information:
 Steven Legg <steven.legg@adacel.com.au>
 Usage: other (matching rule)
 Specification: RFC 3687
 Author/Change Controller: IESG

 Subject: Request for LDAP Descriptor Registration
 Descriptor (short name): directoryComponentsMatch
 Object Identifier: 1.2.36.79672281.1.13.7
 Person & email address to contact for further information:
 Steven Legg <steven.legg@adacel.com.au>
 Usage: other (matching rule)
 Specification: RFC 3687
 Author/Change Controller: IESG

 The object identifiers have been assigned for use in this
 specification by Adacel Technologies, under an arc assigned to Adacel
 by Standards Australia.

11. References

11.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

Legg Standards Track [Page 38]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 [2] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [3] Wahl, M., Howes, T. and S. Kille, "Lightweight Directory Access
 Protocol (v3)", RFC 2251, December 1997.

 [4] Wahl, M., Coulbeck, A., Howes, T. and S. Kille, "Lightweight
 Directory Access Protocol (v3): Attribute Syntax Definitions",
 RFC 2252, December 1997.

 [5] Wahl, M., Kille S. and T. Howes. "Lightweight Directory Access
 Protocol (v3): UTF-8 String Representation of Distinguished
 Names", RFC 2253, December 1997.

 [6] Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD
 63, RFC 3629, November 2003.

 [7] Hodges, J. and R. Morgan, "Lightweight Directory Access
 Protocol (v3): Technical Specification", RFC 3377, September
 2002.

 [8] Zeilenga, K., "Internet Assigned Numbers Authority (IANA)
 Considerations for the Lightweight Directory Access Protocol
 (LDAP)", BCP 64, RFC 3383, September 2002.

 [9] Legg, S., "Generic String Encoding Rules (GSER) for ASN.1
 Types", RFC 3641, October 2003.

 [10] ITU-T Recommendation X.501 (1993) | ISO/IEC 9594-2:1994,
 Information Technology - Open Systems Interconnection - The
 Directory: Models

 [11] ITU-T Recommendation X.509 (1997) | ISO/IEC 9594-8:1998,
 Information Technology - Open Systems Interconnection - The
 Directory: Authentication Framework

 [12] ITU-T Recommendation X.520 (1993) | ISO/IEC 9594-6:1994,
 Information technology - Open Systems Interconnection - The
 Directory: Selected attribute types

 [13] ITU-T Recommendation X.680 (07/02) | ISO/IEC 8824-1:2002,
 Information technology - Abstract Syntax Notation One (ASN.1):
 Specification of basic notation

 [14] ITU-T Recommendation X.681 (07/02) | ISO/IEC 8824-2:2002,
 Information technology - Abstract Syntax Notation One (ASN.1):
 Information object specification

Legg Standards Track [Page 39]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

 [15] ITU-T Recommendation X.682 (07/02) | ISO/IEC 8824-3:2002,
 Information technology - Abstract Syntax Notation One (ASN.1):
 Constraint specification

 [16] ITU-T Recommendation X.683 (07/02) | ISO/IEC 8824-4:2002,
 Information technology - Abstract Syntax Notation One (ASN.1):
 Parameterization of ASN.1 specifications

 [17] ITU-T Recommendation X.690 (07/02) | ISO/IEC 8825-1,
 Information technology - ASN.1 encoding rules: Specification of
 Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
 Distinguished Encoding Rules (DER)

12.2. Informative References

 [18] Howes, T., "The String Representation of LDAP Search Filters",
 RFC 2254, December 1997.

 [19] ITU-T Recommendation X.500 (1993) | ISO/IEC 9594-1:1994,
 Information Technology - Open Systems Interconnection - The
 Directory: Overview of concepts, models and services

12. Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Legg Standards Track [Page 40]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

13. Author’s Address

 Steven Legg
 Adacel Technologies Ltd.
 250 Bay Street
 Brighton, Victoria 3186
 AUSTRALIA

 Phone: +61 3 8530 7710
 Fax: +61 3 8530 7888
 EMail: steven.legg@adacel.com.au

Legg Standards Track [Page 41]

RFC 3687 LDAP and X.500 Component Matching Rules February 2004

14. Full Copyright Statement

 Copyright (C) The Internet Society (2004). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Legg Standards Track [Page 42]

