
Internet Engineering Task Force (IETF) D. Kuegler
Request for Comments: 6631 BSI
Category: Experimental Y. Sheffer
ISSN: 2070-1721 Porticor
 June 2012

 Password Authenticated Connection Establishment
 with the Internet Key Exchange Protocol version 2 (IKEv2)

Abstract

 The Internet Key Exchange protocol version 2 (IKEv2) does not allow
 secure peer authentication when using short credential strings, i.e.,
 passwords. Several proposals have been made to integrate password-
 authentication protocols into IKE. This document provides an
 adaptation of Password Authenticated Connection Establishment (PACE)
 to the setting of IKEv2 and demonstrates the advantages of this
 integration.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6631.

Kuegler & Sheffer Experimental [Page 1]

RFC 6631 IKEv2 with PACE June 2012

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..3
 1.1. Terminology ..4
 2. Overview ..5
 3. Protocol Sequence ...6
 3.1. The IKE_SA_INIT Exchange6
 3.2. The IKE_AUTH Exchange, Round #17
 3.3. The IKE_AUTH Exchange, Round #27
 3.4. Public Key Validation8
 3.5. Creating a Long-Term Shared Secret9
 3.6. Using the Long-Term Shared Secret11
 4. Encrypting and Mapping the Nonce11
 4.1. Encrypting the Nonce11
 4.2. Mapping the Nonce ...12
 4.2.1. Modular Diffie-Hellman13
 4.2.2. Elliptic Curve Diffie-Hellman13
 5. Protocol Details ...13
 5.1. Password Processing13
 5.2. The SECURE_PASSWORD_METHODS Notification14
 5.3. The PSK_PERSIST Notification15
 5.4. The PSK_CONFIRM Notification15
 5.5. The GSPM(ENONCE) Payload15
 5.6. The KE (KEi2/KEr2) Payloads in PACE16
 5.7. PACE and Session Resumption16
 6. Security Considerations ..16
 6.1. Credential Security Assumptions16
 6.2. Vulnerability to Passive and Active Attacks16
 6.3. Perfect Forward Secrecy17
 6.4. Randomness ..17
 6.5. Identity Protection17
 6.6. Denial of Service ...17

Kuegler & Sheffer Experimental [Page 2]

RFC 6631 IKEv2 with PACE June 2012

 6.7. Choice of Encryption Algorithms17
 6.8. Security Model and Security Proof18
 6.9. Long-Term Credential Storage18
 7. IANA Considerations ..19
 8. Acknowledgments ..19
 9. References ...19
 9.1. Normative References19
 9.2. Informative References20
 Appendix A. Protocol Selection Criteria22
 A.1. Security Criteria ..22
 A.2. Intellectual Property Criteria22
 A.3. Miscellaneous Criteria22
 Appendix B. Password Salting23
 B.1. Solving the Asymmetric Case with Symmetric Cryptography24
 B.2. Solving the Fully Symmetric Case with Asymmetric
 Cryptography ...25
 B.3. Generation of a Strong, Long-Term, Shared Secret26

1. Introduction

 PACE [TR03110] is a security protocol that establishes a mutually
 authenticated (and encrypted) channel between two parties based on
 weak (short) passwords. PACE provides strong session keys that are
 independent of the strength of the password. PACE belongs to a
 family of protocols often referred to as Zero-Knowledge Password
 Proof (ZKPP) protocols, all of which amplify weak passwords into
 strong session keys. This document describes the integration of PACE
 into IKEv2 [RFC5996] as a new authentication mode, analogous to the
 existing certificate and Pre-Shared Key (PSK) authentication modes.

 Some of the advantages of our approach, compared to the existing
 IKEv2, include the following:

 o The current best practice to implement password authentication in
 IKE involves certificate-based authentication of the server plus
 some Extensible Authentication Protocol (EAP) method to
 authenticate the client. This involves two non-trivial
 infrastructure components (PKI and EAP/AAA). Moreover,
 certificate authentication is hard to get right and often depends
 on unreliable user behavior for its security.

 o Alternatively, native IKEv2 shared secret authentication can be
 used with passwords. However, this usage is insecure;
 specifically, it is vulnerable to active attackers.

Kuegler & Sheffer Experimental [Page 3]

RFC 6631 IKEv2 with PACE June 2012

 o Some newer EAP methods can be used for mutual authentication and,
 combined with [RFC5998], can be well integrated into IKEv2. This
 is certainly an option in some cases, but the current proposal may
 be simpler to implement.

 Compared to other protocols aiming at similar goals, PACE has several
 advantages. PACE was designed to allow for a high level of
 flexibility with respect to cryptographic algorithms; e.g., it can be
 implemented based on Modular Diffie-Hellman as well as Elliptic Curve
 Diffie-Hellman without any restrictions on the mathematical group to
 be used, other than the requirement that the group be
 cryptographically secure. The protocol itself is also proven to be
 cryptographically secure [PACEsec]. The PACE protocol is currently
 used in an international standard for digital travel documents
 [ICAO].

 The integration aims at keeping IKEv2 unchanged as much as possible;
 e.g., the mechanisms used to establish Child security associations
 (SAs) as provided by IKEv2 would be maintained with no change.

 The Password-Authenticated Key Exchange (PAKE) framework document
 [RFC6467] defines a set of payloads for different types of PAKE
 methods within IKEv2. This document reuses this framework. Note
 that the current document is self-contained; i.e., all relevant
 payloads and semantics are redefined here.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following notation is used in this document:

 E() Symmetric encryption
 D() Symmetric decryption
 KA() Key agreement
 Map() Mapping function
 Pwd Shared password
 SPwd Stored password
 KPwd Symmetric key derived from a password Pwd
 G Static group generator
 GE Ephemeral group generator
 ENONCE Encrypted nonce
 PKEi Ephemeral public key of the initiator
 SKEi Ephemeral secret key of the initiator

Kuegler & Sheffer Experimental [Page 4]

RFC 6631 IKEv2 with PACE June 2012

 PKEr Ephemeral public key of the responder
 SKEr Ephemeral secret key of the responder
 AUTH Authentication payload

 Any other notation used here is defined in [RFC5996].

2. Overview

 At a high level, the following steps are performed by the initiator
 and the responder. They result in a two-round IKE_AUTH exchange,
 described in Section 3 below.

 1. The initiator randomly and uniformly chooses a nonce s, encrypts
 the nonce using the password, and sends the ciphertext

 ENONCE = E(KPwd, s)

 to the responder. The responder recovers the plaintext nonce s
 with the help of the shared password Pwd.

 2. The nonce s is mapped to an ephemeral generator

 GE = G^s * SASharedSecret,

 where G is the generator of the selected Modular Exponential
 (MODP) group and SASharedSecret is a shared secret that has been
 generated in the IKE_SA_INIT step.

 3. Both the initiator and the responder each calculate an ephemeral
 key pair

 (SKEi, PKEi = GE^SKEi) and (SKEr, PKEr=GE^SKEr),

 respectively, based on the ephemeral generator GE, and exchange
 the public keys.

 4. Finally, they compute the shared secret

 PACESharedSecret = PKEi^SKEr = PKEr^SKEi

 and generate, exchange, and verify the IKE authentication token
 AUTH using the shared secret PACESharedSecret.

 The encryption function E() must be carefully chosen to prevent
 dictionary attacks that would otherwise allow an attacker to recover
 the password. Those restrictions are described in Section 4.1.
 Details on the mapping function, including the elliptic curve
 variant, can be found in Section 4.2.

Kuegler & Sheffer Experimental [Page 5]

RFC 6631 IKEv2 with PACE June 2012

 To avoid the risks inherent in storing a short password (e.g., the
 fact that passwords are often reused for different applications),
 this protocol allows the peers to jointly convert the password into a
 cryptographically stronger shared secret. This shared secret can
 then be stored by both peers, in lieu of the original password or its
 salted variants.

3. Protocol Sequence

 The protocol consists of three round trips -- an IKE_SA_INIT exchange
 and a 2-round IKE_AUTH exchange -- as shown in the next figure. An
 optional Informational exchange may follow (see Section 3.5).

 Initiator Responder
 --------- ---------

 IKE_SA_INIT:

 HDR, SAi1, KEi, Ni, N(SECURE_PASSWORD_METHODS) ->

 <- HDR, SAr1, KEr, Nr, N(SECURE_PASSWORD_METHODS)

 IKE_AUTH round #1:

 HDR, SK{IDi, [IDr,], SAi2,
 TSi, TSr, GSPM(ENONCE), KEi2} ->

 <- HDR, SK{IDr, KEr2}

 IKE_AUTH round #2:

 HDR, SK{AUTH [, N(PSK_PERSIST)] } ->

 <- HDR, SK{AUTH, SAr2, TSi, TSr [, N(PSK_PERSIST)] }

 Figure 1: IKE SA Setup with PACE

3.1. The IKE_SA_INIT Exchange

 The initiator sends a SECURE_PASSWORD_METHODS notification that
 indicates its support of this extension and its wish to authenticate
 using a password. The following text assumes that the responder sent
 back a SECURE_PASSWORD_METHODS notification that indicates its
 preference for PACE.

Kuegler & Sheffer Experimental [Page 6]

RFC 6631 IKEv2 with PACE June 2012

 If PACE was chosen, the algorithms negotiated in SAi1 and SAr1 are
 also used for the execution of PACE, i.e., the key agreement protocol
 (Modular Diffie-Hellman or Elliptic Curve Diffie-Hellman), the group
 to be used, and the encryption algorithm.

3.2. The IKE_AUTH Exchange, Round #1

 This is the first part of the PACE authentication of the peers. This
 exchange MUST NOT be used unless both peers indicated support of this
 protocol.

 The initiator selects a random nonce s and encrypts it to form ENONCE
 using the password Pwd, as described in Section 4.1. Then, the
 initiator maps the nonce to an ephemeral generator GE of the group as
 described in Section 4.2, chooses randomly and uniformly an ephemeral
 key pair (SKEi,PKEi) based on the ephemeral generator, and finally
 generates the payloads GSPM(ENONCE) containing the encrypted nonce
 and KEi2 containing the ephemeral public key.

 The responder decrypts the received encrypted nonce s = D(KPwd,
 ENONCE), performs the mapping, and randomly and uniformly chooses an
 ephemeral key pair (SKEr,PKEr) based on the ephemeral generator GE.
 The responder generates the KEr2 payload containing the ephemeral
 public key.

 The request is equivalent to the IKE_AUTH request in a normal IKEv2
 exchange; i.e., any payload that is valid in an IKE_AUTH request is
 valid (with the same semantics) in this round’s request. In
 particular, certificate-related payloads are allowed, even though
 their use may not be practical within this mode.

3.3. The IKE_AUTH Exchange, Round #2

 This is the second part of the PACE authentication of the peers.

 The initiator and the responder calculate the shared secret
 PACESharedSecret

 PACESharedSecret = KA(SKEi, PKEr, GE) = KA(SKEr, PKEi, GE),

 where KA denotes the Diffie-Hellman key agreement, e.g., (for MODP
 groups), modular exponentiation. Then, they calculate the
 authentication tokens AUTHi and AUTHr.

 The initiator calculates

 AUTHi = prf(prf+(Ni | Nr, PACESharedSecret),
 <InitiatorSignedOctets> | PKEr)

Kuegler & Sheffer Experimental [Page 7]

RFC 6631 IKEv2 with PACE June 2012

 See Section 2.15 of [RFC5996] for the definition of signed octets.

 The responder calculates

 AUTHr = prf(prf+(Ni | Nr, PACESharedSecret),
 <ResponderSignedOctets> | PKEi)

 Both AUTH payloads MUST indicate as their authentication method the
 Generic Secure Password Authentication Method [RFC6467], whose value
 is 12. The authentication tokens are exchanged, and each of them
 MUST be verified by the other party. The behavior when this
 verification fails is unchanged from [RFC5996].

 Each of the peers MAY generate a long-term credential at this point,
 after it has verified the opposite peer’s identity. The shared
 secret is

 LongTermSecret = prf(Ni | Nr, "PACE Generated PSK" |
 PACESharedSecret),

 where the literal string is ASCII-encoded, with no zero terminator.
 The generated secret MUST be persisted to stable memory before
 sending the response. See Section 3.5 for more details about this
 facility.

 This round’s response is equivalent to the IKE_AUTH response in a
 normal IKEv2 exchange; i.e., any payload that is valid in an IKE_AUTH
 response is valid (with the same semantics) in the second round’s
 response.

 Following authentication, all temporary values MUST be deleted by the
 peers, including in particular s, the ephemeral generator, the
 ephemeral key pairs, and PACESharedSecret.

3.4. Public Key Validation

 The security of the protocol relies on the entanglement of a weak
 password with cryptographically strong shared secrets, SASharedSecret
 and PACESharedSecret, mutually and randomly generated by the
 initiator and the responder. If an attacker can influence the
 randomness of those shared secrets, the confidentiality of the
 password may be directly affected.

 Implementations MUST therefore verify that the shared secrets
 SASharedSecret and PACESharedSecret are random elements of the group
 generated by G to prevent small subgroup attacks. This can be
 achieved by a validation of the public keys (i.e., KEi, PKEi, and
 KEr, PKEr).

Kuegler & Sheffer Experimental [Page 8]

RFC 6631 IKEv2 with PACE June 2012

 First of all, each party MUST check that the public keys PKEi, PKEr,
 KEi, and KEr differ. Otherwise, it MUST abort the protocol.

 For each received public key PK, the following tests SHOULD be
 performed. Any failure in the validation MUST be interpreted as an
 attack, and the protocol SHALL be aborted.

 o Verify that PK is an element of the Diffie-Hellman Group.

 * For Modular Diffie-Hellman, check that PK lies within the
 interval [2,p-2].

 * For Elliptic Curve Diffie-Hellman, check that PK is a point on
 the Elliptic Curve and not the point at infinity.

 o Verify that PK is an element of the cryptographic subgroup of
 order q.

 * For Modular Diffie-Hellman, check that PK^q = 1 (mod p).

 * For Elliptic Curve Diffie-Hellman, check that q * PK = 0.

 Note that for most of the MODP groups, the order q = (p-1)/2. This
 applies in particular to the standard groups #2, #5, and #14,
 commonly used in IKE. For ECP and MODP groups not based on safe
 primes, the order q is explictly stated in the parameters.

 As an alternative to the public key validation, the compatible
 cofactor exponentiation/multiplication may be used, which is often
 more efficient but requires changes to the implementation of the key
 agreement. Details on the implementation can be found in [RFC2785]
 and in [TR03111] for Modular Diffie-Hellman and Elliptic Curve
 Diffie-Hellman, respectively.

3.5. Creating a Long-Term Shared Secret

 To reduce the time that the peers store a hashed password, it is
 RECOMMENDED that the password be replaced by a dedicated shared
 secret, according to the method described in this section. See
 Appendix B for more discussion of the security threats involved.

 Both peers generate the value LongTermSecret during round #2 of
 IKE_AUTH, as shown above. Later on, they exchange a PERSIST_PSK
 notification. Assume that both peers support this mechanism (e.g.,
 the IKE implementation is able to modify its own credential store).
 Then, each of the peers, when receiving the notification, permanently

Kuegler & Sheffer Experimental [Page 9]

RFC 6631 IKEv2 with PACE June 2012

 deletes the stored password and replaces it with LongTermSecret.
 These credentials are stored in the Peer Authorization Database (PAD)
 [RFC4301] and are associated with the identity of the opposite peer.

 This solution is designed as a two-phase commitment, so that failure
 at any time cannot result in the peers not having any shared secret.

 Initiator Responder
 --------- ---------

 IKE_AUTH round #2:

 HDR, SK{..., N(PSK_PERSIST)} ---------->
 Responder computes and stores PSK

 <------- HDR, SK{..., N(PSK_PERSIST)}

 Initiator computes and stores PSK

 HDR, SK{N(PSK_CONFIRM)} -------------->

 Responder deletes the short password

 <-------------- HDR, SK{N(PSK_CONFIRM)}

 Initiator deletes the short password

 Figure 2: IKE SA Setup with PACE and PSK Generation

 In the second round of IKE_AUTH, the initiator MAY send a PSK_PERSIST
 notification if it wishes to use this mechanism. If the responder
 agrees, and only after it has authenticated the initiator, it MUST
 generate a new PSK, save it to stable storage (e.g., to disk), and
 MUST respond with a PSK_PERSIST notification. Otherwise, it simply
 does not include the notification in its reply. When receiving the
 reply, and after authenticating the responder, the initiator MUST
 also generate the PSK and save it in stable storage.

 If the peers have negotiated this mechanism, the initiator MUST send
 the PSK_CONFIRM notification in an Informational exchange shortly
 after the IKE SA has been set up. When the responder receives it, it
 MUST delete the stored short password from its credential database
 and respond with a PSK_CONFIRM notification. Upon receiving this
 notification, the initiator deletes its copy of the short password.

 If not saved to persistent storage, the LongTermSecret MUST be
 deleted when the IKE SA is rekeyed or when it is torn down. It
 SHOULD be deleted 1 hour after the initial IKE SA has been set up.

Kuegler & Sheffer Experimental [Page 10]

RFC 6631 IKEv2 with PACE June 2012

3.6. Using the Long-Term Shared Secret

 The LongTermSecret MUST be used as a regular IKE Pre-Shared Key
 (PSK), rather than with PACE or any other password-based
 authentication method.

 Normally, at the completion of this protocol, both peers will have
 either a shared password or a shared PSK. The protocol is designed
 so that the peers will have a shared credential, regardless of any
 protocol failures. However, in some failure cases, the initiator may
 find itself with both a short password and a PSK for a particular
 peer. In that case, it MUST first try to authenticate with a
 password and, upon success, MUST attempt to convert it to a PSK. If
 password authentication fails, it MUST use the PSK and upon
 successful setup of the IKE SA MUST permanently delete the password.

4. Encrypting and Mapping the Nonce

4.1. Encrypting the Nonce

 The shared password is not used as is. Instead, it SHOULD be
 converted into a "stored password" SPwd, so that the plaintext
 password does not need to be stored for long periods. SPwd is
 defined as

 SPwd = prf("IKE with PACE", Pwd),

 where the literal string consists of ASCII characters with no zero
 terminator. If the negotiated pseudorandom function (prf) requires a
 fixed-size key, the literal string is either truncated or padded with
 zero octets on the right, as needed. Multiple copies of SPwd MAY be
 stored, if the prf function is not known in advance.

 KPwd = prf+(Ni | Nr, SPwd),

 where Ni and Nr are the regular IKE nonces, stripped of any headers.
 If the negotiated prf takes a fixed-length key and the lengths of Ni
 and Nr do not add up to that length, half the bits must come from Ni
 and half from Nr, taking the first bits of each. "prf+" is defined
 in Section 2.13 of [RFC5996]. The length of KPwd is determined by
 the key length of the negotiated encryption algorithm.

 A nonce s is randomly selected by the initiator (see Section 6.4 for
 additional considerations). The length of s MUST be exactly
 32 octets.

Kuegler & Sheffer Experimental [Page 11]

RFC 6631 IKEv2 with PACE June 2012

 KPwd is now used with the encryption transform to encrypt the nonce:

 ENONCE = E(KPwd, s)

 If an Initialization Vector (IV) is required by the cipher, it MUST
 be included in the GSPM(ENONCE) payload. It is RECOMMENDED that the
 IV be chosen both randomly and uniformly distributed, even though
 this condition is not necessary for the cryptographic security of the
 protocol.

 Note: Padding MUST NOT be used when encrypting the nonce. The size
 of the nonce has been chosen such that it can be encrypted with block
 ciphers having block sizes of 32, 64, and 128 bits without any
 padding.

 If an authenticated encryption cipher [RFC5282] has been negotiated
 for the IKE SA, it MUST NOT be used as is because such use would be
 vulnerable to dictionary attacks. Instead, the corresponding
 unauthenticated mode MUST be used. All Galois/Counter Mode (GCM) and
 all Counter with CBC-MAC (CCM) encryption algorithms are mapped to
 the corresponding counter-mode algorithm. For example, if the
 negotiated encryption algorithm (Transform Type 1) is "AES-GCM with
 an 8-octet Integrity Check Value (ICV)", then ENCR_AES_CTR (with the
 same key length) is used to encrypt the nonce. If such a mapping
 does not exist for a particular cipher, then it MUST NOT be used
 within the current protocol.

4.2. Mapping the Nonce

 The mapping is based on a second anonymous Diffie-Hellman key
 agreement protocol to create a shared secret that is used together
 with the exchanged nonce to calculate a common secret generator of
 the group.

 While in [TR03110] the generation of the shared secret is part of the
 mapping, in the setting of IKEv2, a shared secret SASharedSecret has
 already been generated as part of the IKE_SA_INIT step. Using the
 notation of [RFC5996],

 SASharedSecret = g^ir

 Let G and GE be the generator of the negotiated Diffie-Hellman group,
 and the calculated ephemeral generator, respectively. The following
 subsections describe the mapping for different Diffie-Hellman
 variants.

Kuegler & Sheffer Experimental [Page 12]

RFC 6631 IKEv2 with PACE June 2012

4.2.1. Modular Diffie-Hellman

 The function Map:G->GE is defined as GE = G^s * SASharedSecret.

 Note that the protocol will fail if G^s = 1/SASharedSecret. If s is
 chosen randomly, this event occurs with negligible probability. In
 implementations that detect such a failure, the initiator SHOULD
 choose s again.

4.2.2. Elliptic Curve Diffie-Hellman

 The function Map:G->GE is defined as GE = s*G + SASharedSecret.

 Note that the protocol will fail if s*G = -SharedSecret. If s is
 chosen randomly, this event occurs with negligible probability. In
 implementations that detect such a failure, the initiator SHOULD
 choose s again.

5. Protocol Details

5.1. Password Processing

 The input password string SHOULD be processed according to the rules
 of the [RFC4013] profile of [RFC3454]. A password SHOULD be
 considered a "stored string" per [RFC3454]; therefore, unassigned
 code points are prohibited. The output is the binary representation
 of the processed UTF-8 character string. Prohibited output and
 unassigned codepoints encountered in SASLprep preprocessing SHOULD
 cause a preprocessing failure, and the output SHOULD NOT be used. A
 compliant implementation MUST NOT apply any other form of processing
 to the input password, other than as described in this section.

 See Section 3 of [RFC4013] for examples of SASLprep processing.

Kuegler & Sheffer Experimental [Page 13]

RFC 6631 IKEv2 with PACE June 2012

5.2. The SECURE_PASSWORD_METHODS Notification

 [RFC6467] defines a new type of Notify payload to indicate support
 for Secure Password Methods (SPMs) in the IKE_SA_INIT exchange. The
 SPM Notify payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload |C| RESERVED | Payload Length |
 +-+
 | Protocol ID | SPI Size | Notify Message Type |
 +-+
 | |
 ˜ Security Parameter Index (SPI) ˜
 | |
 +-+
 | |
 ˜ Notification Data ˜
 | |
 +-+

 Figure 3: SECURE_PASSWORD_METHODS Payload Structure

 The Protocol ID is zero, and the SPI Size is also zero, indicating
 that the SPI field is empty. The Notify Message Type is
 SECURE_PASSWORD_METHODS (value 16424).

 The Notification Data contains the list of the 16-bit secure password
 method numbers:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Secure Password Method #1 | Secure Password Method #2 |
 +-+
 | Secure Password Method #3 | ... |
 +-+

 Figure 4: SECURE_PASSWORD_METHODS Payload Data

 For the current method, the list of proposed methods MUST include the
 value PACE (1).

Kuegler & Sheffer Experimental [Page 14]

RFC 6631 IKEv2 with PACE June 2012

5.3. The PSK_PERSIST Notification

 This document defines the PSK_PERSIST notification type, whose value
 is 16425. This notification MUST be sent with no data. However, for
 future extensibility, the receiver MUST ignore any notification data
 if such data is present.

5.4. The PSK_CONFIRM Notification

 This document defines the PSK_CONFIRM notification type, whose value
 is 16426. This notification MUST be sent with no data. However, for
 future extensibility, the receiver MUST ignore any notification data
 if such data is present.

5.5. The GSPM(ENONCE) Payload

 This protocol defines the ENONCE (encrypted nonce) payload, which
 reuses the Generic SPM (GSPM) payload type [RFC6467] (value 49). Its
 format is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload |C| RESERVED | Payload Length |
 +-+
 | PACE-RESERVED | Initialization Vector |
 +-+-+-+-+-+-+-+-+ +
 | (optional, length depends on the encryption algorithm) |
 +-+
 | Encrypted Nonce ˜
 +-+
 ˜ |
 +-+

 Figure 5: ENONCE Payload Structure

 See Section 4.1 for further details about the encrypted nonce. Note
 that the protocol -- and in particular this payload’s format -- does
 not support any padding of the encrypted data.

 The PACE-RESERVED field must be sent as zero, and it must be rejected
 by the receiver if it is not 0.

Kuegler & Sheffer Experimental [Page 15]

RFC 6631 IKEv2 with PACE June 2012

5.6. The KE (KEi2/KEr2) Payloads in PACE

 PACE reuses the Key Exchange (KE) payload for its Diffie-Hellman
 exchange, with the new payloads being sent within the IKE_AUTH
 exchange. Since only one Diffie-Hellman group is negotiated, the
 group denoted by these payloads MUST be identical to the one used in
 the "regular" KE payloads in IKE_SA_INIT.

5.7. PACE and Session Resumption

 A session resumption [RFC5723] ticket may be requested during the
 IKE_AUTH exchange. The request MUST be sent in the request of the
 first round, and any response MUST be sent in the response of the
 second one.

 PACE should be considered an "authentication method", in the sense of
 Section 5 of [RFC5723], which means that its use MUST be noted in the
 protected ticket. The format of the ticket is not standardized;
 however, it is RECOMMENDED that this indication distinguish between
 the different secure password authentication methods defined for IKE.

 Note that even if the initial authentication used PACE and its
 extended IKE_AUTH, session resumption will still include the normal
 IKE_AUTH exchange.

6. Security Considerations

 A major goal of this protocol has been to maintain the level of
 security provided by IKEv2. What follows is an analysis of this
 protocol. The reader is referred to [RFC5996] for the generic IKEv2
 security considerations.

6.1. Credential Security Assumptions

 This protocol makes no assumption on the strength of the shared
 credential. Best common practices regarding minimal password length,
 use of multiple character classes, etc. SHOULD be followed.

6.2. Vulnerability to Passive and Active Attacks

 The protocol is secure against both passive and active attackers.
 See Section 6.8 for a security proof.

 While not attacking the cryptography, an attacker can still perform a
 standard password-guessing attack. To mitigate such attacks, an
 implementation MUST include standard protections, such as rate-
 limiting the number of allowed password-guessing attempts, possibly

Kuegler & Sheffer Experimental [Page 16]

RFC 6631 IKEv2 with PACE June 2012

 locking identities out after a certain number of failed attempts,
 etc. Note that the protocol is symmetric; therefore, this guidance
 applies to client-side implementations as well.

6.3. Perfect Forward Secrecy

 The key derivation for the IKE SA and any Child SAs is performed as
 part of IKEv2 and remains unchanged. It directly follows that
 perfect forward security is provided independent of the
 authentication additionally performed by PACE.

6.4. Randomness

 The security of this protocol depends on the quality generation of
 random quantities; see Section 5 of [RFC5996] for more details.
 Specifically, any deviation from randomness of the nonce s might
 compromise the password. Therefore, it is strongly RECOMMENDED that
 the initiator pass the raw random material through a strong prf to
 ensure the statistical qualities of the nonce.

6.5. Identity Protection

 This protocol is identical to IKEv2 in the quality of identity
 protection it provides. Both peers’ identities are secure from
 passive attackers, and both peers’ identities are exposed to active,
 man-in-the-middle attackers.

6.6. Denial of Service

 We are not aware of any new denial-of-service attack vector enabled
 by this protocol.

6.7. Choice of Encryption Algorithms

 Any transforms negotiated for IKEv2 may be used by this protocol.
 Please refer to Section 4.1 for the considerations regarding
 authenticated encryption ("combined mode") algorithms.

Kuegler & Sheffer Experimental [Page 17]

RFC 6631 IKEv2 with PACE June 2012

6.8. Security Model and Security Proof

 PACE is cryptographically proven secure in [PACEsec] in the model of
 Bellare, Pointcheval, and Rogaway [BPRmodel]. The setting in which
 PACE is proven secure is, however, slightly different from the
 setting used in IKEv2. The differences are described in the
 following:

 o Part of the mapping is already performed within IKEv2 before PACE
 is started. This rearrangement does not affect the proof, as the
 resulting PACESharedSecret remains close to uniformly distributed
 in the group generated by G.

 o The keys for the IKE SA and any Child SAs are already generated
 within IKEv2 before PACE is started. While those session keys
 could also be derived in PACE, only the keys for the
 authentication token are considered in the proof, which explicitly
 recommends a separate key for this purpose.

 o IKEv2 allows the negotiation of a stream cipher for PACE, while
 the proven variant always uses a block cipher. The ideal cipher
 is replaced in the proof by a lazy-sampling technique that is
 similarly applicable to the stream-cipher-based construction.

 The differences in the setting therefore have no impact on the
 validity of the proof.

6.9. Long-Term Credential Storage

 This protocol does not require that peers store the plaintext
 password. Instead, the value SPwd SHOULD be stored by both peers.

 In addition, the protocol allows both peers to replace the password
 by a crypto-strength shared secret. This solution improves the
 system’s security (since passwords are often used for multiple
 applications), but at the cost of implementation complexity. In
 particular, if this optional mechanism is to be used, the credential
 database would need to be writable by the key management subsystem.

 See Appendix B for alternatives to this approach.

Kuegler & Sheffer Experimental [Page 18]

RFC 6631 IKEv2 with PACE June 2012

7. IANA Considerations

 IANA has allocated the following values:

 o A PACE value of 1 from the "IKEv2 Secure Password Methods"
 registry [RFC6467].

 o A PSK_PERSIST value of 16425 and a PSK_CONFIRM value of 16426 from
 the "IKEv2 Notify Message Types - Status Types" registry. We note
 that these notification types are generic and that other password
 authentication methods may also choose to use them.

8. Acknowledgments

 We would like to thank Dan Harkins for pointing out a security issue
 with our use of combined-mode algorithms in a previous version of the
 protocol. We thank Tero Kivinen for his generic framework document,
 and for a thorough and fruitful review. Hugo Krawczyk proposed that
 the password be amplified into a persistent shared secret.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2785] Zuccherato, R., "Methods for Avoiding the "Small-
 Subgroup" Attacks on the Diffie-Hellman Key Agreement
 Method for S/MIME", RFC 2785, March 2000.

 [RFC3454] Hoffman, P. and M. Blanchet, "Preparation of
 Internationalized Strings ("stringprep")", RFC 3454,
 December 2002.

 [RFC4013] Zeilenga, K., "SASLprep: Stringprep Profile for User
 Names and Passwords", RFC 4013, February 2005.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC5996] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
 "Internet Key Exchange Protocol Version 2 (IKEv2)",
 RFC 5996, September 2010.

Kuegler & Sheffer Experimental [Page 19]

RFC 6631 IKEv2 with PACE June 2012

9.2. Informative References

 [BPRmodel] Bellare, M., Pointcheval, D., and P. Rogaway,
 "Authenticated Key Exchange Secure against Dictionary
 Attacks", EUROCRYPT 2000, LNCS 1807, pp. 139-155,
 Springer-Verlag, 2000, <http://www.iacr.org/cryptodb/
 archive/2000/EUROCRYPT/18070139.pdf>.

 [ICAO] ISO/IEC JTC1 SC17 WG3/TF5 for the International Civil
 Aviation Organization (ICAO), "Supplemental Access
 Control for Machine Readable Travel Documents",
 Version 1.01, November 2010.

 [IKEv2-CONS] Harkins, D., "Password-Based Authentication in IKEv2:
 Selection Criteria and Considerations", Work
 in Progress, October 2010.

 [PACEsec] Bender, J., Fischlin, M., and D. Kuegler, "Security
 Analysis of the PACE Key-Agreement Protocol",
 LNCS 5735, pp. 33-48, Springer-Verlag (the extended
 abstract appeared in Information Security Conference
 (ISC) 2009), December 2009,
 <http://eprint.iacr.org/2009/624>.

 [RFC5282] Black, D. and D. McGrew, "Using Authenticated
 Encryption Algorithms with the Encrypted Payload of the
 Internet Key Exchange version 2 (IKEv2) Protocol",
 RFC 5282, August 2008.

 [RFC5723] Sheffer, Y. and H. Tschofenig, "Internet Key Exchange
 Protocol Version 2 (IKEv2) Session Resumption",
 RFC 5723, January 2010.

 [RFC5998] Eronen, P., Tschofenig, H., and Y. Sheffer, "An
 Extension for EAP-Only Authentication in IKEv2",
 RFC 5998, September 2010.

 [RFC6467] Kivinen, T., "Secure Password Framework for Internet
 Key Exchange Version 2 (IKEv2)", RFC 6467,
 December 2011.

Kuegler & Sheffer Experimental [Page 20]

RFC 6631 IKEv2 with PACE June 2012

 [TR03110] BSI, "TR-03110, Advanced Security Mechanisms for
 Machine Readable Travel Documents, Part 2 - Extended
 Access Control Version 2 (EACv2), Password
 Authenticated Connection Establishment (PACE), and
 Restricted Identification (RI)", Version 2.10,
 March 2012.

 [TR03111] BSI, "TR-03111, Elliptic Curve Cryptography",
 Version 1.11, April 2009.

Kuegler & Sheffer Experimental [Page 21]

RFC 6631 IKEv2 with PACE June 2012

Appendix A. Protocol Selection Criteria

 To support the selection of a password-based protocol for inclusion
 in IKEv2, a number of criteria are provided in [IKEv2-CONS]. In the
 following sections, those criteria are applied to the PACE protocol.

A.1. Security Criteria

 SEC1: PACE is a zero-knowledge protocol.

 SEC2: The protocol supports perfect forward secrecy and is resistant
 to replay attacks.

 SEC3: The identity protection provided by IKEv2 remains unchanged.

 SEC4: Any cryptographically secure Diffie-Hellman group can be used.

 SEC5: The protocol is proven secure in the Bellare-Pointcheval-
 Rogaway model.

 SEC6: Strong session keys are generated.

 SEC7: A transform of the password can be used instead of the
 password itself.

A.2. Intellectual Property Criteria

 IPR1: The first version of [TR03110] was published on May 21, 2007.

 IPR2: BSI has developed PACE aiming to be free of patents. BSI has
 not applied for a patent on PACE.

 IPR3: The protocol itself is believed to be free of IPR.

A.3. Miscellaneous Criteria

 MISC1: One additional exchange is required.

 MISC2: The protocol requires the following operations per entity:

 * one key derivation from the password,

 * one symmetric encryption or decryption,

 * one multi-exponentiation for the mapping,

Kuegler & Sheffer Experimental [Page 22]

RFC 6631 IKEv2 with PACE June 2012

 * one exponentiation for the key pair generation,

 * one exponentiation for the shared secret calculation, and

 * two symmetric authentications (generation and
 verification).

 MISC3: The performance is independent of the type/size of password.

 MISC4: Internationalization of character-based passwords is
 supported.

 MISC5: The protocol uses the same group as that negotiated for
 IKEv2.

 MISC6: The protocol fits into the request/response nature of IKE.

 MISC7: The password-based symmetric encryption must be additionally
 negotiated.

 MISC8: Neither trusted third parties nor clock synchronization are
 required.

 MISC9: Only general cryptographic primitives are required.

 MISC10: Any secure variant of Diffie-Hellman (e.g., Modular or
 Elliptic Curve) can be used.

 MISC11: The protocol can be implemented easily based on existing
 cryptographic primitives.

Appendix B. Password Salting

 This protocol requires that passwords not be stored in plaintext.
 Instead, we store a hash of the password with a fixed hash. This
 value is then used in the ZKPP protocol, replacing the original
 password and acting as a "password equivalent". The main benefit of
 this solution is that a system administrator or an undetermined
 attacker does not get immediate access to the passwords. We believe
 this is sufficiently secure for the main usage scenario of the
 protocol.

Kuegler & Sheffer Experimental [Page 23]

RFC 6631 IKEv2 with PACE June 2012

 However, the common practice of password salting is clearly more
 powerful, and this appendix presents a few ideas on how password
 salting can be applied and/or adapted to fit into a symmetric
 protocol such as IKE. First, let us list the threats that we expect
 salting to handle, as well as the non-threats:

 o The plain password should not be visible to a casual onlooker, as
 noted above. It is assumed that very often the same password is
 used for multiple applications, and so a password exposed allows
 an attacker a starting point for further attacks.

 o An attacker must not be able to construct lookup tables (such as
 the famous "rainbow tables") that enable her to discover the plain
 password.

 o IKE is a symmetric protocol, in the sense that any of the peers
 might initiate an IKE exchange to another peer. As a result, all
 peers must have stored credentials (passwords or password
 equivalents) that would enable them to set up an IKE exchange.
 So, an attacker that reaches the credential store would in fact be
 able to impersonate IKE to another peer. We believe that this
 reduces, but does not invalidate, the importance of salting,
 because of the other threats that remain.

 Below we present different scenarios and solutions that support
 password salting in this setting.

 We assume that each credential is used to authenticate exactly two
 peers to one another; i.e., (as per the best practice), group
 credentials are not allowed.

B.1. Solving the Asymmetric Case with Symmetric Cryptography

 Despite the protocol’s symmetry, there are use cases that are
 somewhat asymmetric. Consider the case of an organization that
 consists of a headquarters and branches, using a hub-and-spoke
 architecture. Communication sessions can be initiated by the center
 or by any of the branches, but only the center holds a large
 credential database.

 Here it would be possible to use traditional password salting,

 stored password = hash(salt, password),

 where the hash function is a symmetric hash (e.g., HMAC-SHA-256,
 using the salt as its key), and the salt is picked at random for each
 password. The salt would need to be sent in the first exchange of
 the protocol, regardless of which side initiates the session. Unlike

Kuegler & Sheffer Experimental [Page 24]

RFC 6631 IKEv2 with PACE June 2012

 the normal use of salted passwords, here it is the stored password,
 rather than the original password, that is used by the follow-on ZKPP
 protocol.

B.2. Solving the Fully Symmetric Case with Asymmetric Cryptography

 For the fully symmetric case, we propose a salting method based on a
 commutative one-way function. This is essentially a novel variant of
 the RSA protocol. Using this solution, all protocol peers can store
 the password in a salted form.

 The implementation proposed here requires a composite number n that
 is common to all peers. The composite number n can be generated by a
 trusted (third) party as n = p * q, where p and q are strong primes
 (i.e., p = 2 * p’ + 1 and q = 2 * q’ + 1, where p’ and q’ are also
 primes), and the trusted party promises not to retain a copy of the
 primes. Alternatively, n can be chosen randomly and tested for
 "small" prime factors. In the latter case, it is certainly not
 guaranteed that n is composed of only two primes. While this has the
 advantage that no one knows the factorization of n, the disadvantage
 is that n is likely to be significantly easier to factor.

 Each peer then chooses a public encryption key "e". In a simple
 implementation, the encryption key is generated randomly by each
 peer, picking a different value for each of the passwords that it
 stores.

 Note that although the pair (n,e) is similar to an RSA public key,
 the usual rules for generating "e" for the RSA protocol do not apply
 here, and a random "e" is sufficient. The password is hashed by a
 symmetric hash function H (e.g., SHA-256). Each peer i stores the
 two values

 e_i, H(P)^e_i (mod n),

 where P is the original password. The values e_i are exchanged by
 the peers before the ZKPP protocol commences (in IKEv2-PACE, this
 would be in IKE_SA_INIT), and the following value is used in the ZKPP
 protocol run that follows, in lieu of the original password:

 H(P) ^ (e_i * e_j) (mod n).

 This transformation is used as a salting mechanism only, and the
 salted values themselves are never sent on the wire.

Kuegler & Sheffer Experimental [Page 25]

RFC 6631 IKEv2 with PACE June 2012

 This scheme can be enhanced by basing the value "e" on each peer’s
 identity (IDi, IDr), e.g., making it a simple hash of the identity.
 This eliminates the need to send "e" explicitly and additionally
 binds the identity of the peer with its secret.

B.3. Generation of a Strong, Long-Term, Shared Secret

 An alternative to salting is to store the plain passwords, but only
 for a short while. As soon as the first IKE SA is set up between two
 peers, the peers exchange nonces and generate a strong shared secret,
 based on IKE’s SK_d. They now destroy the short password and replace
 it with the new secret.

 This method has been added to the current protocol as an optional
 mechanism.

Authors’ Addresses

 Dennis Kuegler
 Bundesamt fuer Sicherheit in der Informationstechnik (BSI)
 Postfach 200363
 Bonn 53133
 Germany

 EMail: dennis.kuegler@bsi.bund.de

 Yaron Sheffer
 Porticor

 EMail: yaronf.ietf@gmail.com

Kuegler & Sheffer Experimental [Page 26]

