
Network Working Group J. Schaad
Request for Comments: 5035 Soaring Hawk Consulting
Updates: 2634 August 2007
Category: Standards Track

 Enhanced Security Services (ESS) Update:
 Adding CertID Algorithm Agility

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 In the original Enhanced Security Services for S/MIME document (RFC
 2634), a structure for cryptographically linking the certificate to
 be used in validation with the signature was introduced; this
 structure was hardwired to use SHA-1. This document allows for the
 structure to have algorithm agility and defines a new attribute for
 this purpose.

Table of Contents

 1. Introduction . 2
 1.1. Notation . 2
 1.2. Updates to RFC 2634 2
 2. Replace Section 5.4 ’Signing Certificate Attribute
 Definitions’ . 3
 3. Insert New Section 5.4.1 ’Signing Certificate Attribute
 Definition Version 2’ . 4
 4. Insert New Section 5.4.1.1 ’Certificate Identification
 Version 2’ . 5
 5. Insert New Section 5.4.2 ’Signing Certificate Attribute
 Definition Version 1’ . 7
 6. Insert New Section 5.4.2.1 ’Certificate Identification
 Version 1’ . 8
 7. Security Considerations 9
 8. Normative References . 10
 Appendix A. ASN.1 Module . 11

Schaad Standards Track [Page 1]

RFC 5035 ESSCertID Update August 2007

1. Introduction

 In the original Enhanced Security Services (ESS) for S/MIME document
 [ESS], a structure for cryptographically linking the certificate to
 be used in validation with the signature was defined. This
 structure, called ESSCertID, identifies a certificate by its hash.
 The structure is hardwired to use a SHA-1 hash value. The recent
 attacks on SHA-1 require that we define a new attribute that allows
 for the use of different algorithms. This document performs that
 task.

 This document defines the structure ESSCertIDv2 along with a new
 attribute SigningCertificateV2, which uses the updated structure.
 This document allows for the structure to have algorithm agility by
 including an algorithm identifier and defines a new signed attribute
 to use the new structure.

 This document specifies the continued use of ESSCertID to ensure
 compatibility when SHA-1 is used for certificate disambiguation.

1.1. Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.2. Updates to RFC 2634

 This document updates Section 5.4 of RFC 2634. Once the updates are
 applied, the revised section will have the following structure:

 5.4 Signing Certificate Attribute Definitions

 5.4.1 Signing Certificate Attribute Definition Version 2

 5.4.1.1 Certificate Identification Version 2

 5.4.2 Signing Certificate Attribute Definition Version 1

 5.4.2.1 Certificate Identification Version 1

 In addition, the ASN.1 module in Appendix A is replaced.

Schaad Standards Track [Page 2]

RFC 5035 ESSCertID Update August 2007

2. Replace Section 5.4 ’Signing Certificate Attribute Definitions’

 5.4 Signing Certificate Attribute Definitions

 The signing certificate attribute is designed to prevent simple
 substitution and re-issue attacks, and to allow for a restricted set
 of certificates to be used in verifying a signature.

 Two different attributes exist for this due to a flaw in the original
 design. The only substantial difference between the two attributes
 is that SigningCertificateV2 allows for hash algorithm agility, while
 SigningCertificate forces the use of the SHA-1 hash algorithm. With
 the recent advances in the ability to create hash collisions for
 SHA-1, it is wise to move forward sooner rather than later.

 When the SHA-1 hash function is used, the SigningCertificate
 attribute MUST be used. The SigningCertificateV2 attribute MUST be
 used if any algorithm other than SHA-1 is used and SHOULD NOT be used
 for SHA-1. Applications SHOULD recognize both attributes as long as
 they consider SHA-1 able to distinguish between two different
 certificates, (i.e., the possibility of a collision is sufficiently
 low). If both attributes exist in a single message, they are
 independently evaluated.

 Four cases exist that need to be taken into account when using this
 attribute for correct processing:

 1. Signature validates and the hashes match: This is the success
 case.

 2. Signature validates and the hashes do not match: In this case,
 the certificate contained the correct public key, but the
 certificate containing the public key is not the one that the
 signer intended to be used. In this case the application should
 attempt a search for a different certificate with the same public
 key and for which the hashes match. If no such certificate can
 be found, this is a failure case.

 3. Signature fails validation and the hashes match: In this case, it
 can be assumed that the signature has been modified in some
 fashion. This is a failure case.

 4. Signature fails validation and the hashes do not match: In this
 case, it can be either that the signature has been modified, or
 that the wrong certificate has been used. Applications should
 attempt a search for a different certificate that matches the
 hash value in the attribute and use the new certificate to retry
 the signature validation.

Schaad Standards Track [Page 3]

RFC 5035 ESSCertID Update August 2007

3. Insert New Section 5.4.1 ’Signing Certificate Attribute Definition
 Version 2’

 5.4.1 Signing Certificate Attribute Definition Version 2

 The signing certificate attribute is designed to prevent the simple
 substitution and re-issue attacks, and to allow for a restricted set
 of certificates to be used in verifying a signature.

 SigningCertificateV2 is identified by the OID:

 id-aa-signingCertificateV2 OBJECT IDENTIFIER ::= { iso(1)
 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) id-aa(2) 47 }

 The attribute has the ASN.1 definition:

 SigningCertificateV2 ::= SEQUENCE {
 certs SEQUENCE OF ESSCertIDv2,
 policies SEQUENCE OF PolicyInformation OPTIONAL
 }

 certs
 contains the list of certificates that are to be used in
 validating the message. The first certificate identified in the
 sequence of certificate identifiers MUST be the certificate used
 to verify the signature. The encoding of the ESSCertIDv2 for this
 certificate SHOULD include the issuerSerial field. If other
 constraints ensure that issuerAndSerialNumber will be present in
 the SignerInfo, the issuerSerial field MAY be omitted. The
 certificate identified is used during the signature verification
 process. If the hash of the certificate does not match the
 certificate used to verify the signature, the signature MUST be
 considered invalid.

 If more than one certificate is present, subsequent certificates
 limit the set of certificates that are used during validation.
 Certificates can be either attribute certificates (limiting
 authorizations) or public key certificates (limiting path
 validation). The issuerSerial field (in the ESSCertIDv2
 structure) SHOULD be present for these certificates, unless the
 client who is validating the signature is expected to have easy
 access to all the certificates required for validation. If only
 the signing certificate is present in the sequence, there are no
 restrictions on the set of certificates used in validating the
 signature.

Schaad Standards Track [Page 4]

RFC 5035 ESSCertID Update August 2007

 policies
 contains a sequence of policy information terms that identify
 those certificate policies that the signer asserts apply to the
 certificate, and under which the certificate should be relied
 upon. This value suggests a policy value to be used in the
 relying party’s certification path validation. The definition of
 PolicyInformation can be found in [RFC3280].

 If present, the SigningCertificateV2 attribute MUST be a signed
 attribute; it MUST NOT be an unsigned attribute. CMS defines
 SignedAttributes as a SET OF Attribute. A SignerInfo MUST NOT
 include multiple instances of the SigningCertificateV2 attribute.
 CMS defines the ASN.1 syntax for the signed attributes to include
 attrValues SET OF AttributeValue. A SigningCertificateV2 attribute
 MUST include only a single instance of AttributeValue. There MUST
 NOT be zero or multiple instances of AttributeValue present in the
 attrValues SET OF AttributeValue.

4. Insert New Section 5.4.1.1 ’Certificate Identification Version 2’

 Insert the following text as a new section.

 5.4.1.1 Certificate Identification Version 2

 The best way to identify certificates is an often-discussed issue.
 The ESSCertIDv2 structure supplies two different fields that are used
 for this purpose.

 The hash of the entire certificate allows for a verifier to check
 that the certificate used in the verification process was the same
 certificate the signer intended. Hashes are convenient in that they
 are frequently used by certificate stores as a method of indexing and
 retrieving certificates as well. The use of the hash is required by
 this structure since the detection of substituted certificates is
 based on the fact they would map to different hash values.

 The issuer/serial number pair is the method of identification of
 certificates used in [RFC3280]. That document imposes a restriction
 for certificates that the issuer distinguished name must be present.
 The issuer/serial number pair would therefore normally be sufficient
 to identify the correct signing certificate. (This assumes the same
 issuer name is not reused from the set of trust anchors.) The
 issuer/serial number pair can be stored in the sid field of the
 SignerInfo object. However, the sid field is not covered by the
 signature. In the cases where the issuer/serial number pair is not
 used in the sid or the issuer/serial number pair needs to be signed,
 it SHOULD be placed in the issuerSerial field of the ESSCertIDv2
 structure.

Schaad Standards Track [Page 5]

RFC 5035 ESSCertID Update August 2007

 Attribute certificates and additional public key certificates
 containing information do not have an issuer/serial number pair
 represented anywhere in a SignerInfo object. When an attribute
 certificate or an additional public key certificate is not included
 in the SignedData object, it becomes much more difficult to get the
 correct set of certificates based only on a hash of the certificate.
 For this reason, these certificates SHOULD be identified by the
 IssuerSerial object.

 This document defines a certificate identifier as:

 ESSCertIDv2 ::= SEQUENCE {
 hashAlgorithm AlgorithmIdentifier
 DEFAULT {algorithm id-sha256},
 certHash Hash,
 issuerSerial IssuerSerial OPTIONAL
 }

 Hash ::= OCTET STRING

 IssuerSerial ::= SEQUENCE {
 issuer GeneralNames,
 serialNumber CertificateSerialNumber
 }

 The fields of ESSCertIDv2 are defined as follows:

 hashAlgorithm
 contains the identifier of the algorithm used in computing
 certHash.

 certHash
 is computed over the entire DER-encoded certificate (including the
 signature) using the SHA-1 algorithm.

 issuerSerial
 holds the identification of the certificate. The issuerSerial
 would normally be present unless the value can be inferred from
 other information (e.g., the sid field of the SignerInfo object).

 The fields of IssuerSerial are defined as follows:

 issuer
 contains the issuer name of the certificate. For non-attribute
 certificates, the issuer MUST contain only the issuer name from
 the certificate encoded in the directoryName choice of
 GeneralNames. For attribute certificates, the issuer MUST contain
 the issuer name field from the attribute certificate.

Schaad Standards Track [Page 6]

RFC 5035 ESSCertID Update August 2007

 serialNumber
 holds the serial number that uniquely identifies the certificate
 for the issuer.

5. Insert New Section 5.4.2 ’Signing Certificate Attribute Definition
 Version 1’

 (Note: This section does not present new material. This section
 contains the original contents of Section 5.4 in [ESS], which are
 retained with minor changes in this specification to achieve
 backwards compatibility.)

 Insert the following text as a new section.

 5.4.2 Signing Certificate Attribute Definition Version 1

 The signing certificate attribute is designed to prevent the simple
 substitution and re-issue attacks, and to allow for a restricted set
 of certificates to be used in verifying a signature.

 The definition of SigningCertificate is

 SigningCertificate ::= SEQUENCE {
 certs SEQUENCE OF ESSCertID,
 policies SEQUENCE OF PolicyInformation OPTIONAL
 }

 id-aa-signingCertificate OBJECT IDENTIFIER ::= { iso(1)
 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) id-aa(2) 12 }

 The first certificate identified in the sequence of certificate
 identifiers MUST be the certificate used to verify the signature.
 The encoding of the ESSCertID for this certificate SHOULD include the
 issuerSerial field. If other constraints ensure that
 issuerAndSerialNumber will be present in the SignerInfo, the
 issuerSerial field MAY be omitted. The certificate identified is
 used during the signature verification process. If the hash of the
 certificate does not match the certificate used to verify the
 signature, the signature MUST be considered invalid.

 If more than one certificate is present in the sequence of
 ESSCertIDs, the certificates after the first one limit the set of
 certificates that are used during validation. Certificates can be
 either attribute certificates (limiting authorizations) or public key
 certificates (limiting path validation). The issuerSerial field (in
 the ESSCertID structure) SHOULD be present for these certificates,
 unless the client who is validating the signature is expected to have

Schaad Standards Track [Page 7]

RFC 5035 ESSCertID Update August 2007

 easy access to all the certificates required for validation. If only
 the signing certificate is present in the sequence, there are no
 restrictions on the set of certificates used in validating the
 signature.

 The sequence of policy information terms identifies those certificate
 policies that the signer asserts apply to the certificate, and under
 which the certificate should be relied upon. This value suggests a
 policy value to be used in the relying party’s certification path
 validation.

 If present, the SigningCertificate attribute MUST be a signed
 attribute; it MUST NOT be an unsigned attribute. Cryptographic
 Message Syntax (CMS) defines SignedAttributes as a SET OF Attribute.
 A SignerInfo MUST NOT include multiple instances of the
 SigningCertificate attribute. CMS defines the ASN.1 syntax for the
 signed attributes to include attrValues SET OF AttributeValue. A
 SigningCertificate attribute MUST include only a single instance of
 AttributeValue. There MUST NOT be zero or multiple instances of
 AttributeValue present in the attrValues SET OF AttributeValue.

6. Insert New Section 5.4.2.1 ’Certificate Identification Version 1’

 (Note: This section does not present new material. This section
 contains the original contents of Section 5.4 in [ESS], which are
 retained with minor changes in this specification to achieve
 backwards compatibility.)

 Delete old Section 5.4.1

 Insert the following as new text

 5.4.2.1 Certificate Identification Version 1

 Certificates are uniquely identified using the information in the
 ESSCertID structure. Discussion can be found in Section 5.4.1.1.

 This document defines a certificate identifier as:

 ESSCertID ::= SEQUENCE {
 certHash Hash,
 issuerSerial IssuerSerial OPTIONAL
 }

Schaad Standards Track [Page 8]

RFC 5035 ESSCertID Update August 2007

 The fields of ESSCertID are defined as follows:

 certHash
 is computed over the entire DER-encoded certificate (including the
 signature).

 issuerSerial
 holds the identification of the certificate. This field would
 normally be present unless the value can be inferred from other
 information (e.g., the sid field of the SignerInfo object).

 The fields of IssuerSerial are discussed in Section 5.4.1.1

7. Security Considerations

 This document is designed to address the security issue of a
 substituted certificate used by the validator. If a different
 certificate is used by the validator than the signer, the validator
 may not get the correct result. An example of this would be that the
 original certificate was revoked and a new certificate with the same
 public key was issued for a different individual. Since the issuer/
 serial number field is not protected, the attacker could replace this
 and point to the new certificate and validation would be successful.

 The attributes defined in this document are to be placed in locations
 that are protected by the signature. This attribute does not provide
 any additional security if placed in an unsigned or un-authenticated
 location.

 The attributes defined in this document permit a signer to select a
 hash algorithm to identify a certificate. A poorly selected hash
 algorithm may provide inadequate protection against certificate
 substitution or result in denial of service for this protection. By
 employing the attributes defined in this specification with the same
 hash algorithm used for message signing, the sender can ensure that
 these attributes provide commensurate security.

 Since recipients must support the hash algorithm to verify the
 signature, selecting the same hash algorithm also increases the
 likelihood that the hash algorithm is supported in the context of
 certificate identification. Note that an unsupported hash algorithm
 for certificate identification does not preclude validating the
 message but does deny the message recipient protection against
 certificate substitution.

 To ensure that legacy implementations are provided protection against
 certificate substitution, clients are permitted to include both
 ESScertID and ESScertIDv2 in the same message. Since these

Schaad Standards Track [Page 9]

RFC 5035 ESSCertID Update August 2007

 attributes are generated and evaluated independently, the contents
 could conceivably be in conflict. Specifically, where a signer has
 multiple certificates containing the same public key, the two
 attributes could specify different signing certificates. The result
 of signature processing may vary depending on which certificate is
 used to validate the signature.

 Recipients that attempt to evaluate both attributes may choose to
 reject such a message.

8. Normative References

 [ESS] Hoffman, P., "Enhanced Security Services for S/MIME",
 RFC 2634, June 1999.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, BCP 14, March 1997.

 [RFC3280] Housley, R., Ford, W., Polk, W., and D. Solo, "Internet
 X.509 Public Key Infrastructure Certificate and
 Certificate Revocation List (CRL) Profile", RFC 3280,
 April 2002.

 [RFC3852] Housley, R., "Cryptographic Message Syntax (CMS)",
 RFC 3852, July 2004.

 [UTF8] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

Schaad Standards Track [Page 10]

RFC 5035 ESSCertID Update August 2007

Appendix A. ASN.1 Module

 Replace the ASN.1 module in RFC 2634 with this one.

ExtendedSecurityServices-2006
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0) id-mod-ess-2006(30) }
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
IMPORTS
-- Cryptographic Message Syntax (CMS) [RFC3852]
 ContentType, IssuerAndSerialNumber, SubjectKeyIdentifier
 FROM CryptographicMessageSyntax2004 { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
 modules(0) cms-2004(24)}
-- PKIX Certificate and CRL Profile, Section A.1 Explicity Tagged Module
-- 1988 Syntax [RFC3280]
 AlgorithmIdentifier, CertificateSerialNumber
 FROM PKIX1Explicit88 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
 id-pkix1-explicit(18) }

-- PKIX Certificate and CRL Profile, Sec A.2 Implicitly Tagged Module,
-- 1988 Syntax [RFC3280]
 PolicyInformation, GeneralNames
 FROM PKIX1Implicit88 {iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
 id-pkix1-implicit(19)};

-- Extended Security Services
-- The construct "SEQUENCE SIZE (1..MAX) OF" appears in several ASN.1
-- constructs in this module. A valid ASN.1 SEQUENCE can have zero or
-- more entries. The SIZE (1..MAX) construct constrains the SEQUENCE to
-- have at least one entry. MAX indicates the upper bound is
-- unspecified. Implementations are free to choose an upper bound that
-- suits their environment.

-- UTF8String ::= [UNIVERSAL 12] IMPLICIT OCTET STRING

-- The contents are formatted as described in [UTF8]

-- Section 2.7

ReceiptRequest ::= SEQUENCE {
 signedContentIdentifier ContentIdentifier,
 receiptsFrom ReceiptsFrom,
 receiptsTo SEQUENCE SIZE (1..ub-receiptsTo) OF GeneralNames
}

Schaad Standards Track [Page 11]

RFC 5035 ESSCertID Update August 2007

ub-receiptsTo INTEGER ::= 16

id-aa-receiptRequest OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 1}

ContentIdentifier ::= OCTET STRING

id-aa-contentIdentifier OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 7}

ReceiptsFrom ::= CHOICE {
 allOrFirstTier [0] AllOrFirstTier, -- formerly "allOrNone [0]AllOrNone"
 receiptList [1] SEQUENCE OF GeneralNames
}

AllOrFirstTier ::= INTEGER { -- Formerly AllOrNone
 allReceipts (0),
 firstTierRecipients (1)
}

-- Section 2.8

Receipt ::= SEQUENCE {
 version ESSVersion,
 contentType ContentType,
 signedContentIdentifier ContentIdentifier,
 originatorSignatureValue OCTET STRING
}

id-ct-receipt OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-ct(1) 1}

ESSVersion ::= INTEGER { v1(1) }

-- Section 2.9

ContentHints ::= SEQUENCE {
 contentDescription UTF8String (SIZE (1..MAX)) OPTIONAL,
 contentType ContentType
}

id-aa-contentHint OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 4}

-- Section 2.10

MsgSigDigest ::= OCTET STRING

Schaad Standards Track [Page 12]

RFC 5035 ESSCertID Update August 2007

id-aa-msgSigDigest OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 5}

-- Section 2.11

ContentReference ::= SEQUENCE {
 contentType ContentType,
 signedContentIdentifier ContentIdentifier,
 originatorSignatureValue OCTET STRING
}

id-aa-contentReference OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 10 }

-- Section 3.2

ESSSecurityLabel ::= SET {
 security-policy-identifier SecurityPolicyIdentifier,
 security-classification SecurityClassification OPTIONAL,
 privacy-mark ESSPrivacyMark OPTIONAL,
 security-categories SecurityCategories OPTIONAL
}

id-aa-securityLabel OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 2}
SecurityPolicyIdentifier ::= OBJECT IDENTIFIER

SecurityClassification ::= INTEGER {
 unmarked (0),
 unclassified (1),
 restricted (2),
 confidential (3),
 secret (4),
 top-secret (5)
}(0..ub-integer-options)

ub-integer-options INTEGER ::= 256

ESSPrivacyMark ::= CHOICE {
 pString PrintableString (SIZE (1..ub-privacy-mark-length)),
 utf8String UTF8String (SIZE (1..MAX))
}

ub-privacy-mark-length INTEGER ::= 128

SecurityCategories ::= SET SIZE (1..ub-security-categories) OF
 SecurityCategory

Schaad Standards Track [Page 13]

RFC 5035 ESSCertID Update August 2007

ub-security-categories INTEGER ::= 64

SecurityCategory ::= SEQUENCE {
 type [0] OBJECT IDENTIFIER,
 value [1] ANY DEFINED BY type
}

--Note: The aforementioned SecurityCategory syntax produces identical
--hex encodings as the following SecurityCategory syntax that is
--documented in the X.411 specification:
--
--SecurityCategory ::= SEQUENCE {

-- type [0] SECURITY-CATEGORY,
-- value [1] ANY DEFINED BY type }
--
--SECURITY-CATEGORY MACRO ::=
--BEGIN
--TYPE NOTATION ::= type | empty
--VALUE NOTATION ::= value (VALUE OBJECT IDENTIFIER)
--END

-- Section 3.4

EquivalentLabels ::= SEQUENCE OF ESSSecurityLabel

id-aa-equivalentLabels OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 9}

-- Section 4.4

MLExpansionHistory ::= SEQUENCE
 SIZE (1..ub-ml-expansion-history) OF MLData

id-aa-mlExpandHistory OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 3 }

ub-ml-expansion-history INTEGER ::= 64 MLData ::= SEQUENCE {
 mailListIdentifier EntityIdentifier,
 expansionTime GeneralizedTime,
 mlReceiptPolicy MLReceiptPolicy OPTIONAL
}

EntityIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 subjectKeyIdentifier SubjectKeyIdentifier
}

Schaad Standards Track [Page 14]

RFC 5035 ESSCertID Update August 2007

MLReceiptPolicy ::= CHOICE {
 none [0] NULL,
 insteadOf [1] SEQUENCE SIZE (1..MAX) OF GeneralNames,
 inAdditionTo [2] SEQUENCE SIZE (1..MAX) OF GeneralNames
}

-- Section 5.4

SigningCertificate ::= SEQUENCE {
 certs SEQUENCE OF ESSCertID,
 policies SEQUENCE OF PolicyInformation OPTIONAL
}

id-aa-signingCertificate OBJECT IDENTIFIER ::= { iso(1)
 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) id-aa(2) 12 }

SigningCertificateV2 ::= SEQUENCE {
 certs SEQUENCE OF ESSCertIDv2,
 policies SEQUENCE OF PolicyInformation OPTIONAL
}

id-aa-signingCertificateV2 OBJECT IDENTIFIER ::= { iso(1)
 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) id-aa(2) 47 }

id-sha256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101)
 csor(3) nistalgorithm(4) hashalgs(2) 1 }

ESSCertIDv2 ::= SEQUENCE {
 hashAlgorithm AlgorithmIdentifier
 DEFAULT {algorithm id-sha256},
 certHash Hash,
 issuerSerial IssuerSerial OPTIONAL
}

ESSCertID ::= SEQUENCE {
 certHash Hash,
 issuerSerial IssuerSerial OPTIONAL
}

Hash ::= OCTET STRING IssuerSerial ::= SEQUENCE {
 issuer GeneralNames,
 serialNumber CertificateSerialNumber
}

END

Schaad Standards Track [Page 15]

RFC 5035 ESSCertID Update August 2007

-- of ExtendedSecurityServices-2006

Author’s Address

 Jim Schaad
 Soaring Hawk Consulting
 PO Box 675
 Gold Bar, WA 98251

 EMail: jimsch@exmsft.com

Schaad Standards Track [Page 16]

RFC 5035 ESSCertID Update August 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Schaad Standards Track [Page 17]

