
Network Working Group N. Williams
Request for Comments: 5660 Sun
Category: Standards Track October 2009

 IPsec Channels: Connection Latching

Abstract

 This document specifies, abstractly, how to interface applications
 and transport protocols with IPsec so as to create "channels" by
 latching "connections" (packet flows) to certain IPsec Security
 Association (SA) parameters for the lifetime of the connections.
 Connection latching is layered on top of IPsec and does not modify
 the underlying IPsec architecture.

 Connection latching can be used to protect applications against
 accidentally exposing live packet flows to unintended peers, whether
 as the result of a reconfiguration of IPsec or as the result of using
 weak peer identity to peer address associations. Weak association of
 peer ID and peer addresses is at the core of Better Than Nothing
 Security (BTNS); thus, connection latching can add a significant
 measure of protection to BTNS IPsec nodes.

 Finally, the availability of IPsec channels will make it possible to
 use channel binding to IPsec channels.

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Williams Standards Track [Page 1]

RFC 5660 IPsec Connection Latching October 2009

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License.

Table of Contents

 1. Introduction ..3
 1.1. Conventions Used in This Document4
 2. Connection Latching ...4
 2.1. Latching of Quality-of-Protection Parameters8
 2.2. Connection Latch State Machine9
 2.3. Normative Model: ULP Interfaces to the Key Manager12
 2.3.1. Race Conditions and Corner Cases17
 2.3.2. Example ..18
 2.4. Informative Model: Local Packet Tagging19
 2.5. Non-Native Mode IPsec21
 2.6. Implementation Note Regarding Peer IDs22
 3. Optional Features ..22
 3.1. Optional Protection22
 4. Simultaneous Latch Establishment23
 5. Connection Latching to IPsec for Various ULPs23
 5.1. Connection Latching to IPsec for TCP24
 5.2. Connection Latching to IPsec for UDP with
 Simulated Connections24
 5.3. Connection Latching to IPsec for UDP with
 Datagram-Tagging APIs25
 5.4. Connection Latching to IPsec for SCTP25
 5.5. Handling of BROKEN State for TCP and SCTP26
 6. Security Considerations ..27
 6.1. Impact on IPsec ...27
 6.2. Impact on IPsec of Optional Features28
 6.3. Security Considerations for Applications28
 6.4. Channel Binding and IPsec APIs29
 6.5. Denial-of-Service Attacks29
 7. Acknowledgements ...30
 8. References ...30
 8.1. Normative References30
 8.2. Informative References30

Williams Standards Track [Page 2]

RFC 5660 IPsec Connection Latching October 2009

1. Introduction

 IPsec protects packets with little or no regard for stateful packet
 flows associated with upper-layer protocols (ULPs). This exposes
 applications that rely on IPsec for session protection to risks
 associated with changing IPsec configurations, configurations that
 allow multiple peers access to the same addresses, and/or weak
 association of peer IDs and their addresses. The latter can occur as
 a result of "wildcard" matching in the IPsec Peer Authorization
 Database (PAD), particularly when Better Than Nothing Security (BTNS)
 [RFC5387] is used.

 Applications that wish to use IPsec may have to ensure that local
 policy on the various end-points is configured appropriately
 [RFC5406] [USING-IPSEC]. There are no standard Application
 Programming Interfaces (APIs) to do this (though there are non-
 standard APIs, such as [IP_SEC_OPT.man]) -- a major consequence of
 which, for example, is that applications must still use hostnames
 (and, e.g., the Domain Name System [RFC1034]) and IP addresses in
 existing APIs and must depend on an IPsec configuration that they may
 not be able to verify. In addition to specifying aspects of required
 Security Policy Database (SPD) configuration, application
 specifications must also address PAD/SPD configuration to strongly
 bind individual addresses to individual IPsec identities and
 credentials (certificates, public keys, etc.).

 IPsec is, then, quite cumbersome for use by applications. To address
 this, we need APIs to IPsec. Not merely APIs for configuring IPsec,
 but also APIs that are similar to the existing IP APIs (e.g., "BSD
 Sockets"), so that typical applications making use of UDP [RFC0768],
 TCP [RFC0793], and Stream Control Transmission Protocol (SCTP)
 [RFC4960] can make use of IPsec with minimal changes.

 This document describes the foundation for IPsec APIs that UDP and
 TCP applications can use: a way to bind the traffic flows for, e.g.,
 TCP connections to security properties desired by the application.
 We call these "connection latches" (and, in some contexts, "IPsec
 channels"). The methods outlined below achieve this by interfacing
 ULPs and applications to IPsec.

 If widely adopted, connection latching could make application use of
 IPsec much simpler, at least for certain classes of applications.

 Connection latching, as specified herein, is primarily about watching
 updates to the SPD and Security Association Database (SAD) to detect
 changes that are adverse to an application’s requirements for any
 given packet flow, and to react accordingly (such as by synchronously
 alerting the ULP and application before packets can be sent or

Williams Standards Track [Page 3]

RFC 5660 IPsec Connection Latching October 2009

 received under the new policy). Under no circumstance are IPsec
 policy databases to be modified by connection latching in any way
 that can persist beyond the lifetime of the related packet flows, nor
 reboots. Under no circumstance is the PAD to be modified at all by
 connection latching. If all optional features of connection latching
 are excluded, then connection latching can be implemented as a
 monitor of SPD and SAD changes that intrudes in their workings no
 more than is needed to provide synchronous alerts to ULPs and
 applications.

 We assume the reader is familiar with the IPsec architecture
 [RFC4301] and Internet Key Exchange Protocol version 2 (IKEv2)
 [RFC4306].

 Note: the terms "connection latch" and "IPsec channel" are used
 interchangeably below. The latter term relates to "channel binding"
 [RFC5056]. Connection latching is suitable for use in channel
 binding applications, or will be, at any rate, when the channel
 bindings for IPsec channels are defined (the specification of IPsec
 channel bindings is out of scope for this document).

 Note: where this document mentions IPsec peer "ID" it refers to the
 Internet Key Exchange (IKE) peer ID (e.g., the ID derived from a
 peer’s cert, as well as the cert), not the peer’s IP address.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Abstract function names are all capitalized and denoted by a pair of
 parentheses. In their descriptions, the arguments appear within the
 parentheses, with optional arguments surrounded by square brackets.
 Return values, if any, are indicated by following the function
 argument list with "->" and a description of the return value. For
 example, "FOO(3-tuple, [message])" would be a function named "FOO"
 with two arguments, one of them optional, and returning nothing,
 whereas "FOOBAR(handle) -> state" would be a function with a single,
 required argument that returns a value. The values’ types are
 described in the surrounding text.

2. Connection Latching

 An "IPsec channel" is a packet flow associated with a ULP control
 block, such as a TCP connection, where all the packets are protected
 by IPsec SAs such that:

Williams Standards Track [Page 4]

RFC 5660 IPsec Connection Latching October 2009

 o the peer’s identity is the same for the lifetime of the packet
 flow;

 o the quality of IPsec protection used for the packet flow’s
 individual packets is the same for all of them for the lifetime of
 the packet flow.

 An IPsec channel is created when the associated packet flow is
 created. This can be the result of a local operation (e.g., a
 connect()) that causes the initial outgoing packet for that flow to
 be sent, or it can be the result of receiving the first/initiating
 packet for that flow (e.g., a TCP SYN packet).

 An IPsec channel is destroyed when the associated packet flow ends.
 An IPsec channel can also be "broken" when the connection latch
 cannot be maintained for some reason (see below), in which case the
 ULP and application are informed.

 IPsec channels are created by "latching" various parameters listed
 below to a ULP connection when the connections are created. The
 REQUIRED set of parameters bound in IPsec channels is:

 o Type of protection: confidentiality and/or integrity protection;

 o Transport mode versus tunnel mode;

 o Quality of protection (QoP): cryptographic algorithm suites, key
 lengths, and replay protection (see Section 2.1);

 o Local identity: the local ID asserted to the peer, as per the
 IPsec processing model [RFC4301] and BTNS [RFC5386];

 o Peer identity: the peer’s asserted and authorized IDs, as per the
 IPsec processing model [RFC4301] and BTNS [RFC5386].

 The SAs that protect a given IPsec channel’s packets may change over
 time in that they may expire and be replaced with equivalent SAs, or
 they may be re-keyed. The set of SAs that protect an IPsec channel’s
 packets need not be related by anything other than the fact that they
 must be congruent to the channel (i.e., the SAs’ parameters must
 match those that are latched into the channel). In particular, it is
 desirable that IPsec channels survive the expiration of IKE_SAs and
 child SAs because operational considerations of the various key
 exchange protocols then cannot affect the design and features of
 connection latching.

Williams Standards Track [Page 5]

RFC 5660 IPsec Connection Latching October 2009

 When a situation arises in which the SPD is modified, or an SA is
 added to the SAD, such that the new policy and/or SA are not
 congruent to an established channel (see previous paragraph), then we
 consider this a conflict. Conflict resolution is addressed below.

 Requirements and recommendations:

 o If an IPsec channel is desired, then packets for a given
 connection MUST NOT be sent until the channel is established.

 o If an IPsec channel is desired, then inbound packets for a given
 connection MUST NOT be accepted until the channel is established.
 That is, inbound packets for a given connection arriving prior to
 the establishment of the corresponding IPsec channel must be
 dropped or the channel establishment must fail.

 o Once an IPsec channel is established, packets for the latched
 connection MUST NOT be sent unprotected nor protected by an SA
 that does not match the latched parameters.

 o Once an IPsec channel is established, packets for the latched
 connection MUST NOT be accepted unprotected nor protected by an SA
 that does not match the latched parameters. That is, such packets
 must either be dropped or cause the channel to be terminated and
 the application to be informed before data from such a packet can
 be delivered to the application.

 o Implementations SHOULD provide programming interfaces for
 inquiring the values of the parameters latched in a connection.

 o Implementations that provide such programming interfaces MUST make
 available to applications all relevant and available information
 about a peer’s ID, including authentication information. This
 includes the peer certificate, when one is used, and the trust
 anchor to which it was validated (but not necessarily the whole
 certificate validation chain).

 o Implementations that provide such programming interfaces SHOULD
 make available to applications any information about local and/or
 remote public and private IP addresses, in the case of NAT-
 traversal.

 o Implementations that provide such programming interfaces SHOULD
 make available to applications the inner and outer local and peer
 addresses whenever the latched connection uses tunnel-mode SAs.

Williams Standards Track [Page 6]

RFC 5660 IPsec Connection Latching October 2009

 o Implementations SHOULD provide programming interfaces for setting
 the values of the parameters to be latched in a connection that
 will be initiated or accepted, but these interfaces MUST limit
 what values applications may request according to system policy
 (i.e., the IPsec PAD and SPD) and the application’s local
 privileges.

 (Typical system policy may not allow applications any choices
 here. Policy extensions allowing for optional protection are
 described in Section 3.1.)

 o Implementations SHOULD create IPsec channels automatically by
 default when the application does not explicitly request an IPsec
 channel. Implementations MAY provide a way to disable automatic
 creation of connection latches.

 o The parameters latched in an IPsec channel MUST remain unchanged
 once the channel is established.

 o Timeouts while establishing child SAs with parameters that match
 those latched into an IPsec channel MUST be treated as packet loss
 (as happens, for example, when a network partitions); normal ULP
 and/or application timeout handling and retransmission
 considerations apply.

 o Implementations that have a restartable key management process (or
 "daemon") MUST arrange for existing latched connections to either
 be broken and disconnected, or for them to survive the restart of
 key exchange processes. (This is implied by the above
 requirements.) For example, if such an implementation relies on
 keeping some aspects of connection latch state in the restartable
 key management process (e.g., values that potentially have large
 representations, such as BTNS peer IDs), then either such state
 must be restored on restart of such a process, or outstanding
 connection latches must be transitioned to the CLOSED state.

 o Dynamic IPsec policy (see Section 3.1) related to connection
 latches, if any, MUST be torn down when latched connections are
 torn down, and MUST NOT survive reboots.

 o When IKE dead-peer detection (DPD) concludes that the remote peer
 is dead or has rebooted, then the system SHOULD consider all
 connection latches with that peer to be irremediably broken.

 We describe two models, one of them normative, of IPsec channels for
 native IPsec implementations. The normative model is based on
 abstract programming interfaces in the form of function calls between
 ULPs and the key management component of IPsec (basically, the SAD,

Williams Standards Track [Page 7]

RFC 5660 IPsec Connection Latching October 2009

 augmented with a Latch Database (LD)). The second model is based on
 abstract programming interfaces between ULPs and the IPsec
 (Encapsulating Security Payload / Authentication Header (ESP/AH))
 layer in the form of meta-data tagging of packets within the IP
 stack.

 The two models given below are not, however, entirely equivalent.
 One model cannot be implemented with Network Interface cards (NICs)
 that offload ESP/AH but that do not tag incoming packets passed to
 the host processor with SA information, nor allow the host processor
 to so tag outgoing packets. That same model can be easily extended
 to support connection latching with unconnected datagram "sockets",
 while the other model is rigidly tied to a notion of "connections"
 and cannot be so extended. There may be other minor differences
 between the two models. Rather than seek to establish equivalency
 for some set of security guarantees, we instead choose one model to
 be the normative one.

 We also provide a model for non-native implementations, such as bump-
 in-the-stack (BITS) and Security Gateway (SG) implementations. The
 connection latching model for non-native implementations is not full-
 featured as it depends on estimating packet flow state, which may not
 always be possible. Nor can non-native IPsec implementations be
 expected to provide APIs related to connection latching
 (implementations that do could be said to be native). As such, this
 third model is not suitable for channel binding applications
 [RFC5056].

2.1. Latching of Quality-of-Protection Parameters

 In IPsec, the assumption of IKE initiator/responder roles is non-
 deterministic. That is, sometimes an IKE SA and child SAs will be
 initiated by the "client" (e.g., the caller of the connect() BSD
 sockets function) and sometimes by the "server" (e.g., the caller of
 the accept() BSD Sockets function). This means that the negotiation
 of quality of protection is also non-deterministic unless one of the
 peers offers a single cryptographic suite in the IKE negotiation.

 When creating narrow child SAs with traffic selectors matching the
 connection latch’s 5-tuple, it is possible to constrain the IKE
 Quality-of-Protection negotiation to a single cryptographic suite.
 Therefore, implementations SHOULD provide an API for requesting the
 use of such child SAs. Implementors SHOULD consider an application
 request for a specific QoP to imply a request for narrow child SAs.

Williams Standards Track [Page 8]

RFC 5660 IPsec Connection Latching October 2009

 When using SAs with traffic selectors encompassing more than just a
 single flow, then the system may only be able to latch a set of
 cryptographic suites, rather than a single cryptographic suite. In
 such a case, an implementation MUST report the QoP being used as
 indeterminate.

2.2. Connection Latch State Machine

 Connection latches can exist in any of the following five states:

 o LISTENER

 o ESTABLISHED

 o BROKEN (there exist SAs that conflict with the given connection
 latch, conflicting SPD changes have been made, or DPD has been
 triggered and the peer is considered dead or restarted)

 o CLOSED (by the ULP, the application or administratively)

 and always have an associated owner, or holder, such as a ULP
 transmission control block (TCB).

 A connection latch can be born in the LISTENER state, which can
 transition only to the CLOSED state. The LISTENER state corresponds
 to LISTEN state of TCP (and other ULPs) and is associated with IP
 3-tuples, and can give rise to new connection latches in the
 ESTABLISHED state.

 A connection latch can also be born in the ESTABLISHED and BROKEN
 states, either through the direct initiative of a ULP or when an
 event occurs that causes a LISTENER latch to create a new latch (in
 either ESTABLISHED or BROKEN states). These states represent an
 active connection latch for a traffic flow’s 5-tuple. Connection
 latches in these two states can transition to the other of the two
 states, as well as to the CLOSED state.

 Connection latches remain in the CLOSED state until their owners are
 informed except where the owner caused the transition, in which case
 this state is fleeting. Transitions from ESTABLISHED or BROKEN
 states to the CLOSED state should typically be initiated by latch
 owners, but implementations SHOULD provide administrative interfaces
 through which to close active latches.

 Connection latches transition to the BROKEN state when there exist
 SAs in the SAD whose traffic selectors encompass the 5-tuple bound by
 the latch, and whose peer and/or parameters conflict with those bound
 by the latch. Transitions to the BROKEN state also take place when

Williams Standards Track [Page 9]

RFC 5660 IPsec Connection Latching October 2009

 SPD changes occur that would cause the latched connection’s packets
 to be sent or received with different protection parameters than
 those that were latched. Transitions to the BROKEN state are also
 allowed when IKEv2 DPD concludes that the remote peer is dead or has
 rebooted. Transitions to the BROKEN state always cause the
 associated owner to be informed. Connection latches in the BROKEN
 state transition back to ESTABLISHED when all SA and/or SPD conflicts
 are cleared.

 Most state transitions are the result of local actions of the latch
 owners (ULPs). The only exceptions are: birth into the ESTABLISHED
 state from latches in the LISTENER state, transitions to the BROKEN
 state, transitions from the BROKEN state to ESTABLISHED, and
 administrative transitions to the CLOSED state. (Additionally, see
 the implementation note about restartable key management processes in
 Section 2.)

Williams Standards Track [Page 10]

RFC 5660 IPsec Connection Latching October 2009

 The state diagram below makes use of conventions described in
 Section 1.1 and state transition events described in Section 2.3.

 <CREATE_LISTENER_LATCH(3-tuple, ...)>
 :
 v <CREATE_CONNECTION_LATCH(5-tuple, ...)>
 /--------\ : :
 +------|LISTENER|...... : :
 | \--------/ : : : +--------------------+
 | : : : : |Legend: | | |
 | : : : : | dotted lines denote|
 | <conn. trigger event> : : | latch creation |
 | (e.g., TCP SYN : : : | |
 | received, : : : | solid lines denote |
 | connect() : : : | state transition|
 | called, ...) v v : | |
 | : /-----------\ : | semi-solid lines |
 | : |ESTABLISHED| : | denote async |
 | <conflict> \-----------/ : | notification |
 | : ^ | : +--------------------+
 | : | <conflict
 | : <conflict or DPD>
 | : cleared> | :
 | : | | :
 | : | v v
 | : /----------------\
 | :.....>| BROKEN |.-.-.-.-.-> <ALERT()>
 | \----------------/
 | |
 <RELEASE_LATCH()> <RELEASE_LATCH()>
 | |
 | v
 | /------\
 +------------------->|CLOSED|
 \------/

 Figure 1: Connection Latching State Machine

 The details of the transitions depend on the model of connection
 latching followed by any given implementation. See the following
 sections.

Williams Standards Track [Page 11]

RFC 5660 IPsec Connection Latching October 2009

2.3. Normative Model: ULP Interfaces to the Key Manager

 This section describes the NORMATIVE model of connection latching.

 In this section, we describe connection latching in terms of a
 function-call interface between ULPs and the "key manager" component
 of a native IPsec implementation. Abstract interfaces for creating,
 inquiring about, and releasing IPsec channels are described.

 This model adds a service to the IPsec key manager (i.e., the
 component that manages the SAD and interfaces with separate
 implementations of, or directly implements, key exchange protocols):
 management of connection latches. There is also a new IPsec
 database, the Latch Database (LD), that contains all connection latch
 objects. The LD does not persist across system reboots.

 The traditional IPsec processing model allows the concurrent
 existence of SAs with different peers but overlapping traffic
 selectors. Such behavior, in this model, directly violates the
 requirements for connection latching (see Section 2). We address
 this problem by requiring that connection latches be broken (and
 holders informed) when such conflicts arise.

 The following INFORMATIVE figure illustrates this model and API in
 terms that are familiar to many implementors, though not applicable
 to all:

Williams Standards Track [Page 12]

RFC 5660 IPsec Connection Latching October 2009

 +--+
 | +--------------+ |
 | |Administrator | |
 | |apps | |
 | +--------------+ |
 | ^ ^ |
 | | | | user mode
 | v v |
 | +--------------+ +-------++--------+ |
 | |App | |IKEv2 || | | | | | |
 | | | | +---+ || +----+ | |
 | | | | |PAD| || |SPD | | |
 | | | | +---+ || +--^-+ | |
 | +--------------+ +-+-----++----+---+ |
 | ^ | | |
 +---|---------------------|-----------|------+ user/kernel mode
 | |syscalls | PF_KEY | | interface
 | | | [RFC2367] | |
 +---|---------------------|-----------|------+
 | v | | | | | | |
 |+-------+ +------------|-----------|-----+|
 ||ULP | | IPsec key|manager | ||
 |+-------+ | | +--------v----+||
 | ^ ^ | | | Logical SPD |||
 | | | | | +-----------^-+||
 | | | | +-------+ | || kernel mode
 | | | | | | || |
 | | | | +----------+ +--v--+ | ||
 | | +-------->| Latch DB |<-->| SAD | | ||
 | | | +----------+ +--^--+ | ||
 | | +--------------------|------|--+|
 +-|-------------------------------v------v---+
 | | IPsec Layer (ESP/AH) |
 | | |
 +-v--+
 | IP Layer |
 +--+

 Figure 2: Informative Implementation Architecture Diagram

 The ULP interfaces to the IPsec LD are as follows:

 o CREATE_LISTENER_LATCH(3-tuple, [type and quality-of-protection
 parameters]) -> latch handle | error

Williams Standards Track [Page 13]

RFC 5660 IPsec Connection Latching October 2009

 If there is no conflicting connection latch object in the
 LISTENER state for the given 3-tuple (local address, protocol,
 and local port number), and local policy permits it, then this
 operation atomically creates a connection latch object in the
 LISTENER state for the given 3-tuple.

 When a child SA is created that matches a listener latch’s
 3-tuple, but not any ESTABLISHED connection latch’s 5-tuple
 (local address, remote address, protocol, local port number,
 and remote port number), then the key manager creates a new
 connection latch object in the ESTABLISHED state. The key
 manager MUST inform the holder of the listener latch of
 connection latches created as a result of the listener latch;
 see the "ALERT()" interface below.

 o CREATE_CONNECTION_LATCH(5-tuple, [type and quality-of-protection
 parameters], [peer ID], [local ID]) -> latch handle | error

 If a) the requested latch does not exist (or exists, but is in
 the CLOSED state), b) all the latch parameters are provided, or
 if suitable SAs exist in the SAD from which to derive them, and
 c) if there are no conflicts with the SPD and SAD, then this
 creates a connection latch in the ESTABLISHED state. If the
 latch parameters are not provided and no suitable SAs exist in
 the SAD from which to derive those parameters, then the key
 manager MUST initiate child SAs, and if need be, IKE_SA, from
 which to derive those parameters.

 The key manager MAY delay the child SA setup and return
 immediately after the policy check, knowing that the ULP that
 requested the latch will subsequently output a packet that will
 trigger the SA establishment. Such an implementation may
 require an additional, fleeting state in the connection latch
 state machine, a "LARVAL" state, so to speak, that is not
 described herein.

 If the connection latch ultimately cannot be established,
 either because of conflicts or because no SAs can be
 established with the peer at the destination address, then an
 error is returned to the ULP. (If the key manager delayed SA
 establishment, and SA establishment ultimately fails, then the
 key manager has to inform the ULP, possibly asynchronously.
 This is one of several details that implementors who use a
 LARVAL state must take care of.)

Williams Standards Track [Page 14]

RFC 5660 IPsec Connection Latching October 2009

 o RELEASE_LATCH(latch object handle)

 Changes the state of the given connection latch to CLOSED; the
 connection latch is then deleted.

 The key manager MAY delete any existing child SAs that match
 the given latch if it had been in the ESTABLISHED states. If
 the key manager does delete such SAs, then it SHOULD inform the
 peer with an informational Delete payload (see IKEv2
 [RFC4306]).

 o FIND_LATCH(5-tuple) -> latch handle | error

 Given a 5-tuple returns a latch handle (or an error).

 o INQUIRE_LATCH(latch object handle) -> {latch state, latched
 parameters} | error

 Returns all available information about the given latch,
 including its current state (or an error).

 The IPsec LD interface to the ULP is as follows:

 o ALERT(latch object handle, 5-tuple, new state, [reason])

 Alerts a ULP as to an asynchronous state change for the given
 connection latch and, optionally, provides a reason for the
 change.

 This interface is to be provided by each ULP to the key manager.
 The specific details of how this interface is provided are
 implementation details, thus not specified here (for example, this
 could be a "callback" function or "closure" registered as part of
 the CREATE_LISTENER_LATCH() interface, or it could be provided
 when the ULP is loaded onto the running system via a registration
 interface provided by the key manager).

 Needless to say, the LD is updated whenever a connection latch object
 is created, deleted, or broken.

 The API described above is a new service of the IPsec key manager.
 In particular, the IPsec key manager MUST prevent conflicts amongst
 latches, and it MUST prevent conflicts between any latch and existing
 or proposed child SAs as follows:

 o Non-listener connection latches MUST NOT be created if there exist
 conflicting SAs in the SAD at the time the connection latch is
 requested or would be created (from a listener latch). A child SA

Williams Standards Track [Page 15]

RFC 5660 IPsec Connection Latching October 2009

 conflicts with another, in view of a latch, if and only if: a) its
 traffic selectors and the conflicting SA’s match the given
 latch’s, and b) its peer, type-of-protection, or quality-of-
 protection parameters differ from the conflicting SA.

 o Child SA proposals that would conflict with an extant connection
 latch and whose traffic selectors can be narrowed to avoid the
 conflict SHOULD be narrowed (see Section 2.9 of [RFC4306]);
 otherwise, the latch MUST be transitioned to the BROKEN state.

 o Where child SA proposals that would conflict with an extant
 connection latch cannot be narrowed to avoid the conflict, the key
 manager MUST break the connection latch and inform the holder
 (i.e., the ULP) prior to accepting the conflicting SAs.

 Finally, the key manager MUST protect latched connections against SPD
 changes that would change the quality of protection afforded to a
 latched connection’s traffic, or which would bypass it. When such a
 configuration change takes place, the key manager MUST respond in
 either of the following ways. The REQUIRED to implement behavior is
 to transition into the BROKEN state all connection latches that
 conflict with the given SPD change. An OPTIONAL behavior is to
 logically update the SPD as if a PROTECT entry had been added at the
 head of the SPD-S with traffic selectors matching only the latched
 connection’s 5-tuple, and with processing information taken from the
 connection latch. Such updates of the SPD MUST NOT survive system
 crashes or reboots.

 ULPs create latched connections by interfacing with IPsec as follows:

 o For listening end-points, the ULP will request a connection latch
 listener object for the ULP listener’s 3-tuple. Any latching
 parameters requested by the application MUST be passed along.

 o When the ULP receives a packet initiating a connection for a
 5-tuple matching a 3-tuple listener latch, then the ULP will ask
 the key manager whether a 5-tuple connection latch was created.
 If not, then the ULP will either reject the new connection or
 accept it and inform the application that the new connection is
 not latched.

 o When initiating a connection, the ULP will request a connection
 latch object for the connection’s 5-tuple. Any latching
 parameters requested by the application MUST be passed along. If
 no latch can be created, then the ULP MUST either return an error
 to the application or continue with the new connection and inform
 the application that the new connection is not latched.

Williams Standards Track [Page 16]

RFC 5660 IPsec Connection Latching October 2009

 o When a connection is torn down and no further packets are expected
 for it, then the ULP MUST request that the connection latch object
 be destroyed.

 o When tearing down a listener, the ULP MUST request that the
 connection latch listener object be destroyed.

 o When a ULP listener rejects connections, the ULP will request the
 destruction of any connection latch objects that may have been
 created as a result of the peer’s attempt to open the connection.

 o When the key manager informs a ULP that a connection latch has
 transitioned to the BROKEN state, then the ULP MUST stop sending
 packets and MUST drop all subsequent incoming packets for the
 affected connection until it transitions back to ESTABLISHED.
 Connection-oriented ULPs SHOULD act as though the connection is
 experiencing packet loss.

 o When the key manager informs a ULP that a connection latch has
 been administratively transitioned to the CLOSED state, then
 connection-oriented ULPs MUST act as though the connection has
 been reset by the peer. Implementations of ULPs that are not
 connection-oriented, and which have no API by which to simulate a
 reset, MUST drop all inbound packets for that connection and MUST
 NOT send any further packets -- the application is expected to
 detect timeouts and act accordingly.

 The main benefit of this model of connection latching is that it
 accommodates IPsec implementations where ESP/AH handling is
 implemented in hardware (for all or a subset of the host’s SAD), even
 where the hardware does not support tagging inbound packets with the
 indexes of SAD entries corresponding to the SAs that protected them.

2.3.1. Race Conditions and Corner Cases

 ULPs MUST drop inbound packets and stop sending packets immediately
 upon receipt of a connection latch break message. Otherwise, the ULP
 will not be able to distinguish inbound packets that were protected
 consistently with the connection’s latch from inbound packets that
 were not. This may include dropping inbound packets that were
 protected by a suitable SA; dropping such packets is no different,
 from the ULP’s point of view, than packet loss elsewhere on the
 network at the IP layer or below -- harmless, from a security point
 of view as the connection fails safe, but it can result in
 retransmits.

Williams Standards Track [Page 17]

RFC 5660 IPsec Connection Latching October 2009

 Another race condition is as follows. A PROTECTed TCP SYN packet may
 be received and decapsulated, but the SA that protected it could have
 expired before the key manager creates the connection latch that
 would be created by that packet. In this case, the key manager will
 have to initiate new child SAs so as to determine what the sender’s
 peer ID is so it can be included in the connection latch. Here,
 there is no guarantee that the peer ID for the new SAs will be the
 same as those of the peer that sent the TCP SYN packet. This race
 condition is harmless: TCP will send a SYN+ACK to the wrong peer,
 which will then respond with a RST -- the connection latch will
 reflect the new peer however, so if the new peer is malicious it will
 not be able to appear to be the old peer. Therefore, this race
 condition is harmless.

2.3.2. Example

 Consider several systems with a very simple PAD containing a single
 entry like so:

 Child SA
 Rule Remote ID IDs allowed SPD Search by
 ---- --------- ----------- -------------
 1 <any valid to trust anchor X> 192.0.2/24 by-IP

 Figure 3: Example PAD

 And a simple SPD like so:

 Rule Local Remote Next Action
 TS TS Proto
 ---- ----- ------ ----- ----------------
 1 192.0.2/24:ANY 192.0.2/24:1-5000 TCP PROTECT(ESP,...)
 1 192.0.2/24:1-5000 192.0.2/24:ANY TCP PROTECT(ESP,...)
 1 ANY ANY ANY BYPASS

 Figure 4: [SG-A] SPD Table

 Effectively this says: for TCP ports 1-5000 in our network, allow
 only peers that have credentials issued by CA X and PROTECT that
 traffic with ESP, otherwise, bypass all other traffic.

 Now let’s consider two hosts, A and B, in this network that wish to
 communicate using port 4000, and a third host, C, that is also in the
 same network and wishes to attack A and/or B. All three hosts have
 credentials and certificates issued by CA X. Let’s also imagine that
 A is connected to its network via a wireless link and is dynamically
 addressed.

Williams Standards Track [Page 18]

RFC 5660 IPsec Connection Latching October 2009

 B is listening on port 4000. A initiates a connection from port
 32800 to B on port 4000.

 We’ll assume no IPsec APIs, but that TCP creates latches where
 possible.

 We’ll consider three cases: a) A and B both support connection
 latching, b) only A does, c) only B does. For the purposes of this
 example, the SAD is empty on all three hosts when A initiates its TCP
 connection to B on port 4000.

 When an application running on A initiates a TCP connection to B on
 port 4000, A will begin by creating a connection latch. Since the
 SAD is empty, A will initiate an IKEv2 exchange to create an IKE_SA
 with B and a pair of child SAs for the 5-tuple {TCP, A, 32800, B,
 4000}, then a new latch will be created in ESTABLISHED state.
 Sometime later, TCP will send a SYN packet protected by the A-to-B
 child SA, per the SPD.

 When an application running on B creates a TCP listener "socket" on
 port 4000, B will create a LISTENER connection latch for the 3-tuple
 {TCP, B, 4000}. When B receives A’s TCP SYN packet, it will then
 create a connection latch for {TCP, B, 4000, A, 32800}. Since, by
 this point, child SAs have been created whose traffic selectors
 encompass this 5-tuple and there are no other conflicting SAs in the
 SAD, this connection latch will be created in the ESTABLISHED state.

 If C attempts to mount a man-in-the-middle attack on A (i.e.,
 pretends to have B’s address(es)) any time after A created its
 connection latch, then C’s SAs with A will cause the connection latch
 to break, and the TCP connection to be reset (since we assume no APIs
 by which TCP could notify the application of the connection latch
 break). If C attempts to impersonate A to B, then the same thing
 will happen on B.

 If A does not support connection latching, then C will be able to
 impersonate B to A at any time. Without having seen the cleartext of
 traffic between A and B, C will be limited by the TCP sequence
 numbers to attacks such as RST attacks. Similarly, if B does not
 support connection latching, then C will be able to impersonate A to
 B.

2.4. Informative Model: Local Packet Tagging

 In this section, we describe connection latching in terms of
 interfaces between ULPs and IPsec based on tagging packets as they go
 up and down the IP stack.

Williams Standards Track [Page 19]

RFC 5660 IPsec Connection Latching October 2009

 This section is INFORMATIVE.

 In this model, the ULPs maintain connection latch objects and state,
 rather than the IPsec key manager, as well as effectively caching a
 subset of the decorrelated SPD in ULP TCBs. Tagging packets, as they
 move up and down the stack, with SA identifiers then allows the ULPs
 to enforce connection latching semantics. These tags, of course,
 don’t appear on the wire.

 The interface between the ULPs and IPsec interface is as follows:

 o The IPsec layer tags all inbound protected packets addressed to
 the host with the index of the SAD entry corresponding to the SA
 that protected the packet.

 o The IPsec layer understands two types of tags on outbound packets:

 * a tag specifying a set of latched parameters (peer ID, quality
 of protection, etc.) that the IPsec layer will use to find or
 acquire an appropriate SA for protecting the outbound packet
 (else IPsec will inform the ULP and drop the packet);

 * a tag requesting feedback about the SA used to protect the
 outgoing packet, if any.

 ULPs create latched connections by interfacing with IPsec as follows:

 o When the ULP passes a connection’s initiating packet to IP, the
 ULP requests feedback about the SA used to protect the outgoing
 packet, if any, and may specify latching parameters requested by
 the application. If the packet is protected by IPsec, then the
 ULP records certain parameters of the SA used to protect it in the
 connection’s TCB.

 o When a ULP receives a connection’s initiating packet, it processes
 the IPsec tag of the packet, and it records in the connection’s
 TCB the parameters of the SA that should be latched.

 Once SA parameters are recorded in a connection’s TCB, the ULP
 enforces the connection’s latch, or binding, to these parameters as
 follows:

 o The ULP processes the IPsec tag of all inbound packets for a given
 connection and checks that the SAs used to protect input packets
 match the connection latches recorded in the TCBs. Packets that
 are not so protected are dropped (this corresponds to
 transitioning the connection latch to the BROKEN state until the

Williams Standards Track [Page 20]

RFC 5660 IPsec Connection Latching October 2009

 next acceptable packet arrives, but in this model, this transition
 is imaginary) or cause the ULP to break the connection latch and
 inform the application.

 o The ULP always requests that outgoing packets be protected by SAs
 that match the latched connection by appropriately tagging
 outbound packets.

 By effectively caching a subset of the decorrelated SPD in ULP TCBs
 and through its packet tagging nature, this method of connection
 latching can also optimize processing of the SPD by obviating the
 need to search it, both, on input and output, for packets intended
 for the host or originated by the host. This makes implementation of
 the OPTIONAL "logical SPD" updates described in Sections 2.3 and 3.1
 an incidental side effect of this approach.

 This model of connection latching may not be workable with ESP/AH
 offload hardware that does not support the packet tagging scheme
 described above.

 Note that this model has no explicit BROKEN connection latch state.

 Extending the ULP/IPsec packet-tagging interface to the application
 for use with connection-less datagram transports should enable
 applications to use such transports and implement connection latching
 at the application layer.

2.5. Non-Native Mode IPsec

 This section is INFORMATIVE.

 Non-native IPsec implementations, primarily BITS and SG, can
 implement connection latching, too. One major distinction between
 native IPsec and BITS, bump-in-the-wire (BITW), or SG IPsec is the
 lack of APIs for applications at the end-points in the case of the
 latter. As a result, there can be no uses of the latch management
 interfaces as described in Section 2.3: not at the ULP end-points.
 Therefore, BITS/BITW/SG implementations must discern ULP connection
 state from packet inspection (which many firewalls can do) and
 emulate calls to the key manager accordingly.

 When a connection latch is broken, a BITS/BITW/SG implementation may
 have to fake a connection reset by sending appropriate packets (e.g.,
 TCP RST packets), for the affected connections.

 As with all stateful middleboxes, this scheme suffers from the
 inability of the middlebox to interact with the applications. For
 example, connection death may be difficult to ascertain. Nor can

Williams Standards Track [Page 21]

RFC 5660 IPsec Connection Latching October 2009

 channel binding applications work with channels maintained by proxy
 without being able to communicate (securely) about it with the
 middlebox.

2.6. Implementation Note Regarding Peer IDs

 One of the recommendations for connection latching implementors is to
 make peer CERT payloads (certificates) available to the applications.

 Additionally, raw public keys are likely to be used in the
 construction of channel bindings for IPsec channels (see [IPSEC-CB]),
 and they must be available, in any case, in order to implement leap-
 of-faith at the application layer (see [RFC5386] and [RFC5387]).

 Certificates and raw public keys are large bit strings, too large to
 be reasonably kept in kernel-mode implementations of connection
 latching (which will likely be the typical case). Such
 implementations should intern peer IDs in a user-mode database and
 use small integers to refer to them from the kernel-mode SAD and LD.
 Corruption of such a database is akin to corruption of the SAD/LD; in
 the event of corruption, the implementation MUST act as though all
 ESTABLISHED and BROKEN connection latches are administratively
 transitioned to the CLOSED state. Implementations without IPsec APIs
 MAY hash peer IDs and use the hash to refer to them, preferably using
 a strong hash algorithm.

3. Optional Features

 At its bare minimum, connection latching is a passive layer atop
 IPsec that warns ULPs of SPD and SAD changes that are incompatible
 with the SPD/SAD state that was applicable to a connection when it
 was established.

 There are some optional features, such as (abstract) APIs. Some of
 these features make connection latching a somewhat more active
 feature. Specifically, the optional logical SPD updates described in
 Section 2.3 and the optional protection/bypass feature described in
 the following sub-section.

3.1. Optional Protection

 Given IPsec APIs, an application could request that a connection’s
 packets be protected where they would otherwise be bypassed; that is,
 applications could override BYPASS policy. Locally privileged
 applications could request that their connections’ packets be
 bypassed rather than protected; that is, privileged applications
 could override PROTECT policy. We call this "optional protection".

Williams Standards Track [Page 22]

RFC 5660 IPsec Connection Latching October 2009

 Both native IPsec models of connection latching can be extended to
 support optional protection. With the model described in
 Section 2.4, optional protection comes naturally: the IPsec layer
 need only check that the protection requested for outbound packets
 meets or exceeds (as determined by local or system policy) the
 quality of protection, if any, required by the SPD. In the case of
 the model described in Section 2.3, enforcement of minimum protection
 requirements would be done by the IPsec key manager via the
 connection latch state machine.

 When an application requests, and local policy permits, either
 additional protection or bypassing protection, then the SPD MUST be
 logically updated such that there exists a suitable SPD entry
 protecting or bypassing the exact 5-tuple recorded by the
 corresponding connection latch. Such logical SPD updates MUST be
 made at connection latch creation time, and MUST be made atomically
 (see the note about race conditions in Section 2.3). Such updates of
 the SPD MUST NOT survive system crashes or reboots.

4. Simultaneous Latch Establishment

 Some connection-oriented ULPs, specifically TCP, support simultaneous
 connections (where two clients connect to each other, using the same
 5-tuple, at the same time). Connection latching supports
 simultaneous latching as well, provided that the key exchange
 protocol does not make it impossible.

 Consider two applications doing a simultaneous TCP connect to each
 other and requesting an IPsec channel. If they request the same
 connection latching parameters, then the connection and channel
 should be established as usual. Even if the key exchange protocol in
 use doesn’t support simultaneous IKE_SA and/or child SA
 establishment, provided one peer’s attempt to create the necessary
 child SAs succeeds, then the other peer should be able to notice the
 new SAs immediately upon failure of its attempts to create the same.

 If, however, the two peer applications were to request different
 connection latching parameters, then the connection latch must fail
 on one end or on both ends.

5. Connection Latching to IPsec for Various ULPs

 The following sub-sections describe connection latching for each of
 three transport protocols. Note that for TCP and UDP, there is
 nothing in the following sections that should not already be obvious
 from the remainder of this document. The section on SCTP, however,
 specifies details related to SCTP multi-homing, that may not be as
 obvious.

Williams Standards Track [Page 23]

RFC 5660 IPsec Connection Latching October 2009

5.1. Connection Latching to IPsec for TCP

 IPsec connection latch creation/release for TCP [RFC0793] connections
 is triggered when:

 o a TCP listener end-point is created (e.g., when the BSD Sockets
 listen() function is called on a socket). This should cause the
 creation of a LISTENER connection latch.

 o a TCP SYN packet is received on an IP address and port number for
 which there is a listener. This should cause the creation of an
 ESTABLISHED or BROKEN connection latch.

 o a TCP SYN packet is sent (e.g., as the result of a call to the BSD
 Sockets connect() function). This should cause the creation of an
 ESTABLISHED or BROKEN connection latch.

 o any state transition of a TCP connection to the CLOSED state will
 cause a corresponding transition for any associated connection
 latch to the CLOSED state as well.

 See Section 5.5 for how to handle latch transitions to the BROKEN
 state.

5.2. Connection Latching to IPsec for UDP with Simulated Connections

 UDP [RFC0768] is a connection-less transport protocol. However, some
 networking APIs (e.g., the BSD Sockets API) allow for emulation of
 UDP connections. In this case, connection latching can be supported
 using either model given above. We ignore, in this section, the fact
 that the connection latching model described in Section 2.4 can
 support per-datagram latching by extending its packet tagging
 interfaces to the application.

 IPsec connection latch creation/release for UDP connections is
 triggered when:

 o an application creates a UDP "connection". This should cause the
 creation of an ESTABLISHED or BROKEN connection latch.

 o an application destroys a UDP "connection". This should cause the
 creation of an ESTABLISHED or BROKEN connection latch.

 When a connection latch transitions to the BROKEN state and the
 application requested (or system policy dictates it) that the
 connection be broken, then UDP should inform the application, if

Williams Standards Track [Page 24]

RFC 5660 IPsec Connection Latching October 2009

 there is a way to do so, or else it should wait, allowing the
 application-layer keepalive/timeout strategy, if any, to time out the
 connection.

 What constitutes an appropriate action in the face of administrative
 transitions of connection latches to the CLOSED state depends on
 whether the implementation’s "connected" UDP sockets API provides a
 way for the socket to return an error indicating that it has been
 closed.

5.3. Connection Latching to IPsec for UDP with Datagram-Tagging APIs

 Implementations based on either model of connection latching can
 provide applications with datagram-tagging APIs based on those
 described in Section 2.4. Implementations UDP with of the normative
 model of IPsec connection latching have to confirm, on output, that
 the application provided 5-tuple agrees with the application-provided
 connection latch; on input, UDP can derive the tag by searching for a
 connection latch matching incoming datagram’s 5-tuple.

5.4. Connection Latching to IPsec for SCTP

 SCTP [RFC4960], a connection-oriented protocol is similar, in some
 ways, to TCP. The salient difference, with respect to connection
 latching, between SCTP and TCP is that SCTP allows each end-point to
 be identified by a set of IP addresses, though, like TCP, each end-
 point of an SCTP connection (or, rather, SCTP association) can only
 have one port number.

 We can represent the multiplicity of SCTP association end-point
 addresses as a multiplicity of 5-tuples, each of which with its own
 connection latch. Alternatively, we can extend the connection latch
 object to support a multiplicity of addresses for each end-point.
 The first approach is used throughout this document; therefore, we
 will assume that representation.

 Of course, this approach results in N x M connection latches for any
 SCTP associations (where one end-point has N addresses and the other
 has M); whereas the alternative requires one connection latch per
 SCTP association (with N + M addresses). Implementors may choose
 either approach.

Williams Standards Track [Page 25]

RFC 5660 IPsec Connection Latching October 2009

 IPsec connection latch creation/release for SCTP connections is
 triggered when:

 o an SCTP listener end-point is created (e.g., when the SCTP sockets
 listen() function is called on a socket). This should cause the
 creation of a LISTENER connection latch for each address of the
 listener.

 o an SCTP INIT chunk is received on an IP address and port number
 for which there is a listener. This should cause the creation of
 one or more ESTABLISHED or BROKEN connection latches, one for each
 distinct 5-tuple given the client and server’s addresses.

 o an SCTP INIT chunk is sent (e.g., as the result of a call to the
 SCTP sockets connect() function). This should cause the creation
 of one or more ESTABLISHED or BROKEN connection latches.

 o an SCTP Address Configuration Change Chunk (ASCONF) [RFC5061]
 adding an end-point IP address is sent or received. This should
 cause the creation of one or more ESTABLISHED or BROKEN connection
 latches.

 o any state transition of an SCTP association to the CLOSED state
 will cause a corresponding transition for any associated
 connection latches to the CLOSED state as well.

 o an SCTP ASCONF chunk [RFC5061] deleting an end-point IP address is
 sent or received. This should cause one or more associated
 connection latches to be CLOSED.

 See Section 5.5 for how to handle latch transitions to the BROKEN
 state.

5.5. Handling of BROKEN State for TCP and SCTP

 There are several ways to handle connection latch transitions to the
 BROKEN state in the case of connection-oriented ULPs like TCP or
 SCTP:

 a. Wait for a possible future transition back to the ESTABLISHED
 state, until which time the ULP will not move data between the
 two end-points of the connection. ULP and application timeout
 mechanisms will, of course, be triggered in the event of too
 lengthy a stay in the BROKEN state. SCTP can detect these
 timeouts and initiate failover, in the case of multi-homed
 associations.

Williams Standards Track [Page 26]

RFC 5660 IPsec Connection Latching October 2009

 b. Act as though the connection has been reset (RST message
 received, in TCP, or ABORT message received, in SCTP).

 c. Act as though an ICMP destination unreachable message had been
 received (in SCTP such messages can trigger path failover in the
 case of multi-homed associations).

 Implementations SHOULD provide APIs that allow applications either 1)
 to be informed (asynchronously or otherwise) of latch breaks so that
 they may choose a disposition, and/or 2) to select a specific
 disposition a priori (before a latch break happens). The options for
 disposition are wait, close, or proceed with path failover.

 Implementations MUST provide a default disposition in the event of a
 connection latch break. Though (a) is clearly the purist default, we
 RECOMMEND (b) for TCP and SCTP associations where only a single path
 remains (one 5-tuple), and (c) for multi-homed SCTP associations.
 The rationale for this recommendation is as follows: a conflicting SA
 most likely indicates that the original peer is gone and has been
 replaced by another, and it’s not likely that the original peer will
 return; thus, failing faster seems reasonable.

 Note that our recommended default behavior does not create off-path
 reset denial-of-service (DoS) attacks. To break a connection latch,
 an attacker would first have to successfully establish an SA, with
 one of the connection’s end-points, that conflicts with the
 connection latch and that requires multiple messages to be exchanged
 between that end-point and the attacker. Unless the attacker’s
 chosen victim end-point allows the attacker to claim IP address
 ranges for its SAs, then the attacker would have to actually take
 over the other end-point’s addresses, which rules out off-path
 attacks.

6. Security Considerations

6.1. Impact on IPsec

 Connection latching effectively adds a mechanism for dealing with the
 existence, in the SAD, of multiple non-equivalent child SAs with
 overlapping traffic selectors. This mechanism consists of, at
 minimum, a local notification of transport protocols (and, through
 them, applications) of the existence of such a conflict that affects
 a transport layer’s connections. Affected transports are also
 notified when the conflict is cleared. The transports must drop
 inbound packets, and must not send outbound packets for connections
 that are affected by a conflict. In this minimal form, connection
 latching is a passive, local feature layered atop IPsec.

Williams Standards Track [Page 27]

RFC 5660 IPsec Connection Latching October 2009

 We achieve this by adding a new type of IPsec database, the Latch
 Database (LD), containing objects that represent a transport
 protocol’s interest in protecting a given packet flow from such
 conflicts. The LD is managed in conjunction with updates to the SAD
 and the SPD, so that updates to either that conflict with established
 connection latches can be detected. For some IPsec implementations,
 this may imply significant changes to their internals. However, two
 different models of connection latching are given, and we hope that
 most native IPsec implementors will find at least one model to be
 simple enough to implement in their stack.

 This notion of conflicting SAs and how to deal with the situation
 does not modify the basic IPsec architecture -- the feature of IPsec
 that allows such conflicts to arise remains, and it is up to the
 transport protocols and applications to select whether and how to
 respond to them.

 There are, however, interesting corner cases in the normative model
 of connection latching that implementors must be aware of. The notes
 in Section 2.3.1 are particularly relevant.

6.2. Impact on IPsec of Optional Features

 Section 3 describes optional features of connection latching where
 the key manager takes on a somewhat more active, though still local,
 role. There are two such features: optional protect/bypass and
 preservation of "logical" SPD entries to allow latched connections to
 remain in the ESTABLISHED state in the face of adverse administrative
 SPD (but not SAD) changes. These two features interact with
 administrative interfaces to IPsec; administrators must be made aware
 of these features, and they SHOULD be given a way to break
 ESTABLISHED connection latches. Also, given recent trends toward
 centralizing parts of IPsec policy, these two features can be said to
 have non-local effects where they prevent distributed policy changes
 from taking effect completely.

6.3. Security Considerations for Applications

 Connection latching is not negotiated. It is therefore possible for
 one end of a connection to be using connection latching while the
 other does not; in which case, it’s possible for policy changes local
 to the non-latched end to cause packets to be sent unprotected. The
 end doing connection latching will reject unprotected packets, but if
 they bear sensitive data, then the damage may already be done.
 Therefore, applications SHOULD check that both ends of a connection
 are latched (such a check is implicit for applications that use
 channel binding to IPsec).

Williams Standards Track [Page 28]

RFC 5660 IPsec Connection Latching October 2009

 Connection latching protects individual connections from weak peer
 ID<->address binding, IPsec configuration changes, and from
 configurations that allow multiple peers to assert the same
 addresses. But connection latching does not ensure that any two
 connections with the same end-point addresses will have the same
 latched peer IDs. In other words, applications that use multiple
 concurrent connections between two given nodes may not be protected
 any more or less by use of IPsec connection latching than by use of
 IPsec alone without connection latching. Such multi-connection
 applications can, however, examine the latched SA parameters of each
 connection to ensure that all concurrent connections with the same
 end-point addresses also have the same end-point IPsec IDs.

 Connection latching protects against TCP RST attacks. It does not
 help, however, if the original peer of a TCP connection is no longer
 available (e.g., if an attacker has been able to interrupt the
 network connection between the two peers).

6.4. Channel Binding and IPsec APIs

 IPsec channels are a prerequisite for channel binding [RFC5056] to
 IPsec. Connection latching provides such channels, but the channel
 bindings for IPsec channels (latched connections) are not specified
 herein -- that is a work in progress [IPSEC-CB].

 Without IPsec APIs, connection latching provides marginal security
 benefits over traditional IPsec. Such APIs are not described herein;
 see [ABSTRACT-API].

6.5. Denial-of-Service Attacks

 Connection latch state transitions to the BROKEN state can be
 triggered by on-path attackers and any off-path attackers that can
 attack routers or cause an end-point to accept an ICMP Redirect
 message. Connection latching protects applications against on- and
 off-path attackers in general, but not against on-path denial of
 service specifically.

 Attackers can break latches if they can trigger DPD on one or both
 end-points and if they cause packets to not move between two end-
 points. Such attacks generally require that the attacker be on-path;
 therefore, we consider it acceptable to break latches when DPD
 concludes that a peer is dead or rebooted.

 Attackers can also break latches if IPsec policy on a node allows the
 attacker to use the IP address of a peer of that node. Such

Williams Standards Track [Page 29]

RFC 5660 IPsec Connection Latching October 2009

 configurations are expected to be used in conjunction with BTNS in
 general. Such attacks generally require that the attacker be on-
 path.

7. Acknowledgements

 The author thanks Michael Richardson for all his help, as well as
 Stephen Kent, Sam Hartman, Bill Sommerfeld, Dan McDonald, Daniel
 Migault, and many others who’ve participated in the BTNS WG or who’ve
 answered questions about IPsec, connection latching implementations,
 etc.

8. References

8.1. Normative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6,
 RFC 768, August 1980.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, September 1981.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC4306] Kaufman, C., "Internet Key Exchange (IKEv2)
 Protocol", RFC 4306, December 2005.

 [RFC4960] Stewart, R., "Stream Control Transmission
 Protocol", RFC 4960, September 2007.

 [RFC5061] Stewart, R., Xie, Q., Tuexen, M., Maruyama, S., and
 M. Kozuka, "Stream Control Transmission Protocol
 (SCTP) Dynamic Address Reconfiguration", RFC 5061,
 September 2007.

 [RFC5386] Williams, N. and M. Richardson, "Better-Than-
 Nothing Security: An Unauthenticated Mode of
 IPsec", RFC 5386, November 2008.

8.2. Informative References

 [ABSTRACT-API] Richardson, M., "An abstract interface between
 applications and IPsec", Work in Progress,
 November 2008.

Williams Standards Track [Page 30]

RFC 5660 IPsec Connection Latching October 2009

 [IPSEC-CB] Williams, N., "End-Point Channel Bindings for IPsec
 Using IKEv2 and Public Keys", Work in Progress,
 April 2008.

 [IP_SEC_OPT.man] Sun Microsystems, Inc., "ipsec(7P) man page,
 Solaris 10 Reference Manual Collection".

 [RFC1034] Mockapetris, P., "Domain names - concepts and
 facilities", STD 13, RFC 1034, November 1987.

 [RFC2367] McDonald, D., Metz, C., and B. Phan, "PF_KEY Key
 Management API, Version 2", RFC 2367, July 1998.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to
 Secure Channels", RFC 5056, November 2007.

 [RFC5387] Touch, J., Black, D., and Y. Wang, "Problem and
 Applicability Statement for Better-Than-Nothing
 Security (BTNS)", RFC 5387, November 2008.

 [RFC5406] Bellovin, S., "Guidelines for Specifying the Use of
 IPsec Version 2", BCP 146, RFC 5406, February 2009.

 [USING-IPSEC] Dondeti, L. and V. Narayanan, "Guidelines for using
 IPsec and IKEv2", Work in Progress, October 2006.

Author’s Address

 Nicolas Williams
 Sun Microsystems
 5300 Riata Trace Ct
 Austin, TX 78727
 US

 EMail: Nicolas.Williams@sun.com

Williams Standards Track [Page 31]

