
Internet Engineering Task Force (IETF) A. Newton
Request for Comments: 7480 ARIN
Category: Standards Track B. Ellacott
ISSN: 2070-1721 APNIC
 N. Kong
 CNNIC
 March 2015

 HTTP Usage in the Registration Data Access Protocol (RDAP)

Abstract

 This document is one of a collection that together describes the
 Registration Data Access Protocol (RDAP). It describes how RDAP is
 transported using the Hypertext Transfer Protocol (HTTP). RDAP is a
 successor protocol to the very old WHOIS protocol. The purpose of
 this document is to clarify the use of standard HTTP mechanisms for
 this application.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7480.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Newton, et al. Standards Track [Page 1]

RFC 7480 RDAP over HTTP March 2015

Table of Contents

 1. Introduction . 2
 2. Terminology . 4
 3. Design Intents . 5
 4. Queries . 5
 4.1. HTTP Methods . 5
 4.2. Accept Header . 5
 4.3. Query Parameters . 6
 5. Types of HTTP Response 6
 5.1. Positive Answers . 6
 5.2. Redirects . 6
 5.3. Negative Answers . 7
 5.4. Malformed Queries . 7
 5.5. Rate Limits . 7
 5.6. Cross-Origin Resource Sharing (CORS) 8
 6. Extensibility . 8
 7. Security Considerations 9
 8. IANA Considerations . 9
 8.1. RDAP Extensions Registry 9
 9. Internationalization Considerations 10
 9.1. URIs and IRIs . 10
 9.2. Language Identifiers in Queries and Responses 10
 9.3. Language Identifiers in HTTP Headers 10
 10. References . 11
 10.1. Normative References 11
 10.2. Informative References 12
 Appendix A. Protocol Example 13
 Appendix B. Cache Busting 13
 Appendix C. Bootstrapping and Redirection 14
 Acknowledgements . 15
 Authors’ Addresses . 16

Newton, et al. Standards Track [Page 2]

RFC 7480 RDAP over HTTP March 2015

1. Introduction

 This document describes the usage of the Hypertext Transfer Protocol
 (HTTP) [RFC7230] for the Registration Data Access Protocol (RDAP).
 The goal of this document is to tie together usage patterns of HTTP
 into a common profile applicable to the various types of directory
 services serving registration data using practices informed by the
 Representational State Transfer (REST) [REST] architectural style.
 By giving the various directory services common behavior, a single
 client is better able to retrieve data from directory services
 adhering to this behavior.

 Registration data expected to be presented by this service is
 Internet resource registration data -- registration of domain names
 and Internet number resources. This data is typically provided by
 WHOIS [RFC3912] services, but the WHOIS protocol is insufficient to
 modern registration data service requirements. A replacement
 protocol is expected to retain the simple transactional nature of
 WHOIS, while providing a specification for queries and responses,
 redirection to authoritative sources, support for Internationalized
 Domain Names (IDNs) [RFC5890], and support for localized registration
 data such as addresses and organization or person names.

 In designing these common usage patterns, this document introduces
 considerations for a simple use of HTTP. Where complexity may
 reside, it is the goal of this document to place it upon the server
 and to keep the client as simple as possible. A client
 implementation should be possible using common operating system
 scripting tools (e.g., bash and wget).

 This is the basic usage pattern for this protocol:

 1. A client determines an appropriate server to query along with the
 appropriate base Uniform Resource Locator (URL) to use in such
 queries. [RFC7484] describes one method to determine the server
 and the base URL. See Appendix C for more information.

 2. A client issues an HTTP (or HTTPS) query using GET [RFC7231]. As
 an example, a query URL for the network registration 192.0.2.0
 might be

 http://example.com/rdap/ip/192.0.2.0

 [RFC7482] details the various queries used in RDAP.

Newton, et al. Standards Track [Page 3]

RFC 7480 RDAP over HTTP March 2015

 3. If the receiving server has the information for the query, it
 examines the Accept header field of the query and returns a 200
 response with a response entity appropriate for the requested
 format. [RFC7483] details a response in JavaScript Object
 Notation (JSON).

 4. If the receiving server does not have the information for the
 query but does have knowledge of where the information can be
 found, it will return a redirection response (3xx) with the
 Location header field containing an HTTP(S) URL pointing to the
 information or another server known to have knowledge of the
 location of the information. The client is expected to requery
 using that HTTP URL.

 5. If the receiving server does not have the information being
 requested and does not have knowledge of where the information
 can be found, it returns a 404 response.

 6. If the receiving server will not answer a request for policy
 reasons, it will return an error response (4xx) indicating the
 reason for giving no answer.

 It is not the intent of this document to redefine the meaning and
 semantics of HTTP. The purpose of this document is to clarify the
 use of standard HTTP mechanisms for this application.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 As is noted in "Security and Stability Advisory Committee (SSAC)
 Report on WHOIS Terminology and Structure" [SAC-051], the term
 "WHOIS" is overloaded, often referring to a protocol, a service, and
 data. In accordance with [SAC-051], this document describes the base
 behavior for an RDAP. [SAC-051] describes a protocol profile of RDAP
 for Domain Name Registries (DNRs), the Domain Name Registration Data
 Access Protocol (DNRD-AP).

 In this document, an RDAP client is an HTTP user agent performing an
 RDAP query, and an RDAP server is an HTTP server providing an RDAP
 response. RDAP query and response formats are described in [RFC7482]
 and [RFC7483], while this document describes how RDAP clients and
 servers use HTTP to exchange queries and responses. [RFC7481]
 describes security considerations for RDAP.

Newton, et al. Standards Track [Page 4]

RFC 7480 RDAP over HTTP March 2015

3. Design Intents

 There are a few design criteria this document attempts to meet.

 First, each query is meant to require only one path of execution to
 obtain an answer. A response may contain an answer, no answer, or a
 redirect, and clients are not expected to fork multiple paths of
 execution to make a query.

 Second, the semantics of the request/response allow for future and/or
 non-standard response formats. In this document, only a JSON
 [RFC7159] response media type is noted, with the response contents to
 be described separately (see [RFC7483]). This document only
 describes how RDAP is transported using HTTP with this format.

 Third, this protocol is intended to be able to make use of the range
 of mechanisms available for use with HTTP. HTTP offers a number of
 mechanisms not described further in this document. Operators are
 able to make use of these mechanisms according to their local policy,
 including cache control, authorization, compression, and redirection.
 HTTP also benefits from widespread investment in scalability,
 reliability, and performance, as well as widespread programmer
 understanding of client behaviors for web services styled after REST
 [REST], reducing the cost to deploy Registration Data Directory
 Services and clients. This protocol is forward compatible with HTTP
 2.0.

4. Queries

4.1. HTTP Methods

 Clients use the GET method to retrieve a response body and use the
 HEAD method to determine existence of data on the server. Clients
 SHOULD use either the HTTP GET or HEAD methods (see [RFC7231]).
 Servers are under no obligation to support other HTTP methods;
 therefore, clients using other methods will likely not interoperate
 properly.

 Clients and servers MUST support HTTPS to support security services.

4.2. Accept Header

 To indicate to servers that an RDAP response is desired, clients
 include an Accept header field with an RDAP-specific JSON media type,
 the generic JSON media type, or both. Servers receiving an RDAP
 request return an entity with a Content-Type header containing the
 RDAP-specific JSON media type.

Newton, et al. Standards Track [Page 5]

RFC 7480 RDAP over HTTP March 2015

 This specification does not define the responses a server returns to
 a request with any other media types in the Accept header field, or
 with no Accept header field. One possibility would be to return a
 response in a media type suitable for rendering in a web browser.

4.3. Query Parameters

 Servers MUST ignore unknown query parameters. Use of unknown query
 parameters for cache busting is described in Appendix B.

5. Types of HTTP Response

 This section describes the various types of responses a server may
 send to a client. While no standard HTTP response code is forbidden
 in usage, this section defines the minimal set of response codes in
 common use by servers that a client will need to understand. While
 some clients may be constructed with simple tooling that does not
 account for all of these response codes, a more robust client
 accounting for these codes will likely provide a better user
 experience. It is expected that usage of response codes and types
 for this application not defined here will be described in subsequent
 documents.

5.1. Positive Answers

 If a server has the information requested by the client and wishes to
 respond to the client with the information according to its policies,
 it returns that answer in the body of a 200 (OK) response (see
 [RFC7231]).

5.2. Redirects

 If a server wishes to inform a client that the answer to a given
 query can be found elsewhere, it returns either a 301 (Moved
 Permanently) response code to indicate a permanent move or a 302
 (Found), 303 (See Other), or 307 (Temporary Redirect) response code
 to indicate a non-permanent redirection, and it includes an HTTP(S)
 URL in the Location header field (see [RFC7231]). The client is
 expected to issue a subsequent request to satisfy the original query
 using the given URL without any processing of the URL. In other
 words, the server is to hand back a complete URL, and the client
 should not have to transform the URL to follow it. Servers are under
 no obligation to return a URL conformant to [RFC7482].

 For this application, such an example of a permanent move might be a
 Top-Level Domain (TLD) operator informing a client the information

Newton, et al. Standards Track [Page 6]

RFC 7480 RDAP over HTTP March 2015

 being sought can be found with another TLD operator (i.e., a query
 for the domain bar in foo.example is found at
 http://foo.example/domain/bar).

 For example, if the client uses

 http://serv1.example.com/weirds/domain/example.com

 the server redirecting to

 https://serv2.example.net/weirds2/

 would set the Location: field to the value

 https://serv2.example.net/weirds2/domain/example.com

5.3. Negative Answers

 If a server wishes to respond that it has an empty result set (that
 is, no data appropriately satisfying the query), it returns a 404
 (Not Found) response code. Optionally, it MAY include additional
 information regarding the negative answer in the HTTP entity body.

 If a server wishes to inform the client that information about the
 query is available, but cannot include the information in the
 response to the client for policy reasons, the server MUST respond
 with an appropriate response code out of HTTP’s 4xx range. A client
 MAY retry the query if that is appropriate for the respective
 response code.

5.4. Malformed Queries

 If a server receives a query that it cannot interpret as an RDAP
 query, it returns a 400 (Bad Request) response code. Optionally, it
 MAY include additional information regarding this negative answer in
 the HTTP entity body.

5.5. Rate Limits

 Some servers apply rate limits to deter address scraping and other
 abuses. When a server declines to answer a query due to rate limits,
 it returns a 429 (Too Many Requests) response code as described in
 [RFC6585]. A client that receives a 429 response SHOULD decrease its
 query rate and honor the Retry-After header field if one is present.
 Servers may place stricter limits upon clients that do not honor the
 Retry-After header. Optionally, the server MAY include additional
 information regarding the rate limiting in the HTTP entity body.

Newton, et al. Standards Track [Page 7]

RFC 7480 RDAP over HTTP March 2015

 Note that this is not a defense against denial-of-service (DoS)
 attacks, since a malicious client could ignore the code and continue
 to send queries at a high rate. A server might use another response
 code if it did not wish to reveal to a client that rate limiting is
 the reason for the denial of a reply.

5.6. Cross-Origin Resource Sharing (CORS)

 When responding to queries, it is RECOMMENDED that servers use the
 Access-Control-Allow-Origin header field, as specified by
 [W3C.REC-cors-20140116]. A value of "*" is suitable when RDAP is
 used for public resources.

 This header (often called the CORS header) helps in-browser web
 applications by lifting the "same-origin" restriction (i.e., a
 browser may load RDAP client code from one web server but query
 others for RDAP data).

 By default, browsers do not send cookies when cross origin requests
 are allowed. Setting the Access-Control-Allow-Credentials header
 field to "true" will send cookies. Use of the
 Access-Control-Allow-Credentials header field is NOT RECOMMENDED.

6. Extensibility

 For extensibility purposes, this document defines an IANA registry
 for prefixes used in JSON [RFC7159] data serialization and URI path
 segments (see Section 8).

 Prefixes and identifiers SHOULD only consist of the alphabetic US-
 ASCII characters A through Z in both uppercase and lowercase, the
 numerical digits 0 through 9, and the underscore character, and they
 SHOULD NOT begin with an underscore character, numerical digit, or
 the characters "xml". The following describes the production of JSON
 names in ABNF [RFC5234].

 name = ALPHA *(ALPHA / DIGIT / "_")

 Figure 1: ABNF for JSON Names

 This restriction is a union of the Ruby programming language
 identifier syntax and the XML element name syntax and has two
 purposes. First, client implementers using modern programming
 languages such as Ruby or Java can use libraries that automatically
 promote JSON names to first-order object attributes or members.
 Second, a clean mapping between JSON and XML is easy to accomplish
 using these rules.

Newton, et al. Standards Track [Page 8]

RFC 7480 RDAP over HTTP March 2015

7. Security Considerations

 This document does not pose strong security requirements to the RDAP
 protocol. However, it does not restrict against the use of security
 mechanisms offered by the HTTP protocol. It does require that RDAP
 clients and servers MUST support HTTPS.

 This document makes recommendations for server implementations
 against DoS (Section 5.5) and interoperability with existing security
 mechanisms in HTTP clients (Section 5.6).

 Additional security considerations to the RDAP protocol are covered
 in [RFC7481].

8. IANA Considerations

8.1. RDAP Extensions Registry

 IANA has created a new category in the protocol registries labeled
 "Registration Data Access Protocol (RDAP)", and within that category,
 has established a URL-referenceable, stand-alone registry labeled
 "RDAP Extensions". The purpose of this registry is to ensure
 uniqueness of extension identifiers. The extension identifier is
 used as a prefix in JSON names and as a prefix of path segments in
 RDAP URLs.

 The production rule for these identifiers is specified in Section 6.

 In accordance with [RFC5226], the IANA policy for assigning new
 values, shall be Specification Required: values and their meanings
 must be documented in an RFC or in some other permanent and readily
 available reference, in sufficient detail that interoperability
 between independent implementations is possible.

 The following is a template for an RDAP extension registration:

 Extension identifier: the identifier of the extension

 Registry operator: the name of the registry operator

 Published specification: RFC number, bibliographical reference, or
 URL to a permanent and readily available specification

 Person & email address to contact for further information: The
 names and email addresses of individuals to contact regarding this
 registry entry

Newton, et al. Standards Track [Page 9]

RFC 7480 RDAP over HTTP March 2015

 Intended usage: brief reasons for this registry entry (as defined
 by [RFC5226]).

 The following is an example of a registration in the RDAP extension
 registry:

 Extension identifier: lunarNic

 Registry operator: The Registry of the Moon, LLC

 Published specification: http://www.example/moon_apis/rdap

 Person & email address to contact for further information:
 Professor Bernardo de la Paz <berny@moon.example>

 Intended usage: COMMON

9. Internationalization Considerations

9.1. URIs and IRIs

 Clients can use Internationalized Resource Identifiers (IRIs)
 [RFC3987] for internal use as they see fit but MUST transform them to
 URIs [RFC3986] for interaction with RDAP servers. RDAP servers MUST
 use URIs in all responses, and again clients can transform these URIs
 to IRIs for internal use as they see fit.

9.2. Language Identifiers in Queries and Responses

 Under most scenarios, clients requesting data will not signal that
 the data be returned in a particular language or script. On the
 other hand, when servers return data and have knowledge that the data
 is in a language or script, the data SHOULD be annotated with
 language identifiers whenever they are available, thus allowing
 clients to process and display the data accordingly.

 [RFC7483] provides such a mechanism.

9.3. Language Identifiers in HTTP Headers

 Given the description of the use of language identifiers in
 Section 9.2, unless otherwise specified, servers SHOULD ignore the
 HTTP [RFC7231] Accept-Language header field when formulating HTTP
 entity responses, so that clients do not conflate the Accept-Language
 header with the ’lang’ values in the entity body.

Newton, et al. Standards Track [Page 10]

RFC 7480 RDAP over HTTP March 2015

 However, servers MAY return language identifiers in the Content-
 Language header field so as to inform clients of the intended
 language of HTTP layer messages.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource
 Identifiers (IRIs)", RFC 3987, January 2005,
 <http://www.rfc-editor.org/info/rfc3987>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008, <http://www.rfc-editor.org/info/rfc5226>.

 [RFC6585] Nottingham, M. and R. Fielding, "Additional HTTP Status
 Codes", RFC 6585, April 2012,
 <http://www.rfc-editor.org/info/rfc6585>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing", RFC
 7230, June 2014, <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 June 2014, <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7481] Hollenbeck, S. and N. Kong, "Security Services for the
 Registration Data Access Protocol (RDAP)", RFC 7481,
 February 2015, <http://www.rfc-editor.org/info/rfc7481>.

 [RFC7482] Newton, A. and S. Hollenbeck, "Registration Data Access
 Protocol (RDAP) Query Format", RFC 7482, February 2015,
 <http://www.rfc-editor.org/info/rfc7482>.

 [RFC7483] Newton, A. and S. Hollenbeck, "JSON Responses for the
 Registration Data Access Protocol (RDAP)", RFC 7483,
 February 2015, <http://www.rfc-editor.org/info/rfc7483>.

Newton, et al. Standards Track [Page 11]

RFC 7480 RDAP over HTTP March 2015

 [RFC7484] Blanchet, M., "Finding the Authoritative Registration Data
 (RDAP) Service", RFC 7484, February 2015,
 <http://www.rfc-editor.org/info/rfc7484>.

 [W3C.REC-cors-20140116]
 Kesteren, A., "Cross-Origin Resource Sharing", W3C
 Recommendation, REC-cors-20140116, January 2014,
 <http://www.w3.org/TR/2014/REC-cors-20140116/>.

10.2. Informative References

 [REST] Fielding, R. and R. Taylor, "Principled Design of the
 Modern Web Architecture", ACM Transactions on Internet
 Technology, Vol. 2, No. 2, May 2002.

 [RFC3912] Daigle, L., "WHOIS Protocol Specification", RFC 3912,
 September 2004, <http://www.rfc-editor.org/info/rfc3912>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",
 RFC 5890, August 2010,
 <http://www.rfc-editor.org/info/rfc5890>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014,
 <http://www.rfc-editor.org/info/rfc7159>.

 [SAC-051] Piscitello, D., Ed., "SSAC Report on Domain Name WHOIS
 Terminology and Structure", A report from the ICANN
 Security and Stability Advisory Committee (SSAC),
 September 2011.

 [lacnic-joint-whois]
 LACNIC, "Joint Whois", December 2005,
 <ftp://anonymous@ftp.registro.br/pub/gter/
 gter20/02-jwhois-lacnic.pdf>.

Newton, et al. Standards Track [Page 12]

RFC 7480 RDAP over HTTP March 2015

Appendix A. Protocol Example

 To demonstrate typical behavior of an RDAP client and server, the
 following is an example of an exchange, including a redirect. The
 data in the response has been elided for brevity, as the data format
 is not described in this document. The media type used here is
 described in [RFC7483].

 An example of an RDAP client and server exchange:

 Client:
 <TCP connect to rdap.example.com port 80>
 GET /rdap/ip/203.0.113.0/24 HTTP/1.1
 Host: rdap.example.com
 Accept: application/rdap+json

 rdap.example.com:
 HTTP/1.1 301 Moved Permanently
 Location: http://rdap-ip.example.com/rdap/ip/203.0.113.0/24
 Content-Length: 0
 Content-Type: application/rdap+json
 <TCP disconnect>

 Client:
 <TCP connect to rdap-ip.example.com port 80>
 GET /rdap/ip/203.0.113.0/24 HTTP/1.1
 Host: rdap-ip.example.com
 Accept: application/rdap+json

 rdap-ip.example.com:
 HTTP/1.1 200 OK
 Content-Type: application/rdap+json
 Content-Length: 9001

 { ... }
 <TCP disconnect>

Appendix B. Cache Busting

 Some HTTP [RFC7230] cache infrastructures do not adhere to caching
 standards adequately and could cache responses longer than is
 intended by the server. To overcome these issues, clients can use an
 ad hoc and improbably used query parameter with a random value of
 their choosing. As Section 4.3 instructs servers to ignore unknown
 parameters, this is compatible with the RDAP definition.

Newton, et al. Standards Track [Page 13]

RFC 7480 RDAP over HTTP March 2015

 An example of using an unknown query parameter to bust caches:

 http://example.com/ip/192.0.2.0?__fuhgetaboutit=xyz123

 Use of an unknown parameter to overcome misbehaving caches is not
 part of any specification and is offered here for informational
 purposes.

Appendix C. Bootstrapping and Redirection

 The traditional deployment model of WHOIS [RFC3912] does not provide
 a mechanism for determining the authoritative source for information.

 Some approaches have been implemented in the past, most notably the
 Joint WHOIS [lacnic-joint-whois] initiative. However, among other
 shortcomings, Joint WHOIS is implemented using proxies and server-
 side referrals.

 These issues are solved in RDAP using HTTP redirects and
 bootstrapping. Bootstrapping is discussed in [RFC7484]. In
 constrained environments, the processes outlined in [RFC7484] may not
 be viable, and there may be the need for servers acting as a
 "redirector".

 Redirector servers issue HTTP redirects to clients using a
 redirection table informed by [RFC7484]. Figure 2 diagrams a client
 using a redirector for bootstrapping.

 REDIRECTOR ARIN
 RDAP RDAP
 . .
 | |
 Q: 23.1.1.1? -----------------> | |
 | |
 <---------- HTTP 301 --------| |
 (’Try ARIN RDAP’) | |
 | |
 |
 Q: 23.1.1.1? -------------------------------> |
 |
 <---------- HTTP 200 --------------------- |
 (JSON response is returned) |
 |
 |
 .

 Figure 2: Querying RDAP Data for 23.1.1.1

Newton, et al. Standards Track [Page 14]

RFC 7480 RDAP over HTTP March 2015

 In some cases, particularly sub-delegations made between Regional
 Internet Registries (RIRs) known as "ERX space" and transfers of
 networks, multiple HTTP redirects will be issued. Figure 3 shows
 such a scenario.

 REDIRECTOR LACNIC ARIN
 RDAP RDAP RDAP
 . . .
 Q: 23.1.1.1? ----> | | |
 | | |
 <-- HTTP 301 --- | | |
 (’Try LACNIC’) | | |
 | | |
 | | |
 Q: 23.1.1.1? -----------------> | |
 | |
 <---------- HTTP 301 --------| |
 (’Try ARIN RDAP’) | |
 | |
 |
 Q: 23.1.1.1? -------------------------------> |
 |
 <---------- HTTP 200 --------------------- |
 (JSON response is returned) |
 |
 |
 .

 Figure 3: Querying RDAP Data for Data That Has Been Transferred

Acknowledgements

 John Levine provided text to tighten up the Accept header field usage
 and the text for the section on 429 responses.

 Marc Blanchet provided some clarifying text regarding the use of URLs
 with redirects, as well as very useful feedback during Working Group
 Last Call (WGLC).

 Normative language reviews were provided by Murray S. Kucherawy,
 Andrew Sullivan, Tom Harrison, Ed Lewis, and Alexander Mayrhofer.

 Jean-Phillipe Dionne provided text for the Security Considerations
 section.

 The concept of the redirector server informatively discussed in
 Appendix C was documented by Carlos M. Martinez and Gerardo Rada of

Newton, et al. Standards Track [Page 15]

RFC 7480 RDAP over HTTP March 2015

 LACNIC and Linlin Zhou of CNNIC and subsequently incorporated into
 this document.

 This document is the work product of the IETF’s WEIRDS working group,
 of which Olaf Kolkman and Murray Kucherawy were chairs.

Authors’ Addresses

 Andrew Lee Newton
 American Registry for Internet Numbers
 3635 Concorde Parkway
 Chantilly, VA 20151
 United States

 EMail: andy@arin.net
 URI: http://www.arin.net

 Byron J. Ellacott
 Asia Pacific Network Information Centre
 6 Cordelia Street
 South Brisbane QLD 4101
 Australia

 EMail: bje@apnic.net
 URI: http://www.apnic.net

 Ning Kong
 China Internet Network Information Center
 4 South 4th Street, Zhongguancun, Haidian District
 Beijing 100190
 China

 Phone: +86 10 5881 3147
 EMail: nkong@cnnic.cn

Newton, et al. Standards Track [Page 16]

