
Internet Engineering Task Force (IETF) H. Zhou
Request for Comments: 7170 N. Cam-Winget
Category: Standards Track J. Salowey
ISSN: 2070-1721 Cisco Systems
 S. Hanna
 Infineon Technologies
 May 2014

 Tunnel Extensible Authentication Protocol (TEAP) Version 1

Abstract

 This document defines the Tunnel Extensible Authentication Protocol
 (TEAP) version 1. TEAP is a tunnel-based EAP method that enables
 secure communication between a peer and a server by using the
 Transport Layer Security (TLS) protocol to establish a mutually
 authenticated tunnel. Within the tunnel, TLV objects are used to
 convey authentication-related data between the EAP peer and the EAP
 server.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7170.

Zhou, et al. Standards Track [Page 1]

RFC 7170 TEAP May 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 5
 1.1. Specification Requirements 5
 1.2. Terminology . 6
 2. Protocol Overview . 6
 2.1. Architectural Model 7
 2.2. Protocol-Layering Model 8
 3. TEAP Protocol . 9
 3.1. Version Negotiation 9
 3.2. TEAP Authentication Phase 1: Tunnel Establishment 10
 3.2.1. TLS Session Resume Using Server State 11
 3.2.2. TLS Session Resume Using a PAC 12
 3.2.3. Transition between Abbreviated and Full TLS Handshake 13
 3.3. TEAP Authentication Phase 2: Tunneled Authentication . . 14
 3.3.1. EAP Sequences . 14
 3.3.2. Optional Password Authentication 15
 3.3.3. Protected Termination and Acknowledged Result
 Indication . 15
 3.4. Determining Peer-Id and Server-Id 16
 3.5. TEAP Session Identifier 17
 3.6. Error Handling . 17
 3.6.1. Outer-Layer Errors 18
 3.6.2. TLS Layer Errors 18
 3.6.3. Phase 2 Errors 19
 3.7. Fragmentation . 19
 3.8. Peer Services . 20
 3.8.1. PAC Provisioning 21
 3.8.2. Certificate Provisioning within the Tunnel 22
 3.8.3. Server Unauthenticated Provisioning Mode 23
 3.8.4. Channel Binding 23

Zhou, et al. Standards Track [Page 2]

RFC 7170 TEAP May 2014

 4. Message Formats . 24
 4.1. TEAP Message Format 24
 4.2. TEAP TLV Format and Support 26
 4.2.1. General TLV Format 28
 4.2.2. Authority-ID TLV 29
 4.2.3. Identity-Type TLV 30
 4.2.4. Result TLV . 31
 4.2.5. NAK TLV . 32
 4.2.6. Error TLV . 33
 4.2.7. Channel-Binding TLV 36
 4.2.8. Vendor-Specific TLV 37
 4.2.9. Request-Action TLV 38
 4.2.10. EAP-Payload TLV 40
 4.2.11. Intermediate-Result TLV 41
 4.2.12. PAC TLV Format 42
 4.2.12.1. Formats for PAC Attributes 43
 4.2.12.2. PAC-Key . 44
 4.2.12.3. PAC-Opaque 44
 4.2.12.4. PAC-Info . 45
 4.2.12.5. PAC-Acknowledgement TLV 47
 4.2.12.6. PAC-Type TLV 48
 4.2.13. Crypto-Binding TLV 48
 4.2.14. Basic-Password-Auth-Req TLV 51
 4.2.15. Basic-Password-Auth-Resp TLV 52
 4.2.16. PKCS#7 TLV . 53
 4.2.17. PKCS#10 TLV . 54
 4.2.18. Trusted-Server-Root TLV 55
 4.3. TLV Rules . 56
 4.3.1. Outer TLVs . 57
 4.3.2. Inner TLVs . 57
 5. Cryptographic Calculations 58
 5.1. TEAP Authentication Phase 1: Key Derivations 58
 5.2. Intermediate Compound Key Derivations 59
 5.3. Computing the Compound MAC 61
 5.4. EAP Master Session Key Generation 61
 6. IANA Considerations . 62
 7. Security Considerations 66
 7.1. Mutual Authentication and Integrity Protection 67
 7.2. Method Negotiation 67
 7.3. Separation of Phase 1 and Phase 2 Servers 67
 7.4. Mitigation of Known Vulnerabilities and Protocol
 Deficiencies . 68
 7.4.1. User Identity Protection and Verification 69
 7.4.2. Dictionary Attack Resistance 70
 7.4.3. Protection against Man-in-the-Middle Attacks 70
 7.4.4. PAC Binding to User Identity 71

Zhou, et al. Standards Track [Page 3]

RFC 7170 TEAP May 2014

 7.5. Protecting against Forged Cleartext EAP Packets 71
 7.6. Server Certificate Validation 72
 7.7. Tunnel PAC Considerations 72
 7.8. Security Claims . 73
 8. Acknowledgements . 74
 9. References . 75
 9.1. Normative References 75
 9.2. Informative References 76
 Appendix A. Evaluation against Tunnel-Based EAP Method
 Requirements . 79
 A.1. Requirement 4.1.1: RFC Compliance 79
 A.2. Requirement 4.2.1: TLS Requirements 79
 A.3. Requirement 4.2.1.1.1: Ciphersuite Negotiation 79
 A.4. Requirement 4.2.1.1.2: Tunnel Data Protection Algorithms 79
 A.5. Requirement 4.2.1.1.3: Tunnel Authentication and Key
 Establishment . 79
 A.6. Requirement 4.2.1.2: Tunnel Replay Protection 79
 A.7. Requirement 4.2.1.3: TLS Extensions 80
 A.8. Requirement 4.2.1.4: Peer Identity Privacy 80
 A.9. Requirement 4.2.1.5: Session Resumption 80
 A.10. Requirement 4.2.2: Fragmentation 80
 A.11. Requirement 4.2.3: Protection of Data External to Tunnel 80
 A.12. Requirement 4.3.1: Extensible Attribute Types 80
 A.13. Requirement 4.3.2: Request/Challenge Response Operation . 80
 A.14. Requirement 4.3.3: Indicating Criticality of Attributes . 80
 A.15. Requirement 4.3.4: Vendor-Specific Support 81
 A.16. Requirement 4.3.5: Result Indication 81
 A.17. Requirement 4.3.6: Internationalization of Display
 Strings . 81
 A.18. Requirement 4.4: EAP Channel-Binding Requirements 81
 A.19. Requirement 4.5.1.1: Confidentiality and Integrity . . . 81
 A.20. Requirement 4.5.1.2: Authentication of Server 81
 A.21. Requirement 4.5.1.3: Server Certificate Revocation
 Checking . 81
 A.22. Requirement 4.5.2: Internationalization 81
 A.23. Requirement 4.5.3: Metadata 82
 A.24. Requirement 4.5.4: Password Change 82
 A.25. Requirement 4.6.1: Method Negotiation 82
 A.26. Requirement 4.6.2: Chained Methods 82
 A.27. Requirement 4.6.3: Cryptographic Binding with the TLS
 Tunnel . 82
 A.28. Requirement 4.6.4: Peer-Initiated EAP Authentication . . 82
 A.29. Requirement 4.6.5: Method Metadata 82
 Appendix B. Major Differences from EAP-FAST 83
 Appendix C. Examples . 83
 C.1. Successful Authentication 83
 C.2. Failed Authentication 85
 C.3. Full TLS Handshake Using Certificate-Based Ciphersuite . 86

Zhou, et al. Standards Track [Page 4]

RFC 7170 TEAP May 2014

 C.4. Client Authentication during Phase 1 with Identity
 Privacy . 88
 C.5. Fragmentation and Reassembly 89
 C.6. Sequence of EAP Methods 91
 C.7. Failed Crypto-Binding 94
 C.8. Sequence of EAP Method with Vendor-Specific TLV Exchange 95
 C.9. Peer Requests Inner Method after Server Sends Result TLV 97
 C.10. Channel Binding . 99

1. Introduction

 A tunnel-based Extensible Authentication Protocol (EAP) method is an
 EAP method that establishes a secure tunnel and executes other EAP
 methods under the protection of that secure tunnel. A tunnel-based
 EAP method can be used in any lower-layer protocol that supports EAP
 authentication. There are several existing tunnel-based EAP methods
 that use Transport Layer Security (TLS) [RFC5246] to establish the
 secure tunnel. EAP methods supporting this include Protected EAP
 (PEAP) [PEAP], EAP Tunneled Transport Layer Security (EAP-TTLS)
 [RFC5281], and EAP Flexible Authentication via Secure Tunneling (EAP-
 FAST) [RFC4851]. However, they all are either vendor-specific or
 informational, and the industry calls for a Standards Track tunnel-
 based EAP method. [RFC6678] outlines the list of requirements for a
 standard tunnel-based EAP method.

 Since its introduction, EAP-FAST [RFC4851] has been widely adopted in
 a variety of devices and platforms. It has been adopted by the EMU
 working group as the basis for the standard tunnel-based EAP method.
 This document describes the Tunnel Extensible Authentication Protocol
 (TEAP) version 1, based on EAP-FAST [RFC4851] with some minor changes
 to meet the requirements outlined in [RFC6678] for a standard tunnel-
 based EAP method.

1.1. Specification Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

Zhou, et al. Standards Track [Page 5]

RFC 7170 TEAP May 2014

1.2. Terminology

 Much of the terminology in this document comes from [RFC3748].
 Additional terms are defined below:

 Protected Access Credential (PAC)

 Credentials distributed to a peer for future optimized network
 authentication. The PAC consists of a minimum of two components:
 a shared secret and an opaque element. The shared secret
 component contains the pre-shared key between the peer and the
 authentication server. The opaque part is provided to the peer
 and is presented to the authentication server when the peer wishes
 to obtain access to network resources. The opaque element and
 shared secret are used with TLS stateless session resumption
 defined in [RFC5077] to establish a protected TLS session. The
 secret key and opaque part may be distributed using [RFC5077]
 messages or using TLVs within the TEAP tunnel. Finally, a PAC may
 optionally include other information that may be useful to the
 peer.

 Type-Length-Value (TLV)

 The TEAP protocol utilizes objects in TLV format. The TLV format
 is defined in Section 4.2.

2. Protocol Overview

 TEAP authentication occurs in two phases after the initial EAP
 Identity request/response exchange. In the first phase, TEAP employs
 the TLS [RFC5246] handshake to provide an authenticated key exchange
 and to establish a protected tunnel. Once the tunnel is established,
 the second phase begins with the peer and server engaging in further
 conversations to establish the required authentication and
 authorization policies. TEAP makes use of TLV objects to carry out
 the inner authentication, results, and other information, such as
 channel-binding information.

 TEAP makes use of the TLS SessionTicket extension [RFC5077], which
 supports TLS session resumption without requiring session-specific
 state stored at the server. In this document, the SessionTicket is
 referred to as the Protected Access Credential opaque data (or PAC-
 Opaque). The PAC-Opaque may be distributed through the use of the
 NewSessionTicket message or through a mechanism that uses TLVs within
 Phase 2 of TEAP. The secret key used to resume the session in TEAP
 is referred to as the Protected Access Credential key (or PAC-Key).
 When the NewSessionTicket message is used to distribute the PAC-
 Opaque, the PAC-Key is the master secret for the session. If TEAP

Zhou, et al. Standards Track [Page 6]

RFC 7170 TEAP May 2014

 Phase 2 is used to distribute the PAC-Opaque, then the PAC-Key is
 distributed along with the PAC-Opaque. TEAP implementations MUST
 support the [RFC5077] mechanism for distributing a PAC-Opaque, and it
 is RECOMMENDED that implementations support the capability to
 distribute the ticket and secret key within the TEAP tunnel.

 The TEAP conversation is used to establish or resume an existing
 session to typically establish network connectivity between a peer
 and the network. Upon successful execution of TEAP, the EAP peer and
 EAP server both derive strong session key material that can then be
 communicated to the network access server (NAS) for use in
 establishing a link-layer security association.

2.1. Architectural Model

 The network architectural model for TEAP usage is shown below:

 +----------+ +----------+ +----------+ +----------+
 | | | | | | | Inner |
 | Peer |<---->| Authen- |<---->| TEAP |<---->| Method |
 | | | ticator | | server | | server |
 | | | | | | | |
 +----------+ +----------+ +----------+ +----------+

 TEAP Architectural Model

 The entities depicted above are logical entities and may or may not
 correspond to separate network components. For example, the TEAP
 server and inner method server might be a single entity; the
 authenticator and TEAP server might be a single entity; or the
 functions of the authenticator, TEAP server, and inner method server
 might be combined into a single physical device. For example,
 typical IEEE 802.11 deployments place the authenticator in an access
 point (AP) while a RADIUS server may provide the TEAP and inner
 method server components. The above diagram illustrates the division
 of labor among entities in a general manner and shows how a
 distributed system might be constructed; however, actual systems
 might be realized more simply. The security considerations in
 Section 7.3 provide an additional discussion of the implications of
 separating the TEAP server from the inner method server.

Zhou, et al. Standards Track [Page 7]

RFC 7170 TEAP May 2014

2.2. Protocol-Layering Model

 TEAP packets are encapsulated within EAP; EAP in turn requires a
 transport protocol. TEAP packets encapsulate TLS, which is then used
 to encapsulate user authentication information. Thus, TEAP messaging
 can be described using a layered model, where each layer encapsulates
 the layer above it. The following diagram clarifies the relationship
 between protocols:

 +---+
 | Inner EAP Method | Other TLV information |
 |---|
 | TLV Encapsulation (TLVs) |
 |---|
 | TLS | Optional Outer TLVs |
 |---|
 | TEAP |
 |---|
 | EAP |
 |---|
 | Carrier Protocol (EAP over LAN, RADIUS, Diameter, etc.) |
 +---+

 Protocol-Layering Model

 The TLV layer is a payload with TLV objects as defined in
 Section 4.2. The TLV objects are used to carry arbitrary parameters
 between an EAP peer and an EAP server. All conversations in the TEAP
 protected tunnel are encapsulated in a TLV layer.

 TEAP packets may include TLVs both inside and outside the TLS tunnel.
 The term "Outer TLVs" is used to refer to optional TLVs outside the
 TLS tunnel, which are only allowed in the first two messages in the
 TEAP protocol. That is the first EAP-server-to-peer message and
 first peer-to-EAP-server message. If the message is fragmented, the
 whole set of messages is counted as one message. The term "Inner
 TLVs" is used to refer to TLVs sent within the TLS tunnel. In TEAP
 Phase 1, Outer TLVs are used to help establish the TLS tunnel, but no
 Inner TLVs are used. In Phase 2 of the TEAP conversation, TLS
 records may encapsulate zero or more Inner TLVs, but no Outer TLVs.

 Methods for encapsulating EAP within carrier protocols are already
 defined. For example, IEEE 802.1X [IEEE.802-1X.2013] may be used to
 transport EAP between the peer and the authenticator; RADIUS
 [RFC3579] or Diameter [RFC4072] may be used to transport EAP between
 the authenticator and the EAP server.

Zhou, et al. Standards Track [Page 8]

RFC 7170 TEAP May 2014

3. TEAP Protocol

 The operation of the protocol, including Phase 1 and Phase 2, is the
 topic of this section. The format of TEAP messages is given in
 Section 4, and the cryptographic calculations are given in Section 5.

3.1. Version Negotiation

 TEAP packets contain a 3-bit Version field, following the TLS Flags
 field, which enables future TEAP implementations to be backward
 compatible with previous versions of the protocol. This
 specification documents the TEAP version 1 protocol; implementations
 of this specification MUST use a Version field set to 1.

 Version negotiation proceeds as follows:

 1. In the first EAP-Request sent with EAP type=TEAP, the EAP server
 MUST set the Version field to the highest version it supports.

 2a. If the EAP peer supports this version of the protocol, it
 responds with an EAP-Response of EAP type=TEAP, including the
 version number proposed by the TEAP server.

 2b. If the TEAP peer does not support the proposed version but
 supports a lower version, it responds with an EAP-Response of
 EAP type=TEAP and sets the Version field to its highest
 supported version.

 2c. If the TEAP peer only supports versions higher than the version
 proposed by the TEAP server, then use of TEAP will not be
 possible. In this case, the TEAP peer sends back an EAP-Nak
 either to negotiate a different EAP type or to indicate no other
 EAP types are available.

 3a. If the TEAP server does not support the version number proposed
 by the TEAP peer, it MUST either terminate the conversation with
 an EAP Failure or negotiate a new EAP type.

 3b. If the TEAP server does support the version proposed by the TEAP
 peer, then the conversation continues using the version proposed
 by the TEAP peer.

 The version negotiation procedure guarantees that the TEAP peer and
 server will agree to the latest version supported by both parties.
 If version negotiation fails, then use of TEAP will not be possible,
 and another mutually acceptable EAP method will need to be negotiated
 if authentication is to proceed.

Zhou, et al. Standards Track [Page 9]

RFC 7170 TEAP May 2014

 The TEAP version is not protected by TLS and hence can be modified in
 transit. In order to detect a modification of the TEAP version, the
 peers MUST exchange the TEAP version number received during version
 negotiation using the Crypto-Binding TLV described in Section 4.2.13.
 The receiver of the Crypto-Binding TLV MUST verify that the version
 received in the Crypto-Binding TLV matches the version sent by the
 receiver in the TEAP version negotiation. If the Crypto-Binding TLV
 fails to be validated, then it is a fatal error and is handled as
 described in Section 3.6.3.

3.2. TEAP Authentication Phase 1: Tunnel Establishment

 TEAP relies on the TLS handshake [RFC5246] to establish an
 authenticated and protected tunnel. The TLS version offered by the
 peer and server MUST be TLS version 1.2 [RFC5246] or later. This
 version of the TEAP implementation MUST support the following TLS
 ciphersuites:

 TLS_RSA_WITH_AES_128_CBC_SHA [RFC5246]

 TLS_DHE_RSA_WITH_AES_128_CBC_SHA [RFC5246]

 This version of the TEAP implementation SHOULD support the following
 TLS ciphersuite:

 TLS_RSA_WITH_AES_256_CBC_SHA [RFC5246]

 Other ciphersuites MAY be supported. It is REQUIRED that anonymous
 ciphersuites such as TLS_DH_anon_WITH_AES_128_CBC_SHA [RFC5246] only
 be used in the case when the inner authentication method provides
 mutual authentication, key generation, and resistance to man-in-the-
 middle and dictionary attacks. TLS ciphersuites that do not provide
 confidentiality MUST NOT be used. During the TEAP Phase 1
 conversation, the TEAP endpoints MAY negotiate TLS compression.
 During TLS tunnel establishment, TLS extensions MAY be used. For
 instance, the Certificate Status Request extension [RFC6066] and the
 Multiple Certificate Status Request extension [RFC6961] can be used
 to leverage a certificate-status protocol such as Online Certificate
 Status Protocol (OCSP) [RFC6960] to check the validity of server
 certificates. TLS renegotiation indications defined in RFC 5746
 [RFC5746] MUST be supported.

 The EAP server initiates the TEAP conversation with an EAP request
 containing a TEAP/Start packet. This packet includes a set Start (S)
 bit, the TEAP version as specified in Section 3.1, and an authority
 identity TLV. The TLS payload in the initial packet is empty. The
 authority identity TLV (Authority-ID TLV) is used to provide the peer
 a hint of the server’s identity that may be useful in helping the

Zhou, et al. Standards Track [Page 10]

RFC 7170 TEAP May 2014

 peer select the appropriate credential to use. Assuming that the
 peer supports TEAP, the conversation continues with the peer sending
 an EAP-Response packet with EAP type of TEAP with the Start (S) bit
 clear and the version as specified in Section 3.1. This message
 encapsulates one or more TLS handshake messages. If the TEAP version
 negotiation is successful, then the TEAP conversation continues until
 the EAP server and EAP peer are ready to enter Phase 2. When the
 full TLS handshake is performed, then the first payload of TEAP Phase
 2 MAY be sent along with a server-finished handshake message to
 reduce the number of round trips.

 TEAP implementations MUST support mutual peer authentication during
 tunnel establishment using the TLS ciphersuites specified in this
 section. The TEAP peer does not need to authenticate as part of the
 TLS exchange but can alternatively be authenticated through
 additional exchanges carried out in Phase 2.

 The TEAP tunnel protects peer identity information exchanged during
 Phase 2 from disclosure outside the tunnel. Implementations that
 wish to provide identity privacy for the peer identity need to
 carefully consider what information is disclosed outside the tunnel
 prior to Phase 2. TEAP implementations SHOULD support the immediate
 renegotiation of a TLS session to initiate a new handshake message
 exchange under the protection of the current ciphersuite. This
 allows support for protection of the peer’s identity when using TLS
 client authentication. An example of the exchanges using TLS
 renegotiation to protect privacy is shown in Appendix C.

 The following sections describe resuming a TLS session based on
 server-side or client-side state.

3.2.1. TLS Session Resume Using Server State

 TEAP session resumption is achieved in the same manner TLS achieves
 session resume. To support session resumption, the server and peer
 minimally cache the Session ID, master secret, and ciphersuite. The
 peer attempts to resume a session by including a valid Session ID
 from a previous TLS handshake in its ClientHello message. If the
 server finds a match for the Session ID and is willing to establish a
 new connection using the specified session state, the server will
 respond with the same Session ID and proceed with the TEAP Phase 1
 tunnel establishment based on a TLS abbreviated handshake. After a
 successful conclusion of the TEAP Phase 1 conversation, the
 conversation then continues on to Phase 2.

Zhou, et al. Standards Track [Page 11]

RFC 7170 TEAP May 2014

3.2.2. TLS Session Resume Using a PAC

 TEAP supports the resumption of sessions based on server state being
 stored on the client side using the TLS SessionTicket extension
 techniques described in [RFC5077]. This version of TEAP supports the
 provisioning of a ticket called a Protected Access Credential (PAC)
 through the use of the NewSessionTicket handshake described in
 [RFC5077], as well as provisioning of a PAC inside the protected
 tunnel. Implementations MUST support the TLS Ticket extension
 [RFC5077] mechanism for distributing a PAC and may provide additional
 ways to provision the PAC, such as manual configuration. Since the
 PAC mentioned here is used for establishing the TLS tunnel, it is
 more specifically referred to as the Tunnel PAC. The Tunnel PAC is a
 security credential provided by the EAP server to a peer and
 comprised of:

 1. PAC-Key: this is the key used by the peer as the TLS master
 secret to establish the TEAP Phase 1 tunnel. The PAC-Key is a
 strong, high-entropy, at minimum 48-octet key and is typically
 the master secret from a previous TLS session. The PAC-Key is a
 secret and MUST be treated accordingly. Otherwise, if leaked, it
 could lead to user credentials being compromised if sent within
 the tunnel established using the PAC-Key. In the case that a
 PAC-Key is provisioned to the peer through another means, it MUST
 have its confidentiality and integrity protected by a mechanism,
 such as the TEAP Phase 2 tunnel. The PAC-Key MUST be stored
 securely by the peer.

 2. PAC-Opaque: this is a variable-length field containing the ticket
 that is sent to the EAP server during the TEAP Phase 1 tunnel
 establishment based on [RFC5077]. The PAC-Opaque can only be
 interpreted by the EAP server to recover the required information
 for the server to validate the peer’s identity and
 authentication. The PAC-Opaque includes the PAC-Key and other
 TLS session parameters. It may contain the PAC’s peer identity.
 The PAC-Opaque format and contents are specific to the PAC
 issuing server. The PAC-Opaque may be presented in the clear, so
 an attacker MUST NOT be able to gain useful information from the
 PAC-Opaque itself. The server issuing the PAC-Opaque needs to
 ensure it is protected with strong cryptographic keys and
 algorithms. The PAC-Opaque may be distributed using the
 NewSessionTicket message defined in [RFC5077], or it may be
 distributed through another mechanism such as the Phase 2 TLVs
 defined in this document.

Zhou, et al. Standards Track [Page 12]

RFC 7170 TEAP May 2014

 3. PAC-Info: this is an optional variable-length field used to
 provide, at a minimum, the authority identity of the PAC issuer.
 Other useful but not mandatory information, such as the PAC-Key
 lifetime, may also be conveyed by the PAC-issuing server to the
 peer during PAC provisioning or refreshment. PAC-Info is not
 included if the NewSessionTicket message is used to provision the
 PAC.

 The use of the PAC is based on the SessionTicket extension defined in
 [RFC5077]. The EAP server initiates the TEAP conversation as normal.
 Upon receiving the Authority-ID TLV from the server, the peer checks
 to see if it has an existing valid PAC-Key and PAC-Opaque for the
 server. If it does, then it obtains the PAC-Opaque and puts it in
 the SessionTicket extension in the ClientHello. It is RECOMMENDED in
 TEAP that the peer include an empty Session ID in a ClientHello
 containing a PAC-Opaque. This version of TEAP supports the
 NewSessionTicket Handshake message as described in [RFC5077] for
 distribution of a new PAC, as well as the provisioning of PAC inside
 the protected tunnel. If the PAC-Opaque included in the
 SessionTicket extension is valid and the EAP server permits the
 abbreviated TLS handshake, it will select the ciphersuite from
 information within the PAC-Opaque and finish with the abbreviated TLS
 handshake. If the server receives a Session ID and a PAC-Opaque in
 the SessionTicket extension in a ClientHello, it should place the
 same Session ID in the ServerHello if it is resuming a session based
 on the PAC-Opaque. The conversation then proceeds as described in
 [RFC5077] until the handshake completes or a fatal error occurs.
 After the abbreviated handshake completes, the peer and the server
 are ready to commence Phase 2.

3.2.3. Transition between Abbreviated and Full TLS Handshake

 If session resumption based on server-side or client-side state
 fails, the server can gracefully fall back to a full TLS handshake.
 If the ServerHello received by the peer contains an empty Session ID
 or a Session ID that is different than in the ClientHello, the server
 may fall back to a full handshake. The peer can distinguish the
 server’s intent to negotiate a full or abbreviated TLS handshake by
 checking the next TLS handshake messages in the server response to
 the ClientHello. If ChangeCipherSpec follows the ServerHello in
 response to the ClientHello, then the server has accepted the session
 resumption and intends to negotiate the abbreviated handshake.
 Otherwise, the server intends to negotiate the full TLS handshake. A
 peer can request that a new PAC be provisioned after the full TLS
 handshake and mutual authentication of the peer and the server. A
 peer SHOULD NOT request that a new PAC be provisioned after the
 abbreviated handshake, as requesting a new session ticket based on
 resumed session is not permitted. In order to facilitate the

Zhou, et al. Standards Track [Page 13]

RFC 7170 TEAP May 2014

 fallback to a full handshake, the peer SHOULD include ciphersuites
 that allow for a full handshake and possibly PAC provisioning so the
 server can select one of these in case session resumption fails. An
 example of the transition is shown in Appendix C.

3.3. TEAP Authentication Phase 2: Tunneled Authentication

 The second portion of the TEAP authentication occurs immediately
 after successful completion of Phase 1. Phase 2 occurs even if both
 peer and authenticator are authenticated in the Phase 1 TLS
 negotiation. Phase 2 MUST NOT occur if the Phase 1 TLS handshake
 fails, as that will compromise the security as the tunnel has not
 been established successfully. Phase 2 consists of a series of
 requests and responses encapsulated in TLV objects defined in
 Section 4.2. Phase 2 MUST always end with a Crypto-Binding TLV
 exchange described in Section 4.2.13 and a protected termination
 exchange described in Section 3.3.3. The TLV exchange may include
 the execution of zero or more EAP methods within the protected tunnel
 as described in Section 3.3.1. A server MAY proceed directly to the
 protected termination exchange if it does not wish to request further
 authentication from the peer. However, the peer and server MUST NOT
 assume that either will skip inner EAP methods or other TLV
 exchanges, as the other peer might have a different security policy.
 The peer may have roamed to a network that requires conformance with
 a different authentication policy, or the peer may request the server
 take additional action (e.g., channel binding) through the use of the
 Request-Action TLV as defined in Section 4.2.9.

3.3.1. EAP Sequences

 EAP [RFC3748] prohibits use of multiple authentication methods within
 a single EAP conversation in order to limit vulnerabilities to man-
 in-the-middle attacks. TEAP addresses man-in-the-middle attacks
 through support for cryptographic protection of the inner EAP
 exchange and cryptographic binding of the inner authentication
 method(s) to the protected tunnel. EAP methods are executed serially
 in a sequence. This version of TEAP does not support initiating
 multiple EAP methods simultaneously in parallel. The methods need
 not be distinct. For example, EAP-TLS could be run twice as an inner
 method, first using machine credentials followed by a second instance
 using user credentials.

 EAP method messages are carried within EAP-Payload TLVs defined in
 Section 4.2.10. If more than one method is going to be executed in
 the tunnel, then upon method completion, the server MUST send an
 Intermediate-Result TLV indicating the result. The peer MUST respond
 to the Intermediate-Result TLV indicating its result. If the result
 indicates success, the Intermediate-Result TLV MUST be accompanied by

Zhou, et al. Standards Track [Page 14]

RFC 7170 TEAP May 2014

 a Crypto-Binding TLV. The Crypto-Binding TLV is further discussed in
 Sections 4.2.13 and 5.3. The Intermediate-Result TLVs can be
 included with other TLVs such as EAP-Payload TLVs starting a new EAP
 conversation or with the Result TLV used in the protected termination
 exchange.

 If both peer and server indicate success, then the method is
 considered complete. If either indicates failure, then the method is
 considered failed. The result of failure of an EAP method does not
 always imply a failure of the overall authentication. If one
 authentication method fails, the server may attempt to authenticate
 the peer with a different method.

3.3.2. Optional Password Authentication

 The use of EAP-FAST-GTC as defined in RFC 5421 [RFC5421] is NOT
 RECOMMENDED with TEAPv1 because EAP-FAST-GTC is not compliant with
 EAP-GTC defined in [RFC3748]. Implementations should instead make
 use of the password authentication TLVs defined in this
 specification. The authentication server initiates password
 authentication by sending a Basic-Password-Auth-Req TLV defined in
 Section 4.2.14. If the peer wishes to participate in password
 authentication, then it responds with a Basic-Password-Auth-Resp TLV
 as defined in Section 4.2.15 that contains the username and password.
 If it does not wish to perform password authentication, then it
 responds with a NAK TLV indicating the rejection of the Basic-
 Password-Auth-Req TLV. Upon receiving the response, the server
 indicates the success or failure of the exchange using an
 Intermediate-Result TLV. Multiple round trips of password
 authentication requests and responses MAY be used to support some
 "housecleaning" functions such as a password or pin change before a
 user is authenticated.

3.3.3. Protected Termination and Acknowledged Result Indication

 A successful TEAP Phase 2 conversation MUST always end in a
 successful Crypto-Binding TLV and Result TLV exchange. A TEAP server
 may initiate the Crypto-Binding TLV and Result TLV exchange without
 initiating any EAP conversation in TEAP Phase 2. After the final
 Result TLV exchange, the TLS tunnel is terminated, and a cleartext
 EAP Success or EAP Failure is sent by the server. Peers implementing
 TEAP MUST NOT accept a cleartext EAP Success or failure packet prior
 to the peer and server reaching synchronized protected result
 indication.

 The Crypto-Binding TLV exchange is used to prove that both the peer
 and server participated in the tunnel establishment and sequence of
 authentications. It also provides verification of the TEAP type,

Zhou, et al. Standards Track [Page 15]

RFC 7170 TEAP May 2014

 version negotiated, and Outer TLVs exchanged before the TLS tunnel
 establishment. The Crypto-Binding TLV MUST be exchanged and verified
 before the final Result TLV exchange, regardless of whether or not
 there is an inner EAP method authentication. The Crypto-Binding TLV
 and Intermediate-Result TLV MUST be included to perform cryptographic
 binding after each successful EAP method in a sequence of one or more
 EAP methods. The server may send the final Result TLV along with an
 Intermediate-Result TLV and a Crypto-Binding TLV to indicate its
 intention to end the conversation. If the peer requires nothing more
 from the server, it will respond with a Result TLV indicating success
 accompanied by a Crypto-Binding TLV and Intermediate-Result TLV if
 necessary. The server then tears down the tunnel and sends a
 cleartext EAP Success or EAP Failure.

 If the peer receives a Result TLV indicating success from the server,
 but its authentication policies are not satisfied (for example, it
 requires a particular authentication mechanism be run or it wants to
 request a PAC), it may request further action from the server using
 the Request-Action TLV. The Request-Action TLV is sent with a Status
 field indicating what EAP Success/Failure result the peer would
 expect if the requested action is not granted. The value of the
 Action field indicates what the peer would like to do next. The
 format and values for the Request-Action TLV are defined in
 Section 4.2.9.

 Upon receiving the Request-Action TLV, the server may process the
 request or ignore it, based on its policy. If the server ignores the
 request, it proceeds with termination of the tunnel and sends the
 cleartext EAP Success or Failure message based on the Status field of
 the peer’s Request-Action TLV. If the server honors and processes
 the request, it continues with the requested action. The
 conversation completes with a Result TLV exchange. The Result TLV
 may be included with the TLV that completes the requested action.

 Error handling for Phase 2 is discussed in Section 3.6.3.

3.4. Determining Peer-Id and Server-Id

 The Peer-Id and Server-Id [RFC5247] may be determined based on the
 types of credentials used during either the TEAP tunnel creation or
 authentication. In the case of multiple peer authentications, all
 authenticated peer identities and their corresponding identity types
 (Section 4.2.3) need to be exported. In the case of multiple server
 authentications, all authenticated server identities need to be
 exported.

Zhou, et al. Standards Track [Page 16]

RFC 7170 TEAP May 2014

 When X.509 certificates are used for peer authentication, the Peer-Id
 is determined by the subject and subjectAltName fields in the peer
 certificate. As noted in [RFC5280]:

 The subject field identifies the entity associated with the public
 key stored in the subject public key field. The subject name MAY
 be carried in the subject field and/or the subjectAltName
 extension. . . . If subject naming information is present only in
 the subjectAltName extension (e.g., a key bound only to an email
 address or URI), then the subject name MUST be an empty sequence
 and the subjectAltName extension MUST be critical.

 Where it is non-empty, the subject field MUST contain an X.500
 distinguished name (DN).

 If an inner EAP method is run, then the Peer-Id is obtained from the
 inner method.

 When the server uses an X.509 certificate to establish the TLS
 tunnel, the Server-Id is determined in a similar fashion as stated
 above for the Peer-Id, e.g., the subject and subjectAltName fields in
 the server certificate define the Server-Id.

3.5. TEAP Session Identifier

 The EAP session identifier [RFC5247] is constructed using the tls-
 unique from the Phase 1 outer tunnel at the beginning of Phase 2 as
 defined by Section 3.1 of [RFC5929]. The Session-Id is defined as
 follows:

 Session-Id = teap_type || tls-unique

 where teap_type is the EAP Type assigned to TEAP

 tls-unique = tls-unique from the Phase 1 outer tunnel at the
 beginning of Phase 2 as defined by Section 3.1 of [RFC5929]

 || means concatenation

3.6. Error Handling

 TEAP uses the error-handling rules summarized below:

 1. Errors in the outer EAP packet layer are handled as defined in
 Section 3.6.1.

 2. Errors in the TLS layer are communicated via TLS alert messages
 in all phases of TEAP.

Zhou, et al. Standards Track [Page 17]

RFC 7170 TEAP May 2014

 3. The Intermediate-Result TLVs carry success or failure indications
 of the individual EAP methods in TEAP Phase 2. Errors within the
 EAP conversation in Phase 2 are expected to be handled by
 individual EAP methods.

 4. Violations of the Inner TLV rules are handled using Result TLVs
 together with Error TLVs.

 5. Tunnel-compromised errors (errors caused by a failed or missing
 Crypto-Binding) are handled using Result TLVs and Error TLVs.

3.6.1. Outer-Layer Errors

 Errors on the TEAP outer-packet layer are handled in the following
 ways:

 1. If Outer TLVs are invalid or contain unknown values, they will be
 ignored.

 2. The entire TEAP packet will be ignored if other fields (version,
 length, flags, etc.) are inconsistent with this specification.

3.6.2. TLS Layer Errors

 If the TEAP server detects an error at any point in the TLS handshake
 or the TLS layer, the server SHOULD send a TEAP request encapsulating
 a TLS record containing the appropriate TLS alert message rather than
 immediately terminating the conversation so as to allow the peer to
 inform the user of the cause of the failure and possibly allow for a
 restart of the conversation. The peer MUST send a TEAP response to
 an alert message. The EAP-Response packet sent by the peer may
 encapsulate a TLS ClientHello handshake message, in which case the
 TEAP server MAY allow the TEAP conversation to be restarted, or it
 MAY contain a TEAP response with a zero-length message, in which case
 the server MUST terminate the conversation with an EAP Failure
 packet. It is up to the TEAP server whether or not to allow
 restarts, and, if allowed, how many times the conversation can be
 restarted. Per TLS [RFC5246], TLS restart is only allowed for non-
 fatal alerts. A TEAP server implementing restart capability SHOULD
 impose a limit on the number of restarts, so as to protect against
 denial-of-service attacks. If the TEAP server does not allow
 restarts, it MUST terminate the conversation with an EAP Failure
 packet.

 If the TEAP peer detects an error at any point in the TLS layer, the
 TEAP peer SHOULD send a TEAP response encapsulating a TLS record
 containing the appropriate TLS alert message. The server may restart
 the conversation by sending a TEAP request packet encapsulating the

Zhou, et al. Standards Track [Page 18]

RFC 7170 TEAP May 2014

 TLS HelloRequest handshake message. The peer may allow the TEAP
 conversation to be restarted, or it may terminate the conversation by
 sending a TEAP response with a zero-length message.

3.6.3. Phase 2 Errors

 Any time the peer or the server finds a fatal error outside of the
 TLS layer during Phase 2 TLV processing, it MUST send a Result TLV of
 failure and an Error TLV with the appropriate error code. For errors
 involving the processing of the sequence of exchanges, such as a
 violation of TLV rules (e.g., multiple EAP-Payload TLVs), the error
 code is Unexpected TLVs Exchanged. For errors involving a tunnel
 compromise, the error code is Tunnel Compromise Error. Upon sending
 a Result TLV with a fatal Error TLV, the sender terminates the TLS
 tunnel. Note that a server will still wait for a message from the
 peer after it sends a failure; however, the server does not need to
 process the contents of the response message.

 For the inner method, retransmission is not needed and SHOULD NOT be
 attempted, as the Outer TLS tunnel can be considered a reliable
 transport. If there is a non-fatal error handling the inner method,
 instead of silently dropping the inner method request or response and
 not responding, the receiving side SHOULD use an Error TLV with error
 code Inner Method Error to indicate an error processing the current
 inner method. The side receiving the Error TLV MAY decide to start a
 new inner method instead or send back a Result TLV to terminate the
 TEAP authentication session.

 If a server receives a Result TLV of failure with a fatal Error TLV,
 it MUST send a cleartext EAP Failure. If a peer receives a Result
 TLV of failure, it MUST respond with a Result TLV indicating failure.
 If the server has sent a Result TLV of failure, it ignores the peer
 response, and it MUST send a cleartext EAP Failure.

3.7. Fragmentation

 A single TLS record may be up to 16384 octets in length, but a TLS
 message may span multiple TLS records, and a TLS certificate message
 may, in principle, be as long as 16 MB. This is larger than the
 maximum size for a message on most media types; therefore, it is
 desirable to support fragmentation. Note that in order to protect
 against reassembly lockup and denial-of-service attacks, it may be
 desirable for an implementation to set a maximum size for one such
 group of TLS messages. Since a typical certificate chain is rarely
 longer than a few thousand octets, and no other field is likely to be
 anywhere near as long, a reasonable choice of maximum acceptable
 message length might be 64 KB. This is still a fairly large message
 packet size so a TEAP implementation MUST provide its own support for

Zhou, et al. Standards Track [Page 19]

RFC 7170 TEAP May 2014

 fragmentation and reassembly. Section 3.1 of [RFC3748] discusses
 determining the MTU usable by EAP, and Section 4.3 discusses
 retransmissions in EAP.

 Since EAP is a lock-step protocol, fragmentation support can be added
 in a simple manner. In EAP, fragments that are lost or damaged in
 transit will be retransmitted, and since sequencing information is
 provided by the Identifier field in EAP, there is no need for a
 fragment offset field.

 TEAP fragmentation support is provided through the addition of flag
 bits within the EAP-Response and EAP-Request packets, as well as a
 Message Length field of four octets. Flags include the Length
 included (L), More fragments (M), and TEAP Start (S) bits. The L
 flag is set to indicate the presence of the four-octet Message Length
 field and MUST be set for the first fragment of a fragmented TLS
 message or set of messages. It MUST NOT be present for any other
 message. The M flag is set on all but the last fragment. The S flag
 is set only within the TEAP start message sent from the EAP server to
 the peer. The Message Length field is four octets and provides the
 total length of the message that may be fragmented over the data
 fields of multiple packets; this simplifies buffer allocation.

 When a TEAP peer receives an EAP-Request packet with the M bit set,
 it MUST respond with an EAP-Response with EAP Type of TEAP and no
 data. This serves as a fragment ACK. The EAP server MUST wait until
 it receives the EAP-Response before sending another fragment. In
 order to prevent errors in processing of fragments, the EAP server
 MUST increment the Identifier field for each fragment contained
 within an EAP-Request, and the peer MUST include this Identifier
 value in the fragment ACK contained within the EAP-Response.
 Retransmitted fragments will contain the same Identifier value.

 Similarly, when the TEAP server receives an EAP-Response with the M
 bit set, it responds with an EAP-Request with EAP Type of TEAP and no
 data. This serves as a fragment ACK. The EAP peer MUST wait until
 it receives the EAP-Request before sending another fragment. In
 order to prevent errors in the processing of fragments, the EAP
 server MUST increment the Identifier value for each fragment ACK
 contained within an EAP-Request, and the peer MUST include this
 Identifier value in the subsequent fragment contained within an EAP-
 Response.

3.8. Peer Services

 Several TEAP services, including server unauthenticated provisioning,
 PAC provisioning, certificate provisioning, and channel binding,
 depend on the peer trusting the TEAP server. Peers MUST authenticate

Zhou, et al. Standards Track [Page 20]

RFC 7170 TEAP May 2014

 the server before these peer services are used. TEAP peer
 implementations MUST have a configuration where authentication fails
 if server authentication cannot be achieved. In many cases, the
 server will want to authenticate the peer before providing these
 services as well.

 TEAP peers MUST track whether or not server authentication has taken
 place. Server authentication results if the peer trusts the provided
 server certificate. Typically, this involves both validating the
 certificate to a trust anchor and confirming the entity named by the
 certificate is the intended server. Server authentication also
 results when the procedures in Section 3.2 are used to resume a
 session in which the peer and server were previously mutually
 authenticated. Alternatively, peer services can be used if an inner
 EAP method providing mutual authentication and an Extended Master
 Session Key (EMSK) is executed and cryptographic binding with the
 EMSK Compound Message Authentication Code (MAC) is correctly
 validated (Section 4.2.13). This is further described in
 Section 3.8.3.

 An additional complication arises when a tunnel method authenticates
 multiple parties such as authenticating both the peer machine and the
 peer user to the EAP server. Depending on how authentication is
 achieved, only some of these parties may have confidence in it. For
 example, if a strong shared secret is used to mutually authenticate
 the user and the EAP server, the machine may not have confidence that
 the EAP server is the authenticated party if the machine cannot trust
 the user not to disclose the shared secret to an attacker. In these
 cases, the parties who participate in the authentication need to be
 considered when evaluating whether to use peer services.

3.8.1. PAC Provisioning

 To request provisioning of a PAC, a peer sends a PAC TLV as defined
 in Section 4.2.12 containing a PAC Attribute as defined in
 Section 4.2.12.1 of PAC-Type set to the appropriate value. The peer
 MUST successfully authenticate the EAP server and validate the
 Crypto-Binding TLV as defined in Section 4.2.13 before issuing the
 request. The peer MUST send separate PAC TLVs for each type of PAC
 it wants to be provisioned. Multiple PAC TLVs can be sent in the
 same packet or in different packets. The EAP server will send the
 PACs after its internal policy has been satisfied, or it MAY ignore
 the request or request additional authentications if its policy
 dictates. The server MAY cache the request and provision the PACs
 requested after all of its internal policies have been satisfied. If
 a peer receives a PAC with an unknown type, it MUST ignore it.

Zhou, et al. Standards Track [Page 21]

RFC 7170 TEAP May 2014

 A PAC TLV containing a PAC-Acknowledge attribute MUST be sent by the
 peer to acknowledge the receipt of the Tunnel PAC. A PAC TLV
 containing a PAC-Acknowledge attribute MUST NOT be used by the peer
 to acknowledge the receipt of other types of PACs. If the peer
 receives a PAC TLV with an unknown attribute, it SHOULD ignore the
 unknown attribute.

3.8.2. Certificate Provisioning within the Tunnel

 Provisioning of a peer’s certificate is supported in TEAP by
 performing the Simple PKI Request/Response from [RFC5272] using
 PKCS#10 and PKCS#7 TLVs, respectively. A peer sends the Simple PKI
 Request using a PKCS#10 CertificateRequest [RFC2986] encoded into the
 body of a PKCS#10 TLV (see Section 4.2.17). The TEAP server issues a
 Simple PKI Response using a PKCS#7 [RFC2315] degenerate "Certificates
 Only" message encoded into the body of a PKCS#7 TLV (see
 Section 4.2.16), only after an authentication method has run and
 provided an identity proof on the peer prior to a certificate is
 being issued.

 In order to provide linking identity and proof-of-possession by
 including information specific to the current authenticated TLS
 session within the signed certification request, the peer generating
 the request SHOULD obtain the tls-unique value from the TLS subsystem
 as defined in "Channel Bindings for TLS" [RFC5929]. The TEAP peer
 operations between obtaining the tls_unique value through generation
 of the Certification Signing Request (CSR) that contains the current
 tls_unique value and the subsequent verification of this value by the
 TEAP server are the "phases of the application protocol during which
 application-layer authentication occurs" that are protected by the
 synchronization interoperability mechanism described in the
 interoperability note in "Channel Bindings for TLS" ([RFC5929],
 Section 3.1). When performing renegotiation, TLS
 "secure_renegotiation" [RFC5746] MUST be used.

 The tls-unique value is base-64-encoded as specified in Section 4 of
 [RFC4648], and the resulting string is placed in the certification
 request challengePassword field ([RFC2985], Section 5.4.1). The
 challengePassword field is limited to 255 octets (Section 7.4.9 of
 [RFC5246] indicates that no existing ciphersuite would result in an
 issue with this limitation). If tls-unique information is not
 embedded within the certification request, the challengePassword
 field MUST be empty to indicate that the peer did not include the
 optional channel-binding information (any value submitted is verified
 by the server as tls-unique information).

Zhou, et al. Standards Track [Page 22]

RFC 7170 TEAP May 2014

 The server SHOULD verify the tls-unique information. This ensures
 that the authenticated TEAP peer is in possession of the private key
 used to sign the certification request.

 The Simple PKI Request/Response generation and processing rules of
 [RFC5272] SHALL apply to TEAP, with the exception of error
 conditions. In the event of an error, the TEAP server SHOULD respond
 with an Error TLV using the most descriptive error code possible; it
 MAY ignore the PKCS#10 request that generated the error.

3.8.3. Server Unauthenticated Provisioning Mode

 In Server Unauthenticated Provisioning Mode, an unauthenticated
 tunnel is established in Phase 1, and the peer and server negotiate
 an EAP method in Phase 2 that supports mutual authentication and key
 derivation that is resistant to attacks such as man-in-the-middle and
 dictionary attacks. This provisioning mode enables the bootstrapping
 of peers when the peer lacks the ability to authenticate the server
 during Phase 1. This includes both cases in which the ciphersuite
 negotiated does not provide authentication and in which the
 ciphersuite negotiated provides the authentication but the peer is
 unable to validate the identity of the server for some reason.

 Upon successful completion of the EAP method in Phase 2, the peer and
 server exchange a Crypto-Binding TLV to bind the inner method with
 the outer tunnel and ensure that a man-in-the-middle attack has not
 been attempted.

 Support for the Server Unauthenticated Provisioning Mode is optional.
 The ciphersuite TLS_DH_anon_WITH_AES_128_CBC_SHA is RECOMMENDED when
 using Server Unauthenticated Provisioning Mode, but other anonymous
 ciphersuites MAY be supported as long as the TLS pre-master secret is
 generated from contribution from both peers. Phase 2 EAP methods
 used in Server Unauthenticated Provisioning Mode MUST provide mutual
 authentication, provide key generation, and be resistant to
 dictionary attack. Example inner methods include EAP-pwd [RFC5931]
 and EAP-EKE [RFC6124].

3.8.4. Channel Binding

 [RFC6677] defines EAP channel bindings to solve the "lying NAS" and
 the "lying provider" problems, using a process in which the EAP peer
 gives information about the characteristics of the service provided
 by the authenticator to the Authentication, Authorization, and
 Accounting (AAA) server protected within the EAP method. This allows
 the server to verify the authenticator is providing information to

Zhou, et al. Standards Track [Page 23]

RFC 7170 TEAP May 2014

 the peer that is consistent with the information received from this
 authenticator as well as the information stored about this
 authenticator.

 TEAP supports EAP channel binding using the Channel-Binding TLV
 defined in Section 4.2.7. If the TEAP server wants to request the
 channel-binding information from the peer, it sends an empty Channel-
 Binding TLV to indicate the request. The peer responds to the
 request by sending a Channel-Binding TLV containing a channel-binding
 message as defined in [RFC6677]. The server validates the channel-
 binding message and sends back a Channel-Binding TLV with a result
 code. If the server didn’t initiate the channel-binding request and
 the peer still wants to send the channel-binding information to the
 server, it can do that by using the Request-Action TLV along with the
 Channel-Binding TLV. The peer MUST only send channel-binding
 information after it has successfully authenticated the server and
 established the protected tunnel.

4. Message Formats

 The following sections describe the message formats used in TEAP.
 The fields are transmitted from left to right in network byte order.

4.1. TEAP Message Format

 A summary of the TEAP Request/Response packet format is shown below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 | Type | Flags | Ver | Message Length :
 +-+
 : Message Length | Outer TLV Length
 +-+
 : Outer TLV Length | TLS Data...
 +-+
 | Outer TLVs...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Code

 The Code field is one octet in length and is defined as follows:

 1 Request

 2 Response

Zhou, et al. Standards Track [Page 24]

RFC 7170 TEAP May 2014

 Identifier

 The Identifier field is one octet and aids in matching responses
 with requests. The Identifier field MUST be changed on each
 Request packet. The Identifier field in the Response packet MUST
 match the Identifier field from the corresponding request.

 Length

 The Length field is two octets and indicates the length of the EAP
 packet including the Code, Identifier, Length, Type, Flags, Ver,
 Message Length, TLS Data, and Outer TLVs fields. Octets outside
 the range of the Length field should be treated as Data Link Layer
 padding and should be ignored on reception.

 Type

 55 for TEAP

 Flags

 0 1 2 3 4
 +-+-+-+-+-+
 |L M S O R|
 +-+-+-+-+-+

 L Length included; set to indicate the presence of the four-octet
 Message Length field. It MUST be present for the first
 fragment of a fragmented message. It MUST NOT be present for
 any other message.

 M More fragments; set on all but the last fragment.

 S TEAP start; set in a TEAP Start message sent from the server to
 the peer.

 O Outer TLV length included; set to indicate the presence of the
 four-octet Outer TLV Length field. It MUST be present only in
 the initial request and response messages. If the initial
 message is fragmented, then it MUST be present only on the
 first fragment.

 R Reserved (MUST be zero and ignored upon receipt)

 Ver

 This field contains the version of the protocol. This document
 describes version 1 (001 in binary) of TEAP.

Zhou, et al. Standards Track [Page 25]

RFC 7170 TEAP May 2014

 Message Length

 The Message Length field is four octets and is present only if the
 L bit is set. This field provides the total length of the message
 that may be fragmented over the data fields of multiple packets.

 Outer TLV Length

 The Outer TLV Length field is four octets and is present only if
 the O bit is set. This field provides the total length of the
 Outer TLVs if present.

 TLS Data

 When the TLS Data field is present, it consists of an encapsulated
 TLS packet in TLS record format. A TEAP packet with Flags and
 Version fields, but with zero length TLS Data field, is used to
 indicate TEAP acknowledgement for either a fragmented message, a
 TLS Alert message, or a TLS Finished message.

 Outer TLVs

 The Outer TLVs consist of the optional data used to help establish
 the TLS tunnel in TLV format. They are only allowed in the first
 two messages in the TEAP protocol. That is the first EAP-server-
 to-peer message and first peer-to-EAP-server message. The start
 of the Outer TLVs can be derived from the EAP Length field and
 Outer TLV Length field.

4.2. TEAP TLV Format and Support

 The TLVs defined here are TLV objects. The TLV objects could be used
 to carry arbitrary parameters between an EAP peer and EAP server
 within the protected TLS tunnel.

 The EAP peer may not necessarily implement all the TLVs supported by
 the EAP server. To allow for interoperability, TLVs are designed to
 allow an EAP server to discover if a TLV is supported by the EAP peer
 using the NAK TLV. The mandatory bit in a TLV indicates whether
 support of the TLV is required. If the peer or server does not
 support a TLV marked mandatory, then it MUST send a NAK TLV in the
 response, and all the other TLVs in the message MUST be ignored. If
 an EAP peer or server finds an unsupported TLV that is marked as
 optional, it can ignore the unsupported TLV. It MUST NOT send a NAK
 TLV for a TLV that is not marked mandatory. If all TLVs in a message
 are marked optional and none are understood by the peer, then a NAK
 TLV or Result TLV could be sent to the other side in order to
 continue the conversation.

Zhou, et al. Standards Track [Page 26]

RFC 7170 TEAP May 2014

 Note that a peer or server may support a TLV with the mandatory bit
 set but may not understand the contents. The appropriate response to
 a supported TLV with content that is not understood is defined by the
 individual TLV specification.

 EAP implementations compliant with this specification MUST support
 TLV exchanges as well as the processing of mandatory/optional
 settings on the TLV. Implementations conforming to this
 specification MUST support the following TLVs:

 Authority-ID TLV

 Identity-Type TLV

 Result TLV

 NAK TLV

 Error TLV

 Request-Action TLV

 EAP-Payload TLV

 Intermediate-Result TLV

 Crypto-Binding TLV

 Basic-Password-Auth-Req TLV

 Basic-Password-Auth-Resp TLV

Zhou, et al. Standards Track [Page 27]

RFC 7170 TEAP May 2014

4.2.1. General TLV Format

 TLVs are defined as described below. The fields are transmitted from
 left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Value...
 +-+

 M

 0 Optional TLV

 1 Mandatory TLV

 R

 Reserved, set to zero (0)

 TLV Type

 A 14-bit field, denoting the TLV type. Allocated types include:

 0 Unassigned

 1 Authority-ID TLV (Section 4.2.2)

 2 Identity-Type TLV (Section 4.2.3)

 3 Result TLV (Section 4.2.4)

 4 NAK TLV (Section 4.2.5)

 5 Error TLV (Section 4.2.6)

 6 Channel-Binding TLV (Section 4.2.7)

 7 Vendor-Specific TLV (Section 4.2.8)

 8 Request-Action TLV (Section 4.2.9)

 9 EAP-Payload TLV (Section 4.2.10)

 10 Intermediate-Result TLV (Section 4.2.11)

Zhou, et al. Standards Track [Page 28]

RFC 7170 TEAP May 2014

 11 PAC TLV (Section 4.2.12)

 12 Crypto-Binding TLV (Section 4.2.13)

 13 Basic-Password-Auth-Req TLV (Section 4.2.14)

 14 Basic-Password-Auth-Resp TLV (Section 4.2.15)

 15 PKCS#7 TLV (Section 4.2.16)

 16 PKCS#10 TLV (Section 4.2.17)

 17 Trusted-Server-Root TLV (Section 4.2.18)

 Length

 The length of the Value field in octets.

 Value

 The value of the TLV.

4.2.2. Authority-ID TLV

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | ID...
 +-+

 M

 Mandatory, set to one (1)

 R

 Reserved, set to zero (0)

 TLV Type

 1 - Authority-ID

 Length

 The Length field is two octets and contains the length of the ID
 field in octets.

Zhou, et al. Standards Track [Page 29]

RFC 7170 TEAP May 2014

 ID

 Hint of the identity of the server to help the peer to match the
 credentials available for the server. It should be unique across
 the deployment.

4.2.3. Identity-Type TLV

 The Identity-Type TLV allows an EAP server to send a hint to help the
 EAP peer select the right type of identity, for example, user or
 machine. TEAPv1 implementations MUST support this TLV. Only one
 Identity-Type TLV SHOULD be present in the TEAP request or response
 packet. The Identity-Type TLV request MUST come with an EAP-Payload
 TLV or Basic-Password-Auth-Req TLV. If the EAP peer does have an
 identity corresponding to the identity type requested, then the peer
 SHOULD respond with an Identity-Type TLV with the requested type. If
 the Identity-Type field does not contain one of the known values or
 if the EAP peer does not have an identity corresponding to the
 identity type requested, then the peer SHOULD respond with an
 Identity-Type TLV with the one of available identity types. If the
 server receives an identity type in the response that does not match
 the requested type, then the peer does not possess the requested
 credential type, and the server SHOULD proceed with authentication
 for the credential type proposed by the peer, proceed with requesting
 another credential type, or simply apply the network policy based on
 the configured policy, e.g., sending Result TLV with Failure.

 The Identity-Type TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Identity-Type |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 M

 0 (Optional)

 R

 Reserved, set to zero (0)

 TLV Type

 2 - Identity-Type TLV

Zhou, et al. Standards Track [Page 30]

RFC 7170 TEAP May 2014

 Length

 2

 Identity-Type

 The Identity-Type field is two octets. Values include:

 1 User

 2 Machine

4.2.4. Result TLV

 The Result TLV provides support for acknowledged success and failure
 messages for protected termination within TEAP. If the Status field
 does not contain one of the known values, then the peer or EAP server
 MUST treat this as a fatal error of Unexpected TLVs Exchanged. The
 behavior of the Result TLV is further discussed in Sections 3.3.3 and
 3.6.3. A Result TLV indicating failure MUST NOT be accompanied by
 the following TLVs: NAK, EAP-Payload TLV, or Crypto-Binding TLV. The
 Result TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Status |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 M

 Mandatory, set to one (1)

 R

 Reserved, set to zero (0)

 TLV Type

 3 - Result TLV

 Length

 2

Zhou, et al. Standards Track [Page 31]

RFC 7170 TEAP May 2014

 Status

 The Status field is two octets. Values include:

 1 Success

 2 Failure

4.2.5. NAK TLV

 The NAK TLV allows a peer to detect TLVs that are not supported by
 the other peer. A TEAP packet can contain 0 or more NAK TLVs. A NAK
 TLV should not be accompanied by other TLVs. A NAK TLV MUST NOT be
 sent in response to a message containing a Result TLV, instead a
 Result TLV of failure should be sent indicating failure and an Error
 TLV of Unexpected TLVs Exchanged. The NAK TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Vendor-Id |
 +-+
 | NAK-Type | TLVs...
 +-+

 M

 Mandatory, set to one (1)

 R

 Reserved, set to zero (0)

 TLV Type

 4 - NAK TLV

 Length

 >=6

 Vendor-Id

 The Vendor-Id field is four octets and contains the Vendor-Id of
 the TLV that was not supported. The high-order octet is 0, and
 the low-order three octets are the Structure of Management

Zhou, et al. Standards Track [Page 32]

RFC 7170 TEAP May 2014

 Information (SMI) Network Management Private Enterprise Number of
 the Vendor in network byte order. The Vendor-Id field MUST be
 zero for TLVs that are not Vendor-Specific TLVs.

 NAK-Type

 The NAK-Type field is two octets. The field contains the type of
 the TLV that was not supported. A TLV of this type MUST have been
 included in the previous packet.

 TLVs

 This field contains a list of zero or more TLVs, each of which
 MUST NOT have the mandatory bit set. These optional TLVs are for
 future extensibility to communicate why the offending TLV was
 determined to be unsupported.

4.2.6. Error TLV

 The Error TLV allows an EAP peer or server to indicate errors to the
 other party. A TEAP packet can contain 0 or more Error TLVs. The
 Error-Code field describes the type of error. Error codes 1-999
 represent successful outcomes (informative messages), 1000-1999
 represent warnings, and 2000-2999 represent fatal errors. A fatal
 Error TLV MUST be accompanied by a Result TLV indicating failure, and
 the conversation is terminated as described in Section 3.6.3.

 Many of the error codes below refer to errors in inner method
 processing that may be retrieved if made available by the inner
 method. Implementations MUST take care that error messages do not
 reveal too much information to an attacker. For example, the usage
 of error message 1031 (User account credentials incorrect) is NOT
 RECOMMENDED, because it allows an attacker to determine valid
 usernames by differentiating this response from other responses. It
 should only be used for troubleshooting purposes.

 The Error TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Error-Code |
 +-+

Zhou, et al. Standards Track [Page 33]

RFC 7170 TEAP May 2014

 M

 Mandatory, set to one (1)

 R

 Reserved, set to zero (0)

 TLV Type

 5 - Error TLV

 Length

 4

 Error-Code

 The Error-Code field is four octets. Currently defined values for
 Error-Code include:

 1 User account expires soon

 2 User account credential expires soon

 3 User account authorizations change soon

 4 Clock skew detected

 5 Contact administrator

 6 User account credentials change required

 1001 Inner Method Error

 1002 Unspecified authentication infrastructure problem

 1003 Unspecified authentication failure

 1004 Unspecified authorization failure

 1005 User account credentials unavailable

 1006 User account expired

 1007 User account locked: try again later

 1008 User account locked: admin intervention required

Zhou, et al. Standards Track [Page 34]

RFC 7170 TEAP May 2014

 1009 Authentication infrastructure unavailable

 1010 Authentication infrastructure not trusted

 1011 Clock skew too great

 1012 Invalid inner realm

 1013 Token out of sync: administrator intervention required

 1014 Token out of sync: PIN change required

 1015 Token revoked

 1016 Tokens exhausted

 1017 Challenge expired

 1018 Challenge algorithm mismatch

 1019 Client certificate not supplied

 1020 Client certificate rejected

 1021 Realm mismatch between inner and outer identity

 1022 Unsupported Algorithm In Certificate Signing Request

 1023 Unsupported Extension In Certificate Signing Request

 1024 Bad Identity In Certificate Signing Request

 1025 Bad Certificate Signing Request

 1026 Internal CA Error

 1027 General PKI Error

 1028 Inner method’s channel-binding data required but not
 supplied

 1029 Inner method’s channel-binding data did not include required
 information

 1030 Inner method’s channel binding failed

 1031 User account credentials incorrect [USAGE NOT RECOMMENDED]

Zhou, et al. Standards Track [Page 35]

RFC 7170 TEAP May 2014

 2001 Tunnel Compromise Error

 2002 Unexpected TLVs Exchanged

4.2.7. Channel-Binding TLV

 The Channel-Binding TLV provides a mechanism for carrying channel-
 binding data from the peer to the EAP server and a channel-binding
 response from the EAP server to the peer as described in [RFC6677].
 TEAPv1 implementations MAY support this TLV, which cannot be
 responded to with a NAK TLV. If the Channel-Binding data field does
 not contain one of the known values or if the EAP server does not
 support this TLV, then the server MUST ignore the value. The
 Channel-Binding TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Data ...
 +-+

 M

 0 (Optional)

 R

 Reserved, set to zero (0)

 TLV Type

 6 - Channel-Binding TLV

 Length

 variable

 Data

 The data field contains a channel-binding message as defined in
 Section 5.3 of [RFC6677].

Zhou, et al. Standards Track [Page 36]

RFC 7170 TEAP May 2014

4.2.8. Vendor-Specific TLV

 The Vendor-Specific TLV is available to allow vendors to support
 their own extended attributes not suitable for general usage. A
 Vendor-Specific TLV attribute can contain one or more TLVs, referred
 to as Vendor TLVs. The TLV type of a Vendor-TLV is defined by the
 vendor. All the Vendor TLVs inside a single Vendor-Specific TLV
 belong to the same vendor. There can be multiple Vendor-Specific
 TLVs from different vendors in the same message. Error handling in
 the Vendor TLV could use the vendor’s own specific error-handling
 mechanism or use the standard TEAP error codes defined.

 Vendor TLVs may be optional or mandatory. Vendor TLVs sent with
 Result TLVs MUST be marked as optional. If the Vendor-Specific TLV
 is marked as mandatory, then it is expected that the receiving side
 needs to recognize the vendor ID, parse all Vendor TLVs within, and
 deal with error handling within the Vendor-Specific TLV as defined by
 the vendor.

 The Vendor-Specific TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Vendor-Id |
 +-+
 | Vendor TLVs....
 +-+

 M

 0 or 1

 R

 Reserved, set to zero (0)

 TLV Type

 7 - Vendor-Specific TLV

 Length

 4 + cumulative length of all included Vendor TLVs

 Vendor-Id

Zhou, et al. Standards Track [Page 37]

RFC 7170 TEAP May 2014

 The Vendor-Id field is four octets and contains the Vendor-Id of
 the TLV. The high-order octet is 0, and the low-order 3 octets
 are the SMI Network Management Private Enterprise Number of the
 Vendor in network byte order.

 Vendor TLVs

 This field is of indefinite length. It contains Vendor-Specific
 TLVs, in a format defined by the vendor.

4.2.9. Request-Action TLV

 The Request-Action TLV MAY be sent by both the peer and the server in
 response to a successful or failed Result TLV. It allows the peer or
 server to request the other side to negotiate additional EAP methods
 or process TLVs specified in the response packet. The receiving side
 MUST process this TLV. The processing for the TLV is as follows:

 The receiving entity MAY choose to process any of the TLVs that
 are included in the message.

 If the receiving entity chooses NOT to process any TLV in the
 list, then it sends back a Result TLV with the same code in the
 Status field of the Request-Action TLV.

 If multiple Request-Action TLVs are in the request, the session
 can continue if any of the TLVs in any Request-Action TLV are
 processed.

 If multiple Request-Action TLVs are in the request and none of
 them is processed, then the most fatal status should be used in
 the Result TLV returned. If a status code in the Request-Action
 TLV is not understood by the receiving entity, then it should be
 treated as a fatal error.

 After processing the TLVs or EAP method in the request, another
 round of Result TLV exchange would occur to synchronize the final
 status on both sides.

 The peer or the server MAY send multiple Request-Action TLVs to the
 other side. Two Request-Action TLVs MUST NOT occur in the same TEAP
 packet if they have the same Status value. The order of processing
 multiple Request-Action TLVs is implementation dependent. If the
 receiving side processes the optional (non-fatal) items first, it is
 possible that the fatal items will disappear at a later time. If the
 receiving side processes the fatal items first, the communication
 time will be shorter.

Zhou, et al. Standards Track [Page 38]

RFC 7170 TEAP May 2014

 The peer or the server MAY return a new set of Request-Action TLVs
 after one or more of the requested items has been processed and the
 other side has signaled it wants to end the EAP conversation.

 The Request-Action TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Status | Action | TLVs....
 +--+-+-+-+-+-+-+-+-+-+-+-+-

 M

 Mandatory, set to one (1)

 R

 Reserved, set to zero (0)

 TLV Type

 8 - Request-Action TLV

 Length

 2 + cumulative length of all included TLVs

 Status

 The Status field is one octet. This indicates the result if the
 server does not process the action requested by the peer. Values
 include:

 1 Success

 2 Failure

 Action

 The Action field is one octet. Values include:

 1 Process-TLV

 2 Negotiate-EAP

Zhou, et al. Standards Track [Page 39]

RFC 7170 TEAP May 2014

 TLVs

 This field is of indefinite length. It contains TLVs that the
 peer wants the server to process.

4.2.10. EAP-Payload TLV

 To allow piggybacking an EAP request or response with other TLVs, the
 EAP-Payload TLV is defined, which includes an encapsulated EAP packet
 and a list of optional TLVs. The optional TLVs are provided for
 future extensibility to provide hints about the current EAP
 authentication. Only one EAP-Payload TLV is allowed in a message.
 The EAP-Payload TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | EAP packet...
 +-+
 | TLVs...
 +-+

 M

 Mandatory, set to one (1)

 R

 Reserved, set to zero (0)

 TLV Type

 9 - EAP-Payload TLV

 Length

 length of embedded EAP packet + cumulative length of additional
 TLVs

 EAP packet

 This field contains a complete EAP packet, including the EAP
 header (Code, Identifier, Length, Type) fields. The length of
 this field is determined by the Length field of the encapsulated
 EAP packet.

Zhou, et al. Standards Track [Page 40]

RFC 7170 TEAP May 2014

 TLVs

 This (optional) field contains a list of TLVs associated with the
 EAP packet field. The TLVs MUST NOT have the mandatory bit set.
 The total length of this field is equal to the Length field of the
 EAP-Payload TLV, minus the Length field in the EAP header of the
 EAP packet field.

4.2.11. Intermediate-Result TLV

 The Intermediate-Result TLV provides support for acknowledged
 intermediate Success and Failure messages between multiple inner EAP
 methods within EAP. An Intermediate-Result TLV indicating success
 MUST be accompanied by a Crypto-Binding TLV. The optional TLVs
 associated with this TLV are provided for future extensibility to
 provide hints about the current result. The Intermediate-Result TLV
 is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Status | TLVs...
 +-+

 M

 Mandatory, set to one (1)

 R

 Reserved, set to zero (0)

 TLV Type

 10 - Intermediate-Result TLV

 Length

 2 + cumulative length of the embedded associated TLVs

 Status

 The Status field is two octets. Values include:

 1 Success

Zhou, et al. Standards Track [Page 41]

RFC 7170 TEAP May 2014

 2 Failure

 TLVs

 This field is of indeterminate length and contains zero or more of
 the TLVs associated with the Intermediate Result TLV. The TLVs in
 this field MUST NOT have the mandatory bit set.

4.2.12. PAC TLV Format

 The PAC TLV provides support for provisioning the Protected Access
 Credential (PAC). The PAC TLV carries the PAC and related
 information within PAC attribute fields. Additionally, the PAC TLV
 MAY be used by the peer to request provisioning of a PAC of the type
 specified in the PAC-Type PAC attribute. The PAC TLV MUST only be
 used in a protected tunnel providing encryption and integrity
 protection. A general PAC TLV format is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | PAC Attributes...
 +-+

 M

 0 or 1

 R

 Reserved, set to zero (0)

 TLV Type

 11 - PAC TLV

 Length

 Two octets containing the length of the PAC Attributes field in
 octets.

 PAC Attributes

 A list of PAC attributes in the TLV format.

Zhou, et al. Standards Track [Page 42]

RFC 7170 TEAP May 2014

4.2.12.1. Formats for PAC Attributes

 Each PAC attribute in a PAC TLV is formatted as a TLV defined as
 follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Value...
 +-+

 Type

 The Type field is two octets, denoting the attribute type.
 Allocated types include:

 1 - PAC-Key

 2 - PAC-Opaque

 3 - PAC-Lifetime

 4 - A-ID

 5 - I-ID

 6 - Reserved

 7 - A-ID-Info

 8 - PAC-Acknowledgement

 9 - PAC-Info

 10 - PAC-Type

 Length

 Two octets containing the length of the Value field in octets.

 Value

 The value of the PAC attribute.

Zhou, et al. Standards Track [Page 43]

RFC 7170 TEAP May 2014

4.2.12.2. PAC-Key

 The PAC-Key is a secret key distributed in a PAC attribute of type
 PAC-Key. The PAC-Key attribute is included within the PAC TLV
 whenever the server wishes to issue or renew a PAC that is bound to a
 key such as a Tunnel PAC. The key is a randomly generated octet
 string that is 48 octets in length. The generator of this key is the
 issuer of the credential, which is identified by the Authority
 Identifier (A-ID).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | |
 ˜ Key ˜
 | |
 +-+

 Type

 1 - PAC-Key

 Length

 2-octet length indicating the length of the key.

 Key

 The value of the PAC-Key.

4.2.12.3. PAC-Opaque

 The PAC-Opaque attribute is included within the PAC TLV whenever the
 server wishes to issue or renew a PAC.

 The PAC-Opaque is opaque to the peer, and thus the peer MUST NOT
 attempt to interpret it. A peer that has been issued a PAC-Opaque by
 a server stores that data and presents it back to the server
 according to its PAC-Type. The Tunnel PAC is used in the ClientHello
 SessionTicket extension field defined in [RFC5077]. If a peer has
 opaque data issued to it by multiple servers, then it stores the data
 issued by each server separately according to the A-ID. This
 requirement allows the peer to maintain and use each opaque datum as
 an independent PAC pairing, with a PAC-Key mapping to a PAC-Opaque
 identified by the A-ID. As there is a one-to-one correspondence
 between the PAC-Key and PAC-Opaque, the peer determines the PAC-Key

Zhou, et al. Standards Track [Page 44]

RFC 7170 TEAP May 2014

 and corresponding PAC-Opaque based on the A-ID provided in the
 TEAP/Start message and the A-ID provided in the PAC-Info when it was
 provisioned with a PAC-Opaque.

 The PAC-Opaque attribute format is summarized as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Value ...
 +-+

 Type

 2 - PAC-Opaque

 Length

 The Length field is two octets, which contains the length of the
 Value field in octets.

 Value

 The Value field contains the actual data for the PAC-Opaque. It
 is specific to the server implementation.

4.2.12.4. PAC-Info

 The PAC-Info is comprised of a set of PAC attributes as defined in
 Section 4.2.12.1. The PAC-Info attribute MUST contain the A-ID,
 A-ID-Info, and PAC-Type attributes. Other attributes MAY be included
 in the PAC-Info to provide more information to the peer. The
 PAC-Info attribute MUST NOT contain the PAC-Key, PAC-Acknowledgement,
 PAC-Info, or PAC-Opaque attributes. The PAC-Info attribute is
 included within the PAC TLV whenever the server wishes to issue or
 renew a PAC.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Attributes...
 +-+

Zhou, et al. Standards Track [Page 45]

RFC 7170 TEAP May 2014

 Type

 9 - PAC-Info

 Length

 2-octet field containing the length of the Attributes field in
 octets.

 Attributes

 The Attributes field contains a list of PAC attributes. Each
 mandatory and optional field type is defined as follows:

 3 - PAC-Lifetime

 This is a 4-octet quantity representing the expiration time of
 the credential expressed as the number of seconds, excluding
 leap seconds, after midnight UTC, January 1, 1970. This
 attribute MAY be provided to the peer as part of the PAC-Info.

 4 - A-ID

 The A-ID is the identity of the authority that issued the PAC.
 The A-ID is intended to be unique across all issuing servers to
 avoid namespace collisions. The A-ID is used by the peer to
 determine which PAC to employ. The A-ID is treated as an
 opaque octet string. This attribute MUST be included in the
 PAC-Info attribute. The A-ID MUST match the Authority-ID the
 server used to establish the tunnel. One method for generating
 the A-ID is to use a high-quality random number generator to
 generate a random number. An alternate method would be to take
 the hash of the public key or public key certificate belonging
 to a server represented by the A-ID.

 5 - I-ID

 Initiator Identifier (I-ID) is the peer identity associated
 with the credential. This identity is derived from the inner
 authentication or from the client-side authentication during
 tunnel establishment if inner authentication is not used. The
 server employs the I-ID in the TEAP Phase 2 conversation to
 validate that the same peer identity used to execute TEAP Phase
 1 is also used in at minimum one inner authentication in TEAP
 Phase 2. If the server is enforcing the I-ID validation on the
 inner authentication, then the I-ID MUST be included in the
 PAC-Info, to enable the peer to also enforce a unique PAC for
 each unique user. If the I-ID is missing from the PAC-Info, it

Zhou, et al. Standards Track [Page 46]

RFC 7170 TEAP May 2014

 is assumed that the Tunnel PAC can be used for multiple users
 and the peer will not enforce the unique-Tunnel-PAC-per-user
 policy.

 7 - A-ID-Info

 Authority Identifier Information is intended to provide a user-
 friendly name for the A-ID. It may contain the enterprise name
 and server name in a human-readable format. This TLV serves as
 an aid to the peer to better inform the end user about the
 A-ID. The name is encoded in UTF-8 [RFC3629] format. This
 attribute MUST be included in the PAC-Info.

 10 - PAC-Type

 The PAC-Type is intended to provide the type of PAC. This
 attribute SHOULD be included in the PAC-Info. If the PAC-Type
 is not present, then it defaults to a Tunnel PAC (Type 1).

4.2.12.5. PAC-Acknowledgement TLV

 The PAC-Acknowledgement is used to acknowledge the receipt of the
 Tunnel PAC by the peer. The peer includes the PAC-Acknowledgement
 TLV in a PAC TLV sent to the server to indicate the result of the
 processing and storing of a newly provisioned Tunnel PAC. This TLV
 is only used when Tunnel PAC is provisioned.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Result |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Type

 8 - PAC-Acknowledgement

 Length

 The length of this field is two octets containing a value of 2.

 Result

 The resulting value MUST be one of the following:

 1 - Success

Zhou, et al. Standards Track [Page 47]

RFC 7170 TEAP May 2014

 2 - Failure

4.2.12.6. PAC-Type TLV

 The PAC-Type TLV is a TLV intended to specify the PAC-Type. It is
 included in a PAC TLV sent by the peer to request PAC provisioning
 from the server. Its format is described below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | PAC-Type |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Type

 10 - PAC-Type

 Length

 2-octet field with a value of 2.

 PAC-Type

 This 2-octet field defines the type of PAC being requested or
 provisioned. The following values are defined:

 1 - Tunnel PAC

4.2.13. Crypto-Binding TLV

 The Crypto-Binding TLV is used to prove that both the peer and server
 participated in the tunnel establishment and sequence of
 authentications. It also provides verification of the TEAP type,
 version negotiated, and Outer TLVs exchanged before the TLS tunnel
 establishment.

 The Crypto-Binding TLV MUST be exchanged and verified before the
 final Result TLV exchange, regardless of whether there is an inner
 EAP method authentication or not. It MUST be included with the
 Intermediate-Result TLV to perform cryptographic binding after each
 successful EAP method in a sequence of EAP methods, before proceeding
 with another inner EAP method. The Crypto-Binding TLV is valid only
 if the following checks pass:

 o The Crypto-Binding TLV version is supported.

Zhou, et al. Standards Track [Page 48]

RFC 7170 TEAP May 2014

 o The MAC verifies correctly.

 o The received version in the Crypto-Binding TLV matches the version
 sent by the receiver during the EAP version negotiation.

 o The subtype is set to the correct value.

 If any of the above checks fails, then the TLV is invalid. An
 invalid Crypto-Binding TLV is a fatal error and is handled as
 described in Section 3.6.3

 The Crypto-Binding TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Reserved | Version | Received Ver.| Flags|Sub-Type|
 +-+
 | |
 ˜ Nonce ˜
 | |
 +-+
 | |
 ˜ EMSK Compound MAC ˜
 | |
 +-+
 | |
 ˜ MSK Compound MAC ˜
 | |
 +-+

 M

 Mandatory, set to one (1)

 R

 Reserved, set to zero (0)

 TLV Type

 12 - Crypto-Binding TLV

 Length

 76

Zhou, et al. Standards Track [Page 49]

RFC 7170 TEAP May 2014

 Reserved

 Reserved, set to zero (0)

 Version

 The Version field is a single octet, which is set to the version
 of Crypto-Binding TLV the TEAP method is using. For an
 implementation compliant with this version of TEAP, the version
 number MUST be set to one (1).

 Received Ver

 The Received Ver field is a single octet and MUST be set to the
 TEAP version number received during version negotiation. Note
 that this field only provides protection against downgrade
 attacks, where a version of EAP requiring support for this TLV is
 required on both sides.

 Flags

 The Flags field is four bits. Defined values include

 1 EMSK Compound MAC is present

 2 MSK Compound MAC is present

 3 Both EMSK and MSK Compound MAC are present

 Sub-Type

 The Sub-Type field is four bits. Defined values include

 0 Binding Request

 1 Binding Response

 Nonce

 The Nonce field is 32 octets. It contains a 256-bit nonce that is
 temporally unique, used for Compound MAC key derivation at each
 end. The nonce in a request MUST have its least significant bit
 set to zero (0), and the nonce in a response MUST have the same
 value as the request nonce except the least significant bit MUST
 be set to one (1).

Zhou, et al. Standards Track [Page 50]

RFC 7170 TEAP May 2014

 EMSK Compound MAC

 The EMSK Compound MAC field is 20 octets. This can be the Server
 MAC (B1_MAC) or the Client MAC (B2_MAC). The computation of the
 MAC is described in Section 5.3.

 MSK Compound MAC

 The MSK Compound MAC field is 20 octets. This can be the Server
 MAC (B1_MAC) or the Client MAC (B2_MAC). The computation of the
 MAC is described in Section 5.3.

4.2.14. Basic-Password-Auth-Req TLV

 The Basic-Password-Auth-Req TLV is used by the authentication server
 to request a username and password from the peer. It contains an
 optional user prompt message for the request. The peer is expected
 to obtain the username and password and send them in a Basic-
 Password-Auth-Resp TLV.

 The Basic-Password-Auth-Req TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Prompt
 +-+

 M

 0 (Optional)

 R

 Reserved, set to zero (0)

 TLV Type

 13 - Basic-Password-Auth-Req TLV

 Length

 variable

Zhou, et al. Standards Track [Page 51]

RFC 7170 TEAP May 2014

 Prompt

 optional user prompt message in UTF-8 [RFC3629] format

4.2.15. Basic-Password-Auth-Resp TLV

 The Basic-Password-Auth-Resp TLV is used by the peer to respond to a
 Basic-Password-Auth-Req TLV with a username and password. The TLV
 contains a username and password. The username and password are in
 UTF-8 [RFC3629] format.

 The Basic-Password-Auth-Resp TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Userlen | Username
 +-+
 ... Username ...
 +-+
 | Passlen | Password
 +-+
 ... Password ...
 +-+

 M

 0 (Optional)

 R

 Reserved, set to zero (0)

 TLV Type

 14 - Basic-Password-Auth-Resp TLV

 Length

 variable

 Userlen

 Length of Username field in octets

Zhou, et al. Standards Track [Page 52]

RFC 7170 TEAP May 2014

 Username

 Username in UTF-8 [RFC3629] format

 Passlen

 Length of Password field in octets

 Password

 Password in UTF-8 [RFC3629] format

4.2.16. PKCS#7 TLV

 The PKCS#7 TLV is used by the EAP server to deliver certificate(s) to
 the peer. The format consists of a certificate or certificate chain
 in binary DER encoding [X.690] in a degenerate Certificates Only
 PKCS#7 SignedData Content as defined in [RFC5652].

 When used in response to a Trusted-Server-Root TLV request from the
 peer, the EAP server MUST send the PKCS#7 TLV inside a Trusted-
 Server-Root TLV. When used in response to a PKCS#10 certificate
 enrollment request from the peer, the EAP server MUST send the PKCS#7
 TLV without a Trusted-Server-Root TLV. The PKCS#7 TLV is always
 marked as optional, which cannot be responded to with a NAK TLV.
 TEAP implementations that support the Trusted-Server-Root TLV or the
 PKCS#10 TLV MUST support this TLV. Peers MUST NOT assume that the
 certificates in a PKCS#7 TLV are in any order.

 TEAP servers MAY return self-signed certificates. Peers that handle
 self-signed certificates or trust anchors MUST NOT implicitly trust
 these certificates merely due to their presence in the certificate
 bag. Note: Peers are advised to take great care in deciding whether
 to use a received certificate as a trust anchor. The authenticated
 nature of the tunnel in which a PKCS#7 bag is received can provide a
 level of authenticity to the certificates contained therein. Peers
 are advised to take into account the implied authority of the EAP
 server and to constrain the trust it can achieve through the trust
 anchor received in a PKCS#7 TLV.

Zhou, et al. Standards Track [Page 53]

RFC 7170 TEAP May 2014

 The PKCS#7 TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | PKCS#7 Data...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

 M

 0 - Optional TLV

 R

 Reserved, set to zero (0)

 TLV Type

 15 - PKCS#7 TLV

 Length

 The length of the PKCS#7 Data field.

 PKCS#7 Data

 This field contains the DER-encoded X.509 certificate or
 certificate chain in a Certificates-Only PKCS#7 SignedData
 message.

4.2.17. PKCS#10 TLV

 The PKCS#10 TLV is used by the peer to initiate the "simple PKI"
 Request/Response from [RFC5272]. The format of the request is as
 specified in Section 6.4 of [RFC4945]. The PKCS#10 TLV is always
 marked as optional, which cannot be responded to with a NAK TLV.

 The PKCS#10 TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | PKCS#10 Data...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

Zhou, et al. Standards Track [Page 54]

RFC 7170 TEAP May 2014

 M

 0 - Optional TLV

 R

 Reserved, set to zero (0)

 TLV Type

 16 - PKCS#10 TLV

 Length

 The length of the PKCS#10 Data field.

 PKCS#10 Data

 This field contains the DER-encoded PKCS#10 certificate request.

4.2.18. Trusted-Server-Root TLV

 Trusted-Server-Root TLV facilitates the request and delivery of a
 trusted server root certificate. The Trusted-Server-Root TLV can be
 exchanged in regular TEAP authentication mode or provisioning mode.
 The Trusted-Server-Root TLV is always marked as optional and cannot
 be responded to with a Negative Acknowledgement (NAK) TLV. The
 Trusted-Server-Root TLV MUST only be sent as an Inner TLV (inside the
 protection of the tunnel).

 After the peer has determined that it has successfully authenticated
 the EAP server and validated the Crypto-Binding TLV, it MAY send one
 or more Trusted-Server-Root TLVs (marked as optional) to request the
 trusted server root certificates from the EAP server. The EAP server
 MAY send one or more root certificates with a Public Key
 Cryptographic System #7 (PKCS#7) TLV inside the Trusted-Server-Root
 TLV. The EAP server MAY also choose not to honor the request.

 The Trusted-Server-Root TLV allows the peer to send a request to the
 EAP server for a list of trusted roots. The server may respond with
 one or more root certificates in PKCS#7 [RFC2315] format.

 If the EAP server sets the credential format to PKCS#7-Server-
 Certificate-Root, then the Trusted-Server-Root TLV should contain the
 root of the certificate chain of the certificate issued to the EAP
 server packaged in a PKCS#7 TLV. If the server certificate is a
 self-signed certificate, then the root is the self-signed
 certificate.

Zhou, et al. Standards Track [Page 55]

RFC 7170 TEAP May 2014

 If the Trusted-Server-Root TLV credential format contains a value
 unknown to the peer, then the EAP peer should ignore the TLV.

 The Trusted-Server-Root TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Credential-Format | Cred TLVs...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

 M

 0 - Optional TLV

 R

 Reserved, set to zero (0)

 TLV Type

 17 - Trusted-Server-Root TLV

 Length

 >=2 octets

 Credential-Format

 The Credential-Format field is two octets. Values include:

 1 - PKCS#7-Server-Certificate-Root

 Cred TLVs

 This field is of indefinite length. It contains TLVs associated
 with the credential format. The peer may leave this field empty
 when using this TLV to request server trust roots.

4.3. TLV Rules

 To save round trips, multiple TLVs can be sent in a single TEAP
 packet. However, multiple EAP Payload TLVs, multiple Basic Password
 Authentication TLVs, or an EAP Payload TLV with a Basic Password
 Authentication TLV within one single TEAP packet is not supported in
 this version and MUST NOT be sent. If the peer or EAP server

Zhou, et al. Standards Track [Page 56]

RFC 7170 TEAP May 2014

 receives multiple EAP Payload TLVs, then it MUST terminate the
 connection with the Result TLV. The order of TLVs in TEAP does not
 matter, except one should always process the Identity-Type TLV before
 processing the EAP TLV or Basic Password Authentication TLV as the
 Identity-Type TLV is a hint to the type of identity that is to be
 authenticated.

 The following define the meaning of the table entries in the sections
 below:

 0 This TLV MUST NOT be present in the message.

 0+ Zero or more instances of this TLV MAY be present in the
 message.

 0-1 Zero or one instance of this TLV MAY be present in the message.

 1 Exactly one instance of this TLV MUST be present in the
 message.

4.3.1. Outer TLVs

 The following table provides a guide to which TLVs may be included in
 the TEAP packet outside the TLS channel, which kind of packets, and
 in what quantity:

 Request Response Success Failure TLVs
 0-1 0 0 0 Authority-ID
 0-1 0-1 0 0 Identity-Type
 0+ 0+ 0 0 Vendor-Specific

 Outer TLVs MUST be marked as optional. Vendor-TLVs inside Vendor-
 Specific TLV MUST be marked as optional when included in Outer TLVs.
 Outer TLVs MUST NOT be included in messages after the first two TEAP
 messages sent by peer and EAP-server respectively. That is the first
 EAP-server-to-peer message and first peer-to-EAP-server message. If
 the message is fragmented, the whole set of messages is counted as
 one message. If Outer TLVs are included in messages after the first
 two TEAP messages, they MUST be ignored.

4.3.2. Inner TLVs

 The following table provides a guide to which Inner TLVs may be
 encapsulated in TLS in TEAP Phase 2, in which kind of packets, and in
 what quantity. The messages are as follows: Request is a TEAP
 Request, Response is a TEAP Response, Success is a message containing
 a successful Result TLV, and Failure is a message containing a failed
 Result TLV.

Zhou, et al. Standards Track [Page 57]

RFC 7170 TEAP May 2014

 Request Response Success Failure TLVs
 0-1 0-1 0 0 Identity-Type
 0-1 0-1 1 1 Result
 0+ 0+ 0 0 NAK
 0+ 0+ 0+ 0+ Error
 0-1 0-1 0 0 Channel-Binding
 0+ 0+ 0+ 0+ Vendor-Specific
 0+ 0+ 0+ 0+ Request-Action
 0-1 0-1 0 0 EAP-Payload
 0-1 0-1 0-1 0-1 Intermediate-Result
 0+ 0+ 0+ 0 PAC TLV
 0-1 0-1 0-1 0-1 Crypto-Binding
 0-1 0 0 0 Basic-Password-Auth-Req
 0 0-1 0 0 Basic-Password-Auth-Resp
 0-1 0 0-1 0 PKCS#7
 0 0-1 0 0 PKCS#10
 0-1 0-1 0-1 0 Trusted-Server-Root

 NOTE: Vendor TLVs (included in Vendor-Specific TLVs) sent with a
 Result TLV MUST be marked as optional.

5. Cryptographic Calculations

 For key derivation and crypto-binding, TEAP uses the Pseudorandom
 Function (PRF) and MAC algorithms negotiated in the underlying TLS
 session. Since these algorithms depend on the TLS version and
 ciphersuite, TEAP implementations need a mechanism to determine the
 version and ciphersuite in use for a particular session. The
 implementation can then use this information to determine which PRF
 and MAC algorithm to use.

5.1. TEAP Authentication Phase 1: Key Derivations

 With TEAPv1, the TLS master secret is generated as specified in TLS.
 If a PAC is used, then the master secret is obtained as described in
 [RFC5077].

 TEAPv1 makes use of the TLS Keying Material Exporters defined in
 [RFC5705] to derive the session_key_seed. The label used in the
 derivation is "EXPORTER: teap session key seed". The length of the
 session key seed material is 40 octets. No context data is used in
 the export process.

 The session_key_seed is used by the TEAP authentication Phase 2
 conversation to both cryptographically bind the inner method(s) to
 the tunnel as well as generate the resulting TEAP session keys. The
 other TLS keying materials are derived and used as defined in
 [RFC5246].

Zhou, et al. Standards Track [Page 58]

RFC 7170 TEAP May 2014

5.2. Intermediate Compound Key Derivations

 The session_key_seed derived as part of TEAP Phase 2 is used in TEAP
 Phase 2 to generate an Intermediate Compound Key (IMCK) used to
 verify the integrity of the TLS tunnel after each successful inner
 authentication and in the generation of Master Session Key (MSK) and
 Extended Master Session Key (EMSK) defined in [RFC3748]. Note that
 the IMCK MUST be recalculated after each successful inner EAP method.

 The first step in these calculations is the generation of the base
 compound key, IMCK[n] from the session_key_seed, and any session keys
 derived from the successful execution of nth inner EAP methods. The
 inner EAP method(s) may provide Inner Method Session Keys (IMSKs),
 IMSK1..IMSKn, corresponding to inner method 1 through n.

 If an inner method supports export of an Extended Master Session Key
 (EMSK), then the IMSK SHOULD be derived from the EMSK as defined in
 [RFC5295]. The usage label used is "TEAPbindkey@ietf.org", and the
 length is 64 octets. Optional data parameter is not used in the
 derivation.

 IMSK = First 32 octets of TLS-PRF(EMSK, "TEAPbindkey@ietf.org" |
 "\0" | 64)

 where "|" denotes concatenation, EMSK is the EMSK from the inner
 method, "TEAPbindkey@ietf.org" consists the ASCII value for the
 label "TEAPbindkey@ietf.org" (without quotes), "\0" = is a NULL
 octet (0x00 in hex), length is the 2-octet unsigned integer in
 network byte order, and TLS-PRF is the PRF negotiated as part of
 TLS handshake [RFC5246].

 If an inner method does not support export of an Extended Master
 Session Key (EMSK), then IMSK is the MSK of the inner method. The
 MSK is truncated at 32 octets if it is longer than 32 octets or
 padded to a length of 32 octets with zeros if it is less than 32
 octets.

 However, it’s possible that the peer and server sides might not have
 the same capability to export EMSK. In order to maintain maximum
 flexibility while prevent downgrading attack, the following mechanism
 is in place.

 On the sender of the Crypto-Binding TLV side:

 If the EMSK is not available, then the sender computes the Compound
 MAC using the MSK of the inner method.

Zhou, et al. Standards Track [Page 59]

RFC 7170 TEAP May 2014

 If the EMSK is available and the sender’s policy accepts MSK-based
 MAC, then the sender computes two Compound MAC values. The first
 is computed with the EMSK. The second one is computed using the
 MSK. Both MACs are then sent to the other side.

 If the EMSK is available but the sender’s policy does not allow
 downgrading to MSK-generated MAC, then the sender SHOULD only send
 EMSK-based MAC.

 On the receiver of the Crypto-Binding TLV side:

 If the EMSK is not available and an MSK-based Compound MAC was
 sent, then the receiver validates the Compound MAC and sends back
 an MSK-based Compound MAC response.

 If the EMSK is not available and no MSK-based Compound MAC was
 sent, then the receiver handles like an invalid Crypto-Binding TLV
 with a fatal error.

 If the EMSK is available and an EMSK-based Compound MAC was sent,
 then the receiver validates it and creates a response Compound MAC
 using the EMSK.

 If the EMSK is available but no EMSK-based Compound MAC was sent
 and its policy accepts MSK-based MAC, then the receiver validates
 it using the MSK and, if successful, generates and returns an MSK-
 based Compound MAC.

 If the EMSK is available but no EMSK Compound MAC was sent and its
 policy does not accept MSK-based MAC, then the receiver handles
 like an invalid Crypto-Binding TLV with a fatal error.

 If the ith inner method does not generate an EMSK or MSK, then IMSKi
 is set to zero (e.g., MSKi = 32 octets of 0x00s). If an inner method
 fails, then it is not included in this calculation. The derivation
 of S-IMCK is as follows:

 S-IMCK[0] = session_key_seed
 For j = 1 to n-1 do
 IMCK[j] = TLS-PRF(S-IMCK[j-1], "Inner Methods Compound Keys",
 IMSK[j], 60)
 S-IMCK[j] = first 40 octets of IMCK[j]
 CMK[j] = last 20 octets of IMCK[j]

 where TLS-PRF is the PRF negotiated as part of TLS handshake
 [RFC5246].

Zhou, et al. Standards Track [Page 60]

RFC 7170 TEAP May 2014

5.3. Computing the Compound MAC

 For authentication methods that generate keying material, further
 protection against man-in-the-middle attacks is provided through
 cryptographically binding keying material established by both TEAP
 Phase 1 and TEAP Phase 2 conversations. After each successful inner
 EAP authentication, EAP EMSK and/or MSKs are cryptographically
 combined with key material from TEAP Phase 1 to generate a Compound
 Session Key (CMK). The CMK is used to calculate the Compound MAC as
 part of the Crypto-Binding TLV described in Section 4.2.13, which
 helps provide assurance that the same entities are involved in all
 communications in TEAP. During the calculation of the Compound MAC,
 the MAC field is filled with zeros.

 The Compound MAC computation is as follows:

 CMK = CMK[j]
 Compound-MAC = MAC(CMK, BUFFER)

 where j is the number of the last successfully executed inner EAP
 method, MAC is the MAC function negotiated in TLS 1.2 [RFC5246], and
 BUFFER is created after concatenating these fields in the following
 order:

 1 The entire Crypto-Binding TLV attribute with both the EMSK and MSK
 Compound MAC fields zeroed out.

 2 The EAP Type sent by the other party in the first TEAP message.

 3 All the Outer TLVs from the first TEAP message sent by EAP server
 to peer. If a single TEAP message is fragmented into multiple
 TEAP packets, then the Outer TLVs in all the fragments of that
 message MUST be included.

 4 All the Outer TLVs from the first TEAP message sent by the peer to
 the EAP server. If a single TEAP message is fragmented into
 multiple TEAP packets, then the Outer TLVs in all the fragments of
 that message MUST be included.

5.4. EAP Master Session Key Generation

 TEAP authentication assures the Master Session Key (MSK) and Extended
 Master Session Key (EMSK) output from the EAP method are the result
 of all authentication conversations by generating an Intermediate
 Compound Key (IMCK). The IMCK is mutually derived by the peer and
 the server as described in Section 5.2 by combining the MSKs from

Zhou, et al. Standards Track [Page 61]

RFC 7170 TEAP May 2014

 inner EAP methods with key material from TEAP Phase 1. The resulting
 MSK and EMSK are generated as part of the IMCKn key hierarchy as
 follows:

 MSK = TLS-PRF(S-IMCK[j], "Session Key Generating Function", 64)
 EMSK = TLS-PRF(S-IMCK[j],
 "Extended Session Key Generating Function", 64)

 where j is the number of the last successfully executed inner EAP
 method.

 The EMSK is typically only known to the TEAP peer and server and is
 not provided to a third party. The derivation of additional keys and
 transportation of these keys to a third party are outside the scope
 of this document.

 If no EAP methods have been negotiated inside the tunnel or no EAP
 methods have been successfully completed inside the tunnel, the MSK
 and EMSK will be generated directly from the session_key_seed meaning
 S-IMCK = session_key_seed.

6. IANA Considerations

 This section provides guidance to the Internet Assigned Numbers
 Authority (IANA) regarding registration of values related to the TEAP
 protocol, in accordance with BCP 26 [RFC5226].

 The EAP Method Type number 55 has been assigned for TEAP.

 The document defines a registry for TEAP TLV types, which may be
 assigned by Specification Required as defined in [RFC5226].
 Section 4.2 defines the TLV types that initially populate the
 registry. A summary of the TEAP TLV types is given below:

 0 Unassigned

 1 Authority-ID TLV

 2 Identity-Type TLV

 3 Result TLV

 4 NAK TLV

 5 Error TLV

 6 Channel-Binding TLV

Zhou, et al. Standards Track [Page 62]

RFC 7170 TEAP May 2014

 7 Vendor-Specific TLV

 8 Request-Action TLV

 9 EAP-Payload TLV

 10 Intermediate-Result TLV

 11 PAC TLV

 12 Crypto-Binding TLV

 13 Basic-Password-Auth-Req TLV

 14 Basic-Password-Auth-Resp TLV

 15 PKCS#7 TLV

 16 PKCS#10 TLV

 17 Trusted-Server-Root TLV

 The Identity-Type defined in Section 4.2.3 contains an identity type
 code that is assigned on a Specification Required basis as defined in
 [RFC5226]. The initial types defined are:

 1 User

 2 Machine

 The Result TLV defined in Section 4.2.4, Request-Action TLV defined
 in Section 4.2.9, and Intermediate-Result TLV defined in
 Section 4.2.11 contain a Status code that is assigned on a
 Specification Required basis as defined in [RFC5226]. The initial
 types defined are:

 1 Success

 2 Failure

 The Error-TLV defined in Section 4.2.6 requires an error code. TEAP
 Error-TLV error codes are assigned based on a Specification Required
 basis as defined in [RFC5226]. The initial list of error codes is as
 follows:

 1 User account expires soon

 2 User account credential expires soon

Zhou, et al. Standards Track [Page 63]

RFC 7170 TEAP May 2014

 3 User account authorizations change soon

 4 Clock skew detected

 5 Contact administrator

 6 User account credentials change required

 1001 Inner Method Error

 1002 Unspecified authentication infrastructure problem

 1003 Unspecified authentication failure

 1004 Unspecified authorization failure

 1005 User account credentials unavailable

 1006 User account expired

 1007 User account locked: try again later

 1008 User account locked: admin intervention required

 1009 Authentication infrastructure unavailable

 1010 Authentication infrastructure not trusted

 1011 Clock skew too great

 1012 Invalid inner realm

 1013 Token out of sync: administrator intervention required

 1014 Token out of sync: PIN change required

 1015 Token revoked

 1016 Tokens exhausted

 1017 Challenge expired

 1018 Challenge algorithm mismatch

 1019 Client certificate not supplied

 1020 Client certificate rejected

Zhou, et al. Standards Track [Page 64]

RFC 7170 TEAP May 2014

 1021 Realm mismatch between inner and outer identity

 1022 Unsupported Algorithm In Certificate Signing Request

 1023 Unsupported Extension In Certificate Signing Request

 1024 Bad Identity In Certificate Signing Request

 1025 Bad Certificate Signing Request

 1026 Internal CA Error

 1027 General PKI Error

 1028 Inner method’s channel-binding data required but not supplied

 1029 Inner method’s channel-binding data did not include required
 information

 1030 Inner method’s channel binding failed

 1031 User account credentials incorrect [USAGE NOT RECOMMENDED]

 2001 Tunnel Compromise Error

 2002 Unexpected TLVs Exchanged

 The Request-Action TLV defined in Section 4.2.9 contains an action
 code that is assigned on a Specification Required basis as defined in
 [RFC5226]. The initial actions defined are:

 1 Process-TLV

 2 Negotiate-EAP

 The PAC Attribute defined in Section 4.2.12.1 contains a Type code
 that is assigned on a Specification Required basis as defined in
 [RFC5226]. The initial types defined are:

 1 PAC-Key

 2 PAC-Opaque

 3 PAC-Lifetime

 4 A-ID

 5 I-ID

Zhou, et al. Standards Track [Page 65]

RFC 7170 TEAP May 2014

 6 Reserved

 7 A-ID-Info

 8 PAC-Acknowledgement

 9 PAC-Info

 10 PAC-Type

 The PAC-Type defined in Section 4.2.12.6 contains a type code that is
 assigned on a Specification Required basis as defined in [RFC5226].
 The initial type defined is:

 1 Tunnel PAC

 The Trusted-Server-Root TLV defined in Section 4.2.18 contains a
 Credential-Format code that is assigned on a Specification Required
 basis as defined in [RFC5226]. The initial type defined is:

 1 PKCS#7-Server-Certificate-Root

 The various values under the Vendor-Specific TLV are assigned by
 Private Use and do not need to be assigned by IANA.

 TEAP registers the label "EXPORTER: teap session key seed" in the TLS
 Exporter Label Registry [RFC5705]. This label is used in derivation
 as defined in Section 5.1.

 TEAP registers a TEAP binding usage label from the "User Specific
 Root Keys (USRK) Key Labels" name space defined in [RFC5295] with a
 value "TEAPbindkey@ietf.org".

7. Security Considerations

 TEAP is designed with a focus on wireless media, where the medium
 itself is inherent to eavesdropping. Whereas in wired media an
 attacker would have to gain physical access to the wired medium,
 wireless media enables anyone to capture information as it is
 transmitted over the air, enabling passive attacks. Thus, physical
 security can not be assumed, and security vulnerabilities are far
 greater. The threat model used for the security evaluation of TEAP
 is defined in EAP [RFC3748].

Zhou, et al. Standards Track [Page 66]

RFC 7170 TEAP May 2014

7.1. Mutual Authentication and Integrity Protection

 As a whole, TEAP provides message and integrity protection by
 establishing a secure tunnel for protecting the authentication
 method(s). The confidentiality and integrity protection is defined
 by TLS and provides the same security strengths afforded by TLS
 employing a strong entropy shared master secret. The integrity of
 the key generating authentication methods executed within the TEAP
 tunnel is verified through the calculation of the Crypto-Binding TLV.
 This ensures that the tunnel endpoints are the same as the inner
 method endpoints.

 The Result TLV is protected and conveys the true Success or Failure
 of TEAP, and it should be used as the indicator of its success or
 failure respectively. However, as EAP terminates with either a
 cleartext EAP Success or Failure, a peer will also receive a
 cleartext EAP Success or Failure. The received cleartext EAP Success
 or Failure MUST match that received in the Result TLV; the peer
 SHOULD silently discard those cleartext EAP Success or Failure
 messages that do not coincide with the status sent in the protected
 Result TLV.

7.2. Method Negotiation

 As is true for any negotiated EAP protocol, NAK packets used to
 suggest an alternate authentication method are sent unprotected and,
 as such, are subject to spoofing. During unprotected EAP method
 negotiation, NAK packets may be interjected as active attacks to
 negotiate down to a weaker form of authentication, such as EAP-MD5
 (which only provides one-way authentication and does not derive a
 key). Both the peer and server should have a method selection policy
 that prevents them from negotiating down to weaker methods. Inner
 method negotiation resists attacks because it is protected by the
 mutually authenticated TLS tunnel established. Selection of TEAP as
 an authentication method does not limit the potential inner
 authentication methods, so TEAP should be selected when available.

 An attacker cannot readily determine the inner EAP method used,
 except perhaps by traffic analysis. It is also important that peer
 implementations limit the use of credentials with an unauthenticated
 or unauthorized server.

7.3. Separation of Phase 1 and Phase 2 Servers

 Separation of the TEAP Phase 1 from the Phase 2 conversation is NOT
 RECOMMENDED. Allowing the Phase 1 conversation to be terminated at a
 different server than the Phase 2 conversation can introduce
 vulnerabilities if there is not a proper trust relationship and

Zhou, et al. Standards Track [Page 67]

RFC 7170 TEAP May 2014

 protection for the protocol between the two servers. Some
 vulnerabilities include:

 o Loss of identity protection

 o Offline dictionary attacks

 o Lack of policy enforcement

 o Man-in-the-middle attacks (as described in [RFC7029])

 There may be cases where a trust relationship exists between the
 Phase 1 and Phase 2 servers, such as on a campus or between two
 offices within the same company, where there is no danger in
 revealing the inner identity and credentials of the peer to entities
 between the two servers. In these cases, using a proxy solution
 without end-to-end protection of TEAP MAY be used. The TEAP
 encrypting/decrypting gateway MUST, at a minimum, provide support for
 IPsec, TLS, or similar protection in order to provide confidentiality
 for the portion of the conversation between the gateway and the EAP
 server. In addition, separation of the inner and outer method
 servers allows for crypto-binding based on the inner method MSK to be
 thwarted as described in [RFC7029]. Implementation and deployment
 SHOULD adopt various mitigation strategies described in [RFC7029].
 If the inner method is deriving EMSK, then this threat is mitigated
 as TEAP utilizes the mutual crypto-binding based on EMSK as described
 in [RFC7029].

7.4. Mitigation of Known Vulnerabilities and Protocol Deficiencies

 TEAP addresses the known deficiencies and weaknesses in the EAP
 method. By employing a shared secret between the peer and server to
 establish a secured tunnel, TEAP enables:

 o Per-packet confidentiality and integrity protection

 o User identity protection

 o Better support for notification messages

 o Protected EAP inner method negotiation

 o Sequencing of EAP methods

 o Strong mutually derived MSKs

 o Acknowledged success/failure indication

Zhou, et al. Standards Track [Page 68]

RFC 7170 TEAP May 2014

 o Faster re-authentications through session resumption

 o Mitigation of dictionary attacks

 o Mitigation of man-in-the-middle attacks

 o Mitigation of some denial-of-service attacks

 It should be noted that in TEAP, as in many other authentication
 protocols, a denial-of-service attack can be mounted by adversaries
 sending erroneous traffic to disrupt the protocol. This is a problem
 in many authentication or key agreement protocols and is therefore
 noted for TEAP as well.

 TEAP was designed with a focus on protected authentication methods
 that typically rely on weak credentials, such as password-based
 secrets. To that extent, the TEAP authentication mitigates several
 vulnerabilities, such as dictionary attacks, by protecting the weak
 credential-based authentication method. The protection is based on
 strong cryptographic algorithms in TLS to provide message
 confidentiality and integrity. The keys derived for the protection
 relies on strong random challenges provided by both peer and server
 as well as an established key with strong entropy. Implementations
 should follow the recommendation in [RFC4086] when generating random
 numbers.

7.4.1. User Identity Protection and Verification

 The initial identity request response exchange is sent in cleartext
 outside the protection of TEAP. Typically, the Network Access
 Identifier (NAI) [RFC4282] in the identity response is useful only
 for the realm of information that is used to route the authentication
 requests to the right EAP server. This means that the identity
 response may contain an anonymous identity and just contain realm
 information. In other cases, the identity exchange may be eliminated
 altogether if there are other means for establishing the destination
 realm of the request. In no case should an intermediary place any
 trust in the identity information in the identity response since it
 is unauthenticated and may not have any relevance to the
 authenticated identity. TEAP implementations should not attempt to
 compare any identity disclosed in the initial cleartext EAP Identity
 response packet with those Identities authenticated in Phase 2.

 Identity request/response exchanges sent after the TEAP tunnel is
 established are protected from modification and eavesdropping by
 attackers.

Zhou, et al. Standards Track [Page 69]

RFC 7170 TEAP May 2014

 Note that since TLS client certificates are sent in the clear, if
 identity protection is required, then it is possible for the TLS
 authentication to be renegotiated after the first server
 authentication. To accomplish this, the server will typically not
 request a certificate in the server_hello; then, after the
 server_finished message is sent and before TEAP Phase 2, the server
 MAY send a TLS hello_request. This allows the peer to perform client
 authentication by sending a client_hello if it wants to or send a
 no_renegotiation alert to the server indicating that it wants to
 continue with TEAP Phase 2 instead. Assuming that the peer permits
 renegotiation by sending a client_hello, then the server will respond
 with server_hello, certificate, and certificate_request messages.
 The peer replies with certificate, client_key_exchange, and
 certificate_verify messages. Since this renegotiation occurs within
 the encrypted TLS channel, it does not reveal client certificate
 details. It is possible to perform certificate authentication using
 an EAP method (for example, EAP-TLS) within the TLS session in TEAP
 Phase 2 instead of using TLS handshake renegotiation.

7.4.2. Dictionary Attack Resistance

 TEAP was designed with a focus on protected authentication methods
 that typically rely on weak credentials, such as password-based
 secrets. TEAP mitigates dictionary attacks by allowing the
 establishment of a mutually authenticated encrypted TLS tunnel
 providing confidentiality and integrity to protect the weak
 credential-based authentication method.

7.4.3. Protection against Man-in-the-Middle Attacks

 Allowing methods to be executed both with and without the protection
 of a secure tunnel opens up a possibility of a man-in-the-middle
 attack. To avoid man-in-the-middle attacks it is recommended to
 always deploy authentication methods with the protection of TEAP.
 TEAP provides protection from man-in-the-middle attacks even if a
 deployment chooses to execute inner EAP methods both with and without
 TEAP protection. TEAP prevents this attack in two ways:

 1. By using the PAC-Key to mutually authenticate the peer and server
 during TEAP authentication Phase 1 establishment of a secure
 tunnel.

 2. By using the keys generated by the inner authentication method
 (if the inner methods are key generating) in the crypto-binding
 exchange and in the generation of the key material exported by
 the EAP method described in Section 5.

Zhou, et al. Standards Track [Page 70]

RFC 7170 TEAP May 2014

 TEAP crypto binding does not guarantee man-in-the-middle protection
 if the client allows a connection to an untrusted server, such as in
 the case where the client does not properly validate the server’s
 certificate. If the TLS ciphersuite derives the master secret solely
 from the contribution of secret data from one side of the
 conversation (such as ciphersuites based on RSA key transport), then
 an attacker who can convince the client to connect and engage in
 authentication can impersonate the client to another server even if a
 strong inner method is executed within the tunnel. If the TLS
 ciphersuite derives the master secret from the contribution of
 secrets from both sides of the conversation (such as in ciphersuites
 based on Diffie-Hellman), then crypto binding can detect an attacker
 in the conversation if a strong inner method is used.

7.4.4. PAC Binding to User Identity

 A PAC may be bound to a user identity. A compliant implementation of
 TEAP MUST validate that an identity obtained in the PAC-Opaque field
 matches at minimum one of the identities provided in the TEAP Phase 2
 authentication method. This validation provides another binding to
 ensure that the intended peer (based on identity) has successfully
 completed the TEAP Phase 1 and proved identity in the Phase 2
 conversations.

7.5. Protecting against Forged Cleartext EAP Packets

 EAP Success and EAP Failure packets are, in general, sent in
 cleartext and may be forged by an attacker without detection. Forged
 EAP Failure packets can be used to attempt to convince an EAP peer to
 disconnect. Forged EAP Success packets may be used to attempt to
 convince a peer that authentication has succeeded, even though the
 authenticator has not authenticated itself to the peer.

 By providing message confidentiality and integrity, TEAP provides
 protection against these attacks. Once the peer and authentication
 server (AS) initiate the TEAP authentication Phase 2, compliant TEAP
 implementations MUST silently discard all cleartext EAP messages,
 unless both the TEAP peer and server have indicated success or
 failure using a protected mechanism. Protected mechanisms include
 the TLS alert mechanism and the protected termination mechanism
 described in Section 3.3.3.

 The success/failure decisions within the TEAP tunnel indicate the
 final decision of the TEAP authentication conversation. After a
 success/failure result has been indicated by a protected mechanism,
 the TEAP peer can process unprotected EAP Success and EAP Failure
 messages; however, the peer MUST ignore any unprotected EAP Success

Zhou, et al. Standards Track [Page 71]

RFC 7170 TEAP May 2014

 or Failure messages where the result does not match the result of the
 protected mechanism.

 To abide by [RFC3748], the server sends a cleartext EAP Success or
 EAP Failure packet to terminate the EAP conversation. However, since
 EAP Success and EAP Failure packets are not retransmitted, the final
 packet may be lost. While a TEAP-protected EAP Success or EAP
 Failure packet should not be a final packet in a TEAP conversation,
 it may occur based on the conditions stated above, so an EAP peer
 should not rely upon the unprotected EAP Success and Failure
 messages.

7.6. Server Certificate Validation

 As part of the TLS negotiation, the server presents a certificate to
 the peer. The peer SHOULD verify the validity of the EAP server
 certificate and SHOULD also examine the EAP server name presented in
 the certificate in order to determine whether the EAP server can be
 trusted. When performing server certificate validation,
 implementations MUST provide support for the rules in [RFC5280] for
 validating certificates against a known trust anchor. In addition,
 implementations MUST support matching the realm portion of the peer’s
 NAI against a SubjectAltName of type dNSName within the server
 certificate. However, in certain deployments, this might not be
 turned on. Please note that in the case where the EAP authentication
 is remote, the EAP server will not reside on the same machine as the
 authenticator, and therefore, the name in the EAP server’s
 certificate cannot be expected to match that of the intended
 destination. In this case, a more appropriate test might be whether
 the EAP server’s certificate is signed by a certification authority
 (CA) controlling the intended domain and whether the authenticator
 can be authorized by a server in that domain.

7.7. Tunnel PAC Considerations

 Since the Tunnel PAC is stored by the peer, special care should be
 given to the overall security of the peer. The Tunnel PAC MUST be
 securely stored by the peer to prevent theft or forgery of any of the
 Tunnel PAC components. In particular, the peer MUST securely store
 the PAC-Key and protect it from disclosure or modification.
 Disclosure of the PAC-Key enables an attacker to establish the TEAP
 tunnel; however, disclosure of the PAC-Key does not reveal the peer
 or server identity or compromise any other peer’s PAC credentials.
 Modification of the PAC-Key or PAC-Opaque components of the Tunnel
 PAC may also lead to denial of service as the tunnel establishment
 will fail. The PAC-Opaque component is the effective TLS ticket
 extension used to establish the tunnel using the techniques of
 [RFC5077]. Thus, the security considerations defined by [RFC5077]

Zhou, et al. Standards Track [Page 72]

RFC 7170 TEAP May 2014

 also apply to the PAC-Opaque. The PAC-Info may contain information
 about the Tunnel PAC such as the identity of the PAC issuer and the
 Tunnel PAC lifetime for use in the management of the Tunnel PAC. The
 PAC-Info should be securely stored by the peer to protect it from
 disclosure and modification.

7.8. Security Claims

 This section provides the needed security claim requirement for EAP
 [RFC3748].

 Auth. mechanism: Certificate-based, shared-secret-based, and
 various tunneled authentication mechanisms.

 Ciphersuite negotiation: Yes

 Mutual authentication: Yes

 Integrity protection: Yes. Any method executed within the TEAP
 tunnel is integrity protected. The
 cleartext EAP headers outside the tunnel are
 not integrity protected.

 Replay protection: Yes

 Confidentiality: Yes

 Key derivation: Yes

 Key strength: See Note 1 below.

 Dictionary attack prot.: Yes

 Fast reconnect: Yes

 Cryptographic binding: Yes

 Session independence: Yes

 Fragmentation: Yes

 Key Hierarchy: Yes

 Channel binding: Yes

Zhou, et al. Standards Track [Page 73]

RFC 7170 TEAP May 2014

 Notes

 1. BCP 86 [RFC3766] offers advice on appropriate key sizes. The
 National Institute for Standards and Technology (NIST) also
 offers advice on appropriate key sizes in [NIST-SP-800-57].
 [RFC3766], Section 5 advises use of the following required RSA or
 DH (Diffie-Hellman) module and DSA (Digital Signature Algorithm)
 subgroup size in bits for a given level of attack resistance in
 bits. Based on the table below, a 2048-bit RSA key is required
 to provide 112-bit equivalent key strength:

 Attack Resistance RSA or DH Modulus DSA subgroup
 (bits) size (bits) size (bits)
 ----------------- ----------------- ------------
 70 947 129
 80 1228 148
 90 1553 167
 100 1926 186
 150 4575 284
 200 8719 383
 250 14596 482

8. Acknowledgements

 This specification is based on EAP-FAST [RFC4851], which included the
 ideas and efforts of Nancy Cam-Winget, David McGrew, Joe Salowey, Hao
 Zhou, Pad Jakkahalli, Mark Krischer, Doug Smith, and Glen Zorn of
 Cisco Systems, Inc.

 The TLV processing was inspired from work on the Protected Extensible
 Authentication Protocol version 2 (PEAPv2) with Ashwin Palekar, Dan
 Smith, Sean Turner, and Simon Josefsson.

 The method for linking identity and proof-of-possession by placing
 the tls-unique value in the challengePassword field of the CSR as
 described in Section 3.8.2 was inspired by the technique described in
 "Enrollment over Secure Transport" [RFC7030].

 Helpful review comments were provided by Russ Housley, Jari Arkko,
 Ilan Frenkel, Jeremy Steiglitz, Dan Harkins, Sam Hartman, Jim Schaad,
 Barry Leiba, Stephen Farrell, Chris Lonvick, and Josh Howlett.

Zhou, et al. Standards Track [Page 74]

RFC 7170 TEAP May 2014

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, "Extensible Authentication Protocol (EAP)", RFC
 3748, June 2004.

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, January 2008.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5295] Salowey, J., Dondeti, L., Narayanan, V., and M. Nakhjiri,
 "Specification for the Derivation of Root Keys from an
 Extended Master Session Key (EMSK)", RFC 5295, August
 2008.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, March 2010.

 [RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746, February 2010.

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929, July 2010.

 [RFC6677] Hartman, S., Clancy, T., and K. Hoeper, "Channel-Binding
 Support for Extensible Authentication Protocol (EAP)
 Methods", RFC 6677, July 2012.

Zhou, et al. Standards Track [Page 75]

RFC 7170 TEAP May 2014

9.2. Informative References

 [IEEE.802-1X.2013]
 IEEE, "Local and Metropolitan Area Networks: Port-Based
 Network Access Control", IEEE Standard 802.1X, December
 2013.

 [NIST-SP-800-57]
 National Institute of Standards and Technology,
 "Recommendation for Key Management", NIST Special
 Publication 800-57, July 2012.

 [PEAP] Microsoft Corporation, "[MS-PEAP]: Protected Extensible
 Authentication Protocol (PEAP)", February 2014.

 [RFC2315] Kaliski, B., "PKCS #7: Cryptographic Message Syntax
 Version 1.5", RFC 2315, March 1998.

 [RFC2985] Nystrom, M. and B. Kaliski, "PKCS #9: Selected Object
 Classes and Attribute Types Version 2.0", RFC 2985,
 November 2000.

 [RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification
 Request Syntax Specification Version 1.7", RFC 2986,
 November 2000.

 [RFC3579] Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible
 Authentication Protocol (EAP)", RFC 3579, September 2003.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3766] Orman, H. and P. Hoffman, "Determining Strengths For
 Public Keys Used For Exchanging Symmetric Keys", BCP 86,
 RFC 3766, April 2004.

 [RFC4017] Stanley, D., Walker, J., and B. Aboba, "Extensible
 Authentication Protocol (EAP) Method Requirements for
 Wireless LANs", RFC 4017, March 2005.

 [RFC4072] Eronen, P., Hiller, T., and G. Zorn, "Diameter Extensible
 Authentication Protocol (EAP) Application", RFC 4072,
 August 2005.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

Zhou, et al. Standards Track [Page 76]

RFC 7170 TEAP May 2014

 [RFC4282] Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
 Network Access Identifier", RFC 4282, December 2005.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC4851] Cam-Winget, N., McGrew, D., Salowey, J., and H. Zhou, "The
 Flexible Authentication via Secure Tunneling Extensible
 Authentication Protocol Method (EAP-FAST)", RFC 4851, May
 2007.

 [RFC4945] Korver, B., "The Internet IP Security PKI Profile of IKEv1
 /ISAKMP, IKEv2, and PKIX", RFC 4945, August 2007.

 [RFC4962] Housley, R. and B. Aboba, "Guidance for Authentication,
 Authorization, and Accounting (AAA) Key Management", BCP
 132, RFC 4962, July 2007.

 [RFC5247] Aboba, B., Simon, D., and P. Eronen, "Extensible
 Authentication Protocol (EAP) Key Management Framework",
 RFC 5247, August 2008.

 [RFC5272] Schaad, J. and M. Myers, "Certificate Management over CMS
 (CMC)", RFC 5272, June 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5281] Funk, P. and S. Blake-Wilson, "Extensible Authentication
 Protocol Tunneled Transport Layer Security Authenticated
 Protocol Version 0 (EAP-TTLSv0)", RFC 5281, August 2008.

 [RFC5421] Cam-Winget, N. and H. Zhou, "Basic Password Exchange
 within the Flexible Authentication via Secure Tunneling
 Extensible Authentication Protocol (EAP-FAST)", RFC 5421,
 March 2009.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, September 2009.

 [RFC5931] Harkins, D. and G. Zorn, "Extensible Authentication
 Protocol (EAP) Authentication Using Only a Password", RFC
 5931, August 2010.

 [RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

Zhou, et al. Standards Track [Page 77]

RFC 7170 TEAP May 2014

 [RFC6124] Sheffer, Y., Zorn, G., Tschofenig, H., and S. Fluhrer, "An
 EAP Authentication Method Based on the Encrypted Key
 Exchange (EKE) Protocol", RFC 6124, February 2011.

 [RFC6678] Hoeper, K., Hanna, S., Zhou, H., and J. Salowey,
 "Requirements for a Tunnel-Based Extensible Authentication
 Protocol (EAP) Method", RFC 6678, July 2012.

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",
 RFC 6960, June 2013.

 [RFC6961] Pettersen, Y., "The Transport Layer Security (TLS)
 Multiple Certificate Status Request Extension", RFC 6961,
 June 2013.

 [RFC7029] Hartman, S., Wasserman, M., and D. Zhang, "Extensible
 Authentication Protocol (EAP) Mutual Cryptographic
 Binding", RFC 7029, October 2013.

 [RFC7030] Pritikin, M., Yee, P., and D. Harkins, "Enrollment over
 Secure Transport", RFC 7030, October 2013.

 [X.690] ITU-T, "ASN.1 encoding rules: Specification of Basic
 Encoding Rules (BER), Canonical Encoding Rules (CER) and
 Distinguished Encoding Rules (DER)", ITU-T Recommendation
 X.690, November 2008.

Zhou, et al. Standards Track [Page 78]

RFC 7170 TEAP May 2014

Appendix A. Evaluation against Tunnel-Based EAP Method Requirements

 This section evaluates all tunnel-based EAP method requirements
 described in [RFC6678] against TEAP version 1.

A.1. Requirement 4.1.1: RFC Compliance

 TEAPv1 meets this requirement by being compliant with RFC 3748
 [RFC3748], RFC 4017 [RFC4017], RFC 5247 [RFC5247], and RFC 4962
 [RFC4962]. It is also compliant with the "cryptographic algorithm
 agility" requirement by leveraging TLS 1.2 for all cryptographic
 algorithm negotiation.

A.2. Requirement 4.2.1: TLS Requirements

 TEAPv1 meets this requirement by mandating TLS version 1.2 support as
 defined in Section 3.2.

A.3. Requirement 4.2.1.1.1: Ciphersuite Negotiation

 TEAPv1 meets this requirement by using TLS to provide protected
 ciphersuite negotiation.

A.4. Requirement 4.2.1.1.2: Tunnel Data Protection Algorithms

 TEAPv1 meets this requirement by mandating
 TLS_RSA_WITH_AES_128_CBC_SHA as a mandatory-to-implement ciphersuite
 as defined in Section 3.2.

A.5. Requirement 4.2.1.1.3: Tunnel Authentication and Key Establishment

 TEAPv1 meets this requirement by mandating
 TLS_RSA_WITH_AES_128_CBC_SHA as a mandatory-to-implement ciphersuite
 that provides certificate-based authentication of the server and is
 approved by NIST. The mandatory-to-implement ciphersuites only
 include ciphersuites that use strong cryptographic algorithms. They
 do not include ciphersuites providing mutually anonymous
 authentication or static Diffie-Hellman ciphersuites as defined in
 Section 3.2.

A.6. Requirement 4.2.1.2: Tunnel Replay Protection

 TEAPv1 meets this requirement by using TLS to provide sufficient
 replay protection.

Zhou, et al. Standards Track [Page 79]

RFC 7170 TEAP May 2014

A.7. Requirement 4.2.1.3: TLS Extensions

 TEAPv1 meets this requirement by allowing TLS extensions, such as TLS
 Certificate Status Request extension [RFC6066] and SessionTicket
 extension [RFC5077], to be used during TLS tunnel establishment.

A.8. Requirement 4.2.1.4: Peer Identity Privacy

 TEAPv1 meets this requirement by establishment of the TLS tunnel and
 protection identities specific to the inner method. In addition, the
 peer certificate can be sent confidentially (i.e., encrypted).

A.9. Requirement 4.2.1.5: Session Resumption

 TEAPv1 meets this requirement by mandating support of TLS session
 resumption as defined in Section 3.2.1 and TLS session resume using a
 PAC as defined in Section 3.2.2 .

A.10. Requirement 4.2.2: Fragmentation

 TEAPv1 meets this requirement by leveraging fragmentation support
 provided by TLS as defined in Section 3.7.

A.11. Requirement 4.2.3: Protection of Data External to Tunnel

 TEAPv1 meets this requirement by including the TEAP version number
 received in the computation of the Crypto-Binding TLV as defined in
 Section 4.2.13.

A.12. Requirement 4.3.1: Extensible Attribute Types

 TEAPv1 meets this requirement by using an extensible TLV data layer
 inside the tunnel as defined in Section 4.2.

A.13. Requirement 4.3.2: Request/Challenge Response Operation

 TEAPv1 meets this requirement by allowing multiple TLVs to be sent in
 a single EAP request or response packet, while maintaining the half-
 duplex operation typical of EAP.

A.14. Requirement 4.3.3: Indicating Criticality of Attributes

 TEAPv1 meets this requirement by having a mandatory bit in each TLV
 to indicate whether it is mandatory to support or not as defined in
 Section 4.2.

Zhou, et al. Standards Track [Page 80]

RFC 7170 TEAP May 2014

A.15. Requirement 4.3.4: Vendor-Specific Support

 TEAPv1 meets this requirement by having a Vendor-Specific TLV to
 allow vendors to define their own attributes as defined in
 Section 4.2.8.

A.16. Requirement 4.3.5: Result Indication

 TEAPv1 meets this requirement by having a Result TLV to exchange the
 final result of the EAP authentication so both the peer and server
 have a synchronized state as defined in Section 4.2.4.

A.17. Requirement 4.3.6: Internationalization of Display Strings

 TEAPv1 meets this requirement by supporting UTF-8 format in the
 Basic-Password-Auth-Req TLV as defined in Section 4.2.14 and the
 Basic-Password-Auth-Resp TLV as defined in Section 4.2.15.

A.18. Requirement 4.4: EAP Channel-Binding Requirements

 TEAPv1 meets this requirement by having a Channel-Binding TLV to
 exchange the EAP channel-binding data as defined in Section 4.2.7.

A.19. Requirement 4.5.1.1: Confidentiality and Integrity

 TEAPv1 meets this requirement by running the password authentication
 inside a protected TLS tunnel.

A.20. Requirement 4.5.1.2: Authentication of Server

 TEAPv1 meets this requirement by mandating authentication of the
 server before establishment of the protected TLS and then running
 inner password authentication as defined in Section 3.2.

A.21. Requirement 4.5.1.3: Server Certificate Revocation Checking

 TEAPv1 meets this requirement by supporting TLS Certificate Status
 Request extension [RFC6066] during tunnel establishment.

A.22. Requirement 4.5.2: Internationalization

 TEAPv1 meets this requirement by supporting UTF-8 format in Basic-
 Password-Auth-Req TLV as defined in Section 4.2.14 and Basic-
 Password-Auth-Resp TLV as defined in Section 4.2.15.

Zhou, et al. Standards Track [Page 81]

RFC 7170 TEAP May 2014

A.23. Requirement 4.5.3: Metadata

 TEAPv1 meets this requirement by supporting Identity-Type TLV as
 defined in Section 4.2.3 to indicate whether the authentication is
 for a user or a machine.

A.24. Requirement 4.5.4: Password Change

 TEAPv1 meets this requirement by supporting multiple Basic-Password-
 Auth-Req TLV and Basic-Password-Auth-Resp TLV exchanges within a
 single EAP authentication, which allows "housekeeping"" functions
 such as password change.

A.25. Requirement 4.6.1: Method Negotiation

 TEAPv1 meets this requirement by supporting inner EAP method
 negotiation within the protected TLS tunnel.

A.26. Requirement 4.6.2: Chained Methods

 TEAPv1 meets this requirement by supporting inner EAP method chaining
 within protected TLS tunnels as defined in Section 3.3.1.

A.27. Requirement 4.6.3: Cryptographic Binding with the TLS Tunnel

 TEAPv1 meets this requirement by supporting cryptographic binding of
 the inner EAP method keys with the keys derived from the TLS tunnel
 as defined in Section 4.2.13.

A.28. Requirement 4.6.4: Peer-Initiated EAP Authentication

 TEAPv1 meets this requirement by supporting the Request-Action TLV as
 defined in Section 4.2.9 to allow a peer to initiate another inner
 EAP method.

A.29. Requirement 4.6.5: Method Metadata

 TEAPv1 meets this requirement by supporting the Identity-Type TLV as
 defined in Section 4.2.3 to indicate whether the authentication is
 for a user or a machine.

Zhou, et al. Standards Track [Page 82]

RFC 7170 TEAP May 2014

Appendix B. Major Differences from EAP-FAST

 This document is a new standard tunnel EAP method based on revision
 of EAP-FAST version 1 [RFC4851] that contains improved flexibility,
 particularly for negotiation of cryptographic algorithms. The major
 changes are:

 1. The EAP method name has been changed from EAP-FAST to TEAP; this
 change thus requires that a new EAP Type be assigned.

 2. This version of TEAP MUST support TLS 1.2 [RFC5246].

 3. The key derivation now makes use of TLS keying material exporters
 [RFC5705] and the PRF and hash function negotiated in TLS. This
 is to simplify implementation and better support cryptographic
 algorithm agility.

 4. TEAP is in full conformance with TLS ticket extension [RFC5077]
 as described in Section 3.2.2.

 5. Support is provided for passing optional Outer TLVs in the first
 two message exchanges, in addition to the Authority-ID TLV data
 in EAP-FAST.

 6. Basic password authentication on the TLV level has been added in
 addition to the existing inner EAP method.

 7. Additional TLV types have been defined to support EAP channel
 binding and metadata. They are the Identity-Type TLV and
 Channel-Binding TLVs, defined in Section 4.2.

Appendix C. Examples

C.1. Successful Authentication

 The following exchanges show a successful TEAP authentication with
 basic password authentication and optional PAC refreshment. The
 conversation will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->

Zhou, et al. Standards Track [Page 83]

RFC 7170 TEAP May 2014

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello with
 PAC-Opaque in SessionTicket extension)->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 (TLS change_cipher_spec,
 TLS finished)

 EAP-Response/
 EAP-Type=TEAP, V=1 ->
 (TLS change_cipher_spec,
 TLS finished)

 TLS channel established
 (messages sent within the TLS channel)

 <- Basic-Password-Auth-Req TLV, Challenge

 Basic-Password-Auth-Resp TLV, Response with both
 username and password) ->

 optional additional exchanges (new pin mode,
 password change, etc.) ...

 <- Crypto-Binding TLV (Request),
 Result TLV (Success),
 (Optional PAC TLV)

 Crypto-Binding TLV(Response),
 Result TLV (Success),
 (PAC-Acknowledgement TLV) ->

 TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

Zhou, et al. Standards Track [Page 84]

RFC 7170 TEAP May 2014

C.2. Failed Authentication

 The following exchanges show a failed TEAP authentication due to
 wrong user credentials. The conversation will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/Identity

 EAP-Response/
 Identity (MyID1) ->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello with
 PAC-Opaque in SessionTicket extension)->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 (TLS change_cipher_spec,
 TLS finished)

 EAP-Response/
 EAP-Type=TEAP, V=1 ->
 (TLS change_cipher_spec,
 TLS finished)

 TLS channel established
 (messages sent within the TLS channel)

 <- Basic-Password-Auth-Req TLV, Challenge

 Basic-Password-Auth-Resp TLV, Response with both
 username and password) ->

 <- Result TLV (Failure)

Zhou, et al. Standards Track [Page 85]

RFC 7170 TEAP May 2014

 Result TLV (Failure) ->

 TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Failure

C.3. Full TLS Handshake Using Certificate-Based Ciphersuite

 In the case within TEAP Phase 1 where an abbreviated TLS handshake is
 tried, fails, and falls back to the certificate-based full TLS
 handshake, the conversation will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/Identity
 EAP-Response/
 Identity (MyID1) ->

 // Identity sent in the clear. May be a hint to help route
 the authentication request to EAP server, instead of the
 full user identity.

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)
 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello with
 PAC-Opaque in SessionTicket extension)->

 // Peer sends PAC-Opaque of Tunnel PAC along with a list of
 ciphersuites supported. If the server rejects the PAC-
 Opaque, it falls through to the full TLS handshake.

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)

Zhou, et al. Standards Track [Page 86]

RFC 7170 TEAP May 2014

 EAP-Response/
 EAP-Type=TEAP, V=1
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 EAP-Payload-TLV[EAP-Request/
 Identity])

 // TLS channel established
 (messages sent within the TLS channel)

 // First EAP Payload TLV is piggybacked to the TLS Finished as
 Application Data and protected by the TLS tunnel.

 EAP-Payload-TLV
 [EAP-Response/Identity (MyID2)]->

 // identity protected by TLS.

 <- EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload-TLV
 [EAP-Response/EAP-Type=X] ->

 // Method X exchanges followed by Protected Termination

 <- Intermediate-Result-TLV (Success),
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate-Result-TLV (Success),
 Crypto-Binding TLV (Response),
 Result-TLV (Success) ->

 // TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

Zhou, et al. Standards Track [Page 87]

RFC 7170 TEAP May 2014

C.4. Client Authentication during Phase 1 with Identity Privacy

 In the case where a certificate-based TLS handshake occurs within
 TEAP Phase 1 and client certificate authentication and identity
 privacy is desired (and therefore TLS renegotiation is being used to
 transmit the peer credentials in the protected TLS tunnel), the
 conversation will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/Identity
 EAP-Response/
 Identity (MyID1) ->

 // Identity sent in the clear. May be a hint to help route
 the authentication request to EAP server, instead of the
 full user identity.

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)
 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)
 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_key_exchange,
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 EAP-Payload-TLV[EAP-Request/
 Identity])

 // TLS channel established
 (EAP Payload messages sent within the TLS channel)

 // peer sends TLS client_hello to request TLS renegotiation

Zhou, et al. Standards Track [Page 88]

RFC 7170 TEAP May 2014

 TLS client_hello ->

 <- TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done
 [TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished ->

 <- TLS change_cipher_spec,
 TLS finished,
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Crypto-Binding TLV (Response),
 Result-TLV (Success)) ->

 //TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

C.5. Fragmentation and Reassembly

 In the case where TEAP fragmentation is required, the conversation
 will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello)->

Zhou, et al. Standards Track [Page 89]

RFC 7170 TEAP May 2014

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)
 (Fragment 1: L, M bits set)

 EAP-Response/
 EAP-Type=TEAP, V=1 ->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (Fragment 2: M bit set)
 EAP-Response/
 EAP-Type=TEAP, V=1 ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (Fragment 3)
 EAP-Response/
 EAP-Type=TEAP, V=1
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished)
 (Fragment 1: L, M bits set)->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 EAP-Response/
 EAP-Type=TEAP, V=1
 (Fragment 2)->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 [EAP-Payload-TLV[
 EAP-Request/Identity]])

 // TLS channel established
 (messages sent within the TLS channel)

 // First EAP Payload TLV is piggybacked to the TLS Finished as
 Application Data and protected by the TLS tunnel.

Zhou, et al. Standards Track [Page 90]

RFC 7170 TEAP May 2014

 EAP-Payload-TLV
 [EAP-Response/Identity (MyID2)]->

 // identity protected by TLS.

 <- EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload-TLV
 [EAP-Response/EAP-Type=X] ->

 // Method X exchanges followed by Protected Termination

 <- Intermediate-Result-TLV (Success),
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate-Result-TLV (Success),
 Crypto-Binding TLV (Response),
 Result-TLV (Success) ->

 // TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

C.6. Sequence of EAP Methods

 When TEAP is negotiated with a sequence of EAP method X followed by
 method Y, the conversation will occur as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello)->

Zhou, et al. Standards Track [Page 91]

RFC 7170 TEAP May 2014

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)
 EAP-Response/
 EAP-Type=TEAP, V=1
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 Identity-Type TLV,
 EAP-Payload-TLV[
 EAP-Request/Identity])

 // TLS channel established
 (messages sent within the TLS channel)

 // First EAP Payload TLV is piggybacked to the TLS Finished as
 Application Data and protected by the TLS tunnel

 Identity_Type TLV
 EAP-Payload-TLV
 [EAP-Response/Identity] ->

 <- EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload-TLV
 [EAP-Response/EAP-Type=X] ->

 // Optional additional X Method exchanges...

 <- EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload-TLV
 [EAP-Response/EAP-Type=X]->

Zhou, et al. Standards Track [Page 92]

RFC 7170 TEAP May 2014

 <- Intermediate Result TLV (Success),
 Crypto-Binding TLV (Request),
 Identity-Type TLV,
 EAP Payload TLV [EAP-Type=Y],

 // Next EAP conversation started after successful completion
 of previous method X. The Intermediate-Result and Crypto-
 Binding TLVs are sent in next packet to minimize round
 trips. In this example, an identity request is not sent
 before negotiating EAP-Type=Y.

 // Compound MAC calculated using keys generated from
 EAP method X and the TLS tunnel.

 Intermediate Result TLV (Success),
 Crypto-Binding TLV (Response),
 EAP-Payload-TLV [EAP-Type=Y] ->

 // Optional additional Y Method exchanges...

 <- EAP Payload TLV [
 EAP-Type=Y]

 EAP Payload TLV
 [EAP-Type=Y] ->

 <- Intermediate-Result-TLV (Success),
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate-Result-TLV (Success),
 Crypto-Binding TLV (Response),
 Result-TLV (Success) ->

 // Compound MAC calculated using keys generated from EAP
 methods X and Y and the TLS tunnel. Compound keys are
 generated using keys generated from EAP methods X and Y
 and the TLS tunnel.

 // TLS channel torn down (messages sent in cleartext)

 <- EAP-Success

Zhou, et al. Standards Track [Page 93]

RFC 7170 TEAP May 2014

C.7. Failed Crypto-Binding

 The following exchanges show a failed crypto-binding validation. The
 conversation will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello without
 PAC-Opaque in SessionTicket extension)->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS Server Key Exchange
 TLS Server Hello Done)
 EAP-Response/
 EAP-Type=TEAP, V=1 ->
 (TLS Client Key Exchange
 TLS change_cipher_spec,
 TLS finished)

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec
 TLS finished)
 EAP-Payload-TLV[
 EAP-Request/Identity])

 // TLS channel established
 (messages sent within the TLS channel)

 // First EAP Payload TLV is piggybacked to the TLS Finished as
 Application Data and protected by the TLS tunnel.

 EAP-Payload TLV/
 EAP Identity Response ->

 <- EAP Payload TLV, EAP-Request,
 (EAP-MSCHAPV2, Challenge)

Zhou, et al. Standards Track [Page 94]

RFC 7170 TEAP May 2014

 EAP Payload TLV, EAP-Response,
 (EAP-MSCHAPV2, Response) ->

 <- EAP Payload TLV, EAP-Request,
 (EAP-MSCHAPV2, Success Request)

 EAP Payload TLV, EAP-Response,
 (EAP-MSCHAPV2, Success Response) ->

 <- Intermediate-Result-TLV (Success),
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate-Result-TLV (Success),
 Result TLV (Failure)
 Error TLV with
 (Error Code = 2001) ->

 // TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Failure

C.8. Sequence of EAP Method with Vendor-Specific TLV Exchange

 When TEAP is negotiated with a sequence of EAP methods followed by a
 Vendor-Specific TLV exchange, the conversation will occur as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)

Zhou, et al. Standards Track [Page 95]

RFC 7170 TEAP May 2014

 EAP-Response/
 EAP-Type=TEAP, V=1
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 EAP-Payload-TLV[
 EAP-Request/Identity])

 // TLS channel established
 (messages sent within the TLS channel)

 // First EAP Payload TLV is piggybacked to the TLS Finished as
 Application Data and protected by the TLS tunnel.

 EAP-Payload-TLV
 [EAP-Response/Identity] ->

 <- EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload-TLV
 [EAP-Response/EAP-Type=X] ->

 <- EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload-TLV
 [EAP-Response/EAP-Type=X]->

 <- Intermediate Result TLV (Success),
 Crypto-Binding TLV (Request),
 Vendor-Specific TLV,

 // Vendor-Specific TLV exchange started after successful
 completion of previous method X. The Intermediate-Result
 and Crypto-Binding TLVs are sent with Vendor-Specific TLV
 in next packet to minimize round trips.

 // Compound MAC calculated using keys generated from
 EAP method X and the TLS tunnel.

Zhou, et al. Standards Track [Page 96]

RFC 7170 TEAP May 2014

 Intermediate Result TLV (Success),
 Crypto-Binding TLV (Response),
 Vendor-Specific TLV ->

 // Optional additional Vendor-Specific TLV exchanges...

 <- Vendor-Specific TLV

 Vendor-Specific TLV ->
 <- Result TLV (Success)

 Result-TLV (Success) ->

 // TLS channel torn down (messages sent in cleartext)

 <- EAP-Success

C.9. Peer Requests Inner Method after Server Sends Result TLV

 In the case where the peer is authenticated during Phase 1 and the
 server sends back a Result TLV but the peer wants to request another
 inner method, the conversation will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/Identity
 EAP-Response/
 Identity (MyID1) ->

 // Identity sent in the clear. May be a hint to help route
 the authentication request to EAP server, instead of the
 full user identity.

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)
 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)

Zhou, et al. Standards Track [Page 97]

RFC 7170 TEAP May 2014

 EAP-Response/
 EAP-Type=TEAP, V=1
 [TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 Crypto-Binding TLV (Request),
 Result TLV (Success))

 // TLS channel established
 (TLV Payload messages sent within the TLS channel)

 Crypto-Binding TLV(Response),
 Request-Action TLV
 (Status=Failure, Action=Negotiate-EAP)->

 <- EAP-Payload-TLV
 [EAP-Request/Identity]

 EAP-Payload-TLV
 [EAP-Response/Identity] ->

 <- EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload-TLV
 [EAP-Response/EAP-Type=X] ->

 <- EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload-TLV
 [EAP-Response/EAP-Type=X]->

 <- Intermediate Result TLV (Success),
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate Result TLV (Success),
 Crypto-Binding TLV (Response),
 Result-TLV (Success)) ->

Zhou, et al. Standards Track [Page 98]

RFC 7170 TEAP May 2014

 // TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

C.10. Channel Binding

 The following exchanges show a successful TEAP authentication with
 basic password authentication and channel binding using a Request-
 Action TLV. The conversation will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello with
 PAC-Opaque in SessionTicket extension)->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 (TLS change_cipher_spec,
 TLS finished)

 EAP-Response/
 EAP-Type=TEAP, V=1 ->
 (TLS change_cipher_spec,
 TLS finished)

 TLS channel established
 (messages sent within the TLS channel)

 <- Basic-Password-Auth-Req TLV, Challenge

 Basic-Password-Auth-Resp TLV, Response with both
 username and password) ->

 optional additional exchanges (new pin mode,
 password change, etc.) ...

Zhou, et al. Standards Track [Page 99]

RFC 7170 TEAP May 2014

 <- Crypto-Binding TLV (Request),
 Result TLV (Success),

 Crypto-Binding TLV(Response),
 Request-Action TLV
 (Status=Failure, Action=Process-TLV,
 TLV=Channel-Binding TLV)->

 <- Channel-Binding TLV (Response),
 Result TLV (Success),

 Result-TLV (Success) ->

 TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

Zhou, et al. Standards Track [Page 100]

RFC 7170 TEAP May 2014

Authors’ Addresses

 Hao Zhou
 Cisco Systems
 4125 Highlander Parkway
 Richfield, OH 44286
 US

 EMail: hzhou@cisco.com

 Nancy Cam-Winget
 Cisco Systems
 3625 Cisco Way
 San Jose, CA 95134
 US

 EMail: ncamwing@cisco.com

 Joseph Salowey
 Cisco Systems
 2901 3rd Ave
 Seattle, WA 98121
 US

 EMail: jsalowey@cisco.com

 Stephen Hanna
 Infineon Technologies
 79 Parsons Street
 Brighton, MA 02135
 US

 EMail: steve.hanna@infineon.com

Zhou, et al. Standards Track [Page 101]

